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Prob 2

Give a sentence ¢ in the language of graphs such that

spec(¢p) ={n: n=1 (mod 4)}.

SOL Plan: (1) there is one isolated point, and (2) all other points
come in sets of (4's.

(3x) the AND of the following:

(Vy)[-E(x,y)]. x is an isolated vertex.

(Vy # x)(Fz1, 22)[E(y, 21) N E(y, 22) A (Yw # 21, 2)[E(y, w)]]
All vertices except x have degree exactly 2.

(Vy # x)(Fy1, y2, y3)[E(y, y1) A E(y1, y2) A E(y2, y3) A E(ys, y)]
Every non-x vert is in a C4. All non-x verts have deg 2, so the

vi,¥2,¥3,y are in a (4 and are not connected to anything else.



Statement of Prob 3

We use the language of 3-hypergraphs. One predicate: E(x,y, z).
We assume E is symmetric.

¢ = (E]Xl) T (E|X,,)(Vy1) T (vym)[w(xl’ e Xy Y1, a}/m)]
If (3N > X(n, m))[N € spec(¢)] then
{n+mn+m+1,...} Cspec(p).

Fill in the X and prove it.



SOL to Prob 3: Sets U, Y

Assume 3 3-hypergraph G = (V, E) on > X vertices, G = ¢.
Witnesses: w1, ..., u, be the witnesses.

U={u1,...,un} Y=V-U lY|=X—n=A.

Y ={y1,...,ya}
Want Y superhomog.
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n

Map y; € Y to the (2) sized vector indexed by ([’2’]):
The {a, b} entry is E(y;, a, b).
We map A elt to 2(2) elts.

1B = ﬁ that map to same vector.
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(;) and U

Have: {y1,...,yB} have same rel to all pairs in (g)
We now need all pairs in (g) have same rel to elts in U.

Form the following coloring COL : (g) — [{0,1}"].

COL(yi,yj) = (E(yi,yj,u1),-- -, E(yi, yj, un))

Replace Y with the homog set. Re-index to get

Y:{ylw"a}/C}
C is an inv Ramsey Numb. We will state B as a ramsey numb.

Need B > R(C,2").
We will see how big C needs to be, then how big B needs to be.
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SOL to Prob 3: (g)

Want all of the y;'s to have same rel to each other.

Use 3-ary Ramsey on Y to get a set of size m. So we will take
C= R3(m)

Let COL : (g) — [2] by COL(yi,yj, yk) = E(yi,¥j, Yk)-

Take homog set of size m. We now have a superhomg set Y. The
rest of the proof is like | did in class.

So what is X7 Next Slide.
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SOL to Prob 3: What is X?

We include arities and numb colors for clarity.
C= R3(m, 2).
B = R2(C72n) = R2(R3(m’ 2)’2n)

A = Ry(C,2") = Ry(R3(m, 2),2").
»(%)

A =20 Ry(C,27) = 2C) Ry(R3(m, 2), 21).
X = A+ n=20Ry(C,2") = Ro(Rs(m, 2),2") + n.
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Prob 4

A number of the form x2 4+ x where x € N, x > 1, is called a Liam.
The first few Liam's are 2,6, 12, 20, 30,42, 56, 72, 90.

Let L(c) be the least n (if it exists) so that for all c-colorings of

{1,..., n} there exists two numbers that are the same color that
are a Liam apart.

1. Find an upper bound on L(2).
2. Find an upper bound on L(3).
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SOL to a

We show that (VCOL: [13] — [2]) there exists x,y a Liam apart
that are the same color.
Assume not. We can assume COL(1) = 1.

Since 2 is Liam:

Hence COL(1) = COL(5) = COL(9) = COL(13)
1 and 13 are 12 = 33 + 3 apart. So COL(1) # COL(13).

Contradiction.
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SOL to b

We show that (VCOL: [n] — [3]) there exists x, y a Liam apart
that are the same color.

We determine n later.
Assume not. We can assume COL(1) = 1.
We need some COL(x) = COL(x + d).
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SOL to b (Diagram)
This diagram shows that COL(1) = COL(55).
More generally, COL(x) = COL(x + 54).

Figure: COL(x) = COL(x + 18)
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SOL to b (Finale)

(Vk € N)[COL(1) = COL(1 + 18k)]
We need

18k = x> + x = x(x + 1)
OH- lets take x = 8.

18k=8x9=18 x4

Great! We take k = 4.
SO L(3) < 73.

Can we do better? | do not know.



