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Goodstein Sequences

Writing a number as a sum of powers of 2.

1000 = 29 + 28 + 27 + 26 + 25 + 23

But we can also write the exponents as sums of power of 2

1000 = 22
3+20 + 22

3
+ 22

2+21+20 + 22
1+20

We can even write the exponents that are not already powers of 2
as sums of powers of 2.

1000 = 22
21+20+20 + 22

21+20

+ 22
2+21+20 + 22

1+20

This is called Hereditary Base n Notation
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Ackerman’s Function and Goodstein Seq

1000 = 22
21+20+20 + 22

21+20

+ 22
2+21+20 + 22

1+20

Replace all of the 2’s with 3’s:

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30

This number just went WAY up. Now subtract 1.

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30 − 1

Repeat the process:
Replace 3 by 4, and subtract 1, Replace 4 by 5, and subtract 1, · · · .
Vote Does the seq:

I Goto infinity (and if so how fast- perhaps Ack-like?)

I Eventually stabilizes (e.g., goes to 18 and then stops there)

I Cycles- goes UP then DOWN then UP then DOWN . . ..

Answer on Next Slide
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The Sequence . . .

The seq goes to 0.

The number of steps for n to goto 0 is roughly ACK (n, n).

Really? Really!
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An Example of a Similar Sequence

We will not deal with the actual Goodstein Sequence defined
above.

Boo!

We will instead deal with a weaker version that

1. Contains most of the ideas. Yeah!

2. Will go to 0 before the heat death of the Universe. Yeah!
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Weak Goodstein: Unit Position

Take a number in base 10.

(986)10 = 9× 102 + 8× 101 + 6× 100.

Increase the base and subtract 1. Assume BWOC that the seq
goes on forever.

92 + 8× 111 + 6× 110− 1 = 9× 112 + 8× 111 + 5× 110 = (985)11.

Repeat this to get: (984)12, (983)13, (982)14, (981)15, (980)16.

(980)16 = 9× 162 + 8× 161

Note that the right most digit is 0. That will happen ∞ often.
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Weak Goodstein: Second Position

(980)16 = 9× 162 + 8× 161

Increase the base and subtract 1 to get

9× 172 + 8× 171− 1 = 9× 172 + 7× 171 + 16× 170 = (97(16))17

The second digit decreased!

Recap and go forward:

(986)10 → (980)16 → (97(16))17 → (970)23

→ (96(23))24 → (960)47 → (95(47))48

(95(47))48 → · · · → (900)x



Weak Goodstein: Second Position

(980)16 = 9× 162 + 8× 161

Increase the base and subtract 1 to get

9× 172 + 8× 171− 1 = 9× 172 + 7× 171 + 16× 170 = (97(16))17

The second digit decreased!

Recap and go forward:

(986)10 → (980)16 → (97(16))17 → (970)23

→ (96(23))24 → (960)47 → (95(47))48

(95(47))48 → · · · → (900)x



Weak Goodstein: Second Position

(980)16 = 9× 162 + 8× 161

Increase the base and subtract 1 to get

9× 172 + 8× 171− 1 = 9× 172 + 7× 171 + 16× 170 = (97(16))17

The second digit decreased!

Recap and go forward:

(986)10 → (980)16 → (97(16))17 → (970)23

→ (96(23))24 → (960)47 → (95(47))48

(95(47))48 → · · · → (900)x



Weak Goodstein: Second Position

(980)16 = 9× 162 + 8× 161

Increase the base and subtract 1 to get

9× 172 + 8× 171− 1 = 9× 172 + 7× 171 + 16× 170 = (97(16))17

The second digit decreased!

Recap and go forward:

(986)10 → (980)16 → (97(16))17 → (970)23

→ (96(23))24 → (960)47 → (95(47))48

(95(47))48 → · · · → (900)x



Weak Goodstein: Second Position

(980)16 = 9× 162 + 8× 161

Increase the base and subtract 1 to get

9× 172 + 8× 171− 1 = 9× 172 + 7× 171 + 16× 170 = (97(16))17

The second digit decreased!

Recap and go forward:

(986)10 → (980)16 → (97(16))17 → (970)23

→ (96(23))24 → (960)47 → (95(47))48

(95(47))48 → · · · → (900)x



Weak Goodstein: Second Position

(980)16 = 9× 162 + 8× 161

Increase the base and subtract 1 to get

9× 172 + 8× 171− 1 = 9× 172 + 7× 171 + 16× 170 = (97(16))17

The second digit decreased!

Recap and go forward:

(986)10 → (980)16 → (97(16))17 → (970)23

→ (96(23))24 → (960)47 → (95(47))48

(95(47))48 → · · · → (900)x



Weak Goodstein: Second Position

(980)16 = 9× 162 + 8× 161

Increase the base and subtract 1 to get

9× 172 + 8× 171− 1 = 9× 172 + 7× 171 + 16× 170 = (97(16))17

The second digit decreased!

Recap and go forward:

(986)10 → (980)16 → (97(16))17 → (970)23

→ (96(23))24 → (960)47 → (95(47))48

(95(47))48 → · · · → (900)x



Weak Goodstein: Second Position

(900)x = 9× x2

Increase base and subtract 1 to get

9× (x + 1)2−1 = 8× (x + 1)2 +x(x + 1)1 +x(x + 1)0 = (8xx)x + 1

(8xx)x+1 → · · · → (0yy)y+1

Now its a 2-digit number and use induction.
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Why Does the Sequence Always Go To 0?

1. If original number is 1-digit long then it will clearly go to 0.

2. If the original number is L digits long then

2.1 The left most digit is 0 ∞ often.
2.2 Within that the second digit is 0 ∞ often.
2.3 · · · within that the lead digit is eventually 0. Then the

problem is an L− 1 digit long seq. Use Induction.
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Weak Goodstein and Strong Goldstein

1. From what I’ve presented you can prove rigorously that the
weak Goodstein seq always goes to 0.

2. The proof for strong Goldstein is similar but requires some
other ideas.

Goodstein’s Thm The strong Goodstein seq always goes to 0.

Do you find his theorem to be natural? This is not a VOTE since
its a matter of opinion and opinion and is not well defined.

Next Slide will indicate why am asking this.
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Peano Arithmetic and Godel’s Inc. Thm

Peano Arithmetic (PA) is a standard system of axioms. Almost
all theorems from Number Theory and combinatorics can be
proven in PA.

Godel’s Inc Thm ∃ statements that are TRUE but cannot be
proven in PA.

The statements Godel obtained were not natural. They were
designed for the whole purpose of being unprovable in PA.

The question arose: Are there Natural statements that are not
provable in PA?

There are a few such statements.

1. Every strong Goodstein Sequence goes to 0.

2. The Paris-Harrington Ramsey Thm
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