The Infinite Ramsey Theorem and the Large Ramsey Theorem ## 1 The Infinite Ramsey Theorem **Def 1.1** Let $a, c \in \mathbb{N}$. Let A be a set (A will usually be \mathbb{N} or [n] or $\{k, \ldots, n\}$). Let COL: $\binom{A}{a} \to [c]$. $H \subseteq A$ is homogenous if COL is constant on $\binom{H}{a}$. In this manuscript we will only talk about 2-colorings of $\binom{A}{2}$. Generalizations to any number of colors are trivial. Generalizations to different values of a are fairly easy but may require some thought. **Theorem 1.2** Every 2-coloring $\binom{N}{2}$ has an infinite homogenous set. **Proof:** Let COL: $\binom{N}{2} \to [2]$. We define an infinite sequence of vertices, $$x_1, x_2, \ldots,$$ and an infinite sequence of sets of vertices, $$V_0, V_1, V_2, \ldots,$$ that are based on COL. Here is the intuition: Vertex $x_1 = 1$ has an infinite number of edges coming out of it. Some are RED, and some are BLUE. Hence there are an infinite number of RED edges coming out of x_1 , or there are an infinite number of BLUE edges coming out of x_1 (or both). Let c_1 be a color such that x_1 has an infinite number of edges coming out of it that are colored c_1 . Let V_1 be the set of vertices v such that $COL(\{v, x_1\}) = c_1$. Then keep iterating this process. We now describe it formally. $$V_0 = \begin{cases} N \\ x_1 = 1 \end{cases}$$ $$c_1 = \begin{cases} \text{RED if } |\{v \in V_0 \mid COL(\{v, x_1\}) = \text{RED}\}| \text{ is infinite;} \\ \text{BLUE otherwise} \end{cases}$$ (1) $$V_1 = \{v \in V_0 \mid COL(\{v, x_1\}) = c_1\}$$ (note that $|V_1|$ is infinite) Let $i \geq 2$, and assume that V_{i-1} is defined. We define x_i , c_i , and V_i : $x_i =$ the least number in V_{i-1} $$c_{i} = \begin{cases} \text{RED if } |\{v \in V_{i-1} \mid COL(\{v, x_{i}\}) = \text{RED}\}| \text{ is infinite;} \\ \text{BLUE otherwise} \end{cases}$$ (2) $$V_i = \{v \in V_{i-1} \mid COL(\{v, x_i\}) = c_i\}$$ (note that $|V_i|$ is infinite) How long can this sequence go on for? Well, x_i can be defined if V_{i-1} is nonempty. We an show by induction that, for every i, V_i is infinite. Hence the sequence $$x_1, x_2, \ldots,$$ is infinite. Consider the infinite sequence $$c_1, c_2, \ldots$$ Each of the colors in this sequence is either RED or BLUE. Hence there must be an infinite sequence i_1, i_2, \ldots such that $i_1 < i_2 < \cdots$ and $$c_{i_1}=c_{i_2}=\cdots$$ Denote this color by c, and consider the vertices $$H = \{x_{i_1}, x_{i_2}, \cdots\}$$ It is easy to show that H is homog. # 2 Finite Ramsey from Infinite Ramsey Having proved the infinite Ramsey Theorem, we then want to prove the finite Ramsey Theorem. Can we prove the finite Ramsey Theorem from the infinite Ramsey Theorem? Yes, we can! This proof will not give any bounds. Other proofs do. **Theorem 2.1** For all k there exists n such that for all COL: $\binom{[n]}{2} \to [2]$ there exists a homog set of size k. **Proof:** Suppose, by way of contradiction, that there is some $k \geq 2$ such that no such n exists. For every $n \geq k$, there is some way to color $\binom{[n]}{2}$ so that there is no homog set of size k. Hence there exist the following: - 1. COL_0 , a 2-coloring of $\binom{[k]}{2}$ that has no homog set of size k. - 2. COL_1 , a 2-coloring of $\binom{[k+1]}{2}$ that has no homog set of size k. - 3. COL_2 , a 2-coloring of $\binom{[k+2]}{2}$ that has no homog set of size k. - 4. COL_3 , a 2-coloring of $\binom{[k+3]}{2}$ that has no homog set of size k. : j. COL_L , a 2-coloring of $\binom{[k+L]}{2}$ that has no homog set of size k. : We will use these 2-colorings to form a 2-coloring COL of $\binom{\mathsf{N}}{2}$ that has no infinite homog set. This contradiction Theorem 1.2. Let e_1, e_2, e_3, \ldots be a list of every element of $\binom{\mathsf{N}}{2}$. We will color e_1 , then How should we color e_1 ? We will color it the way an infinite number of the COL_i 's color it. Call that color c_1 . Then how to color e_2 ? Well, first consider ONLY the colorings that colored e_1 with color c_1 . Color e_2 the way an infinite number of those colorings color it. And so forth. We now proceed formally: $$J_0 = N$$ $$COL(e_1) = \begin{cases} \text{RED if } |\{j \in J_0 \mid COL_j(e_1) = \text{RED}\}| \text{ is infinite;} \\ \text{BLUE otherwise.} \end{cases}$$ (3) $$J_1 = \{j \in J_0 \mid COL(e_1) = COL_j(e_1)\}$$ Let $i \geq 2$, and assume that e_1, \ldots, e_{i-1} have been colored. Assume, furthermore, that J_{i-1} is infinite and, for every $j \in J_{i-1}$, $$COL(e_1) = COL_j(e_1)$$ $$COL(e_2) = COL_j(e_2)$$ $$\vdots$$ $$COL(e_{i-1}) = COL_j(e_{i-1})$$ We now color e_i : $$COL(e_i) = \begin{cases} \text{RED if } |\{j \in J_{i-1} \mid COL_j(e_i) = \text{RED}\}| \text{ is infinite;} \\ \text{BLUE otherwise.} \end{cases}$$ (4) $$J_i = \{ j \in J_{i-1} \mid COL(e_i) = COL_j(e_i) \}$$ One can show by induction that, for every i, J_i is infinite. Hence this process *never* stops. **Claim:** Let A be a finite subset of $\{k, k+1, \ldots, \}$. Then there exists an infinite number of i such that COL on $\binom{A}{2}$ agrees with COL_i on $\binom{A}{2}$. ### **Proof of Claim** Left to the reader. #### End of Proof of Claim We have produced a 2-coloring of $\binom{N}{2}$. Let By Theorem 1.2 there is an infinite homog set for COL: $$H = \{x_1 < x_2 < x_3 < \cdots \}.$$ Look at $$H' = \{x_1 < x_2 < \dots < x_k\}$$ This is a homog set with respect to COL. By the claim there is an i (in fact, infinitely many) such that COL and COL_i agree on $\binom{H'}{2}$. Clearly H' is a homog set of size k for COL_i . This contradicts the definition of COL_i . # 3 Proof of Large Ramsey Theorem In all of the theorems presented earlier, the labels on the vertices did *not* matter. In this section, the labels *do* matter. **Def 3.1** A finite set $F \subseteq \mathbb{N}$ is called *large* if the size of F is BIGGER than the smallest element of F. ### Example 3.2 - 1. The set $\{1, 2, 10\}$ is large: It has 3 elements, the smallest element is 1, and 3 > 1. - 2. The set $\{5, 10, 12, 17, 20\}$ is NOT large: It has 5 elements, the smallest element is 5, and 5 is NOT strictly greater than 5. - 3. The set $\{20, 30, 40, 50, 60, 70, 80, 90, 100\}$ is NOT large: It has 9 elements, the smallest element is 20, and 9 < 20. - 4. The set $\{5, 30, 40, 50, 60, 70, 80, 90, 100\}$ is large: It has 9 elements, the smallest element is 5, and 9 > 5. - 5. The set $\{101, \ldots, 190\}$ is not large: It has 90 elements, the smallest element is 101, and 90 < 101. We will be considering monochromatic K_m 's where the underlying set of vertices is a large set. We need a definition to identify the underlying set. Let COL be a 2-coloring of $\binom{[n]}{2}$. Consider the set $\{1,2\}$. It is clearly both homogeneous and large (using our definition of large). Hence the statement "for every $n \geq 2$, every 2-coloring of K_n has a large homogeneous set" is true but trivial. What if we used $V = \{k, k+1, ..., n\}$ as our vertex set? Then a large homogeneous set would have to have size at least k. **Notation 3.3** LR(k) is the least n, if it exists, such that every 2-coloring of $\binom{\{k,\dots,n\}}{2}$ has a large homogeneous set. **Theorem 3.4** For every $k \geq 2$ there exists n such that for all 2-colorings of $\binom{\{k,\ldots,n\}}{2}$ there exists a large homog set. **Proof:** This proof is similar to our proof of the finite Ramsey Theorem from the infinite Ramsey Theorem (the proof of Theorem 2.1). Suppose, by way of contradiction, that there is some $k \geq 2$ such that no such n exists. For every $n \geq k$, there is some way to color $\binom{\{k,\dots,n\}}{2}$ so that there is no large homog sets. Hence there exist the following: - 1. COL_1 , a 2-coloring of $\binom{\{k,k+1\}}{2}$ that has no large homog set. - 2. COL_2 , a 2-coloring of $\binom{\{k,k+1,k+2\}}{2}$ that has no large homog set. - 3. COL_3 , a 2-coloring of $\binom{\{k,\dots,k+3\}}{2}$ that has no large homog set. : j. COL_L , a 2-coloring of $\binom{\{k,\dots,k+L\}}{2}$ that has no large homog set. : We will use these 2-colorings to form a 2-coloring COL of $\binom{\{k,k+1,\ldots\}}{2}$. This coloring will have an infinite homog set by Theorem 1.2. This will give us a contradiction to the definition of one of the COL_i . Let e_1, e_2, e_3, \ldots be a list of every element of $\binom{\{k, k+1, \ldots\}}{2}$. We will color e_1 , then e_2 , etc. How should we color e_1 ? We will color it the way an infinite number of the COL_i 's color it. Call that color c_1 . Then how to color e_2 ? Well, first consider ONLY the colorings that colored e_1 with color c_1 . Color e_2 the way an infinite number of those colorings color it. And so forth. We now proceed formally: $$J_0 = N$$ $$COL(e_1) = \begin{cases} \text{RED if } |\{j \in J_0 \mid COL_j(e_1) = \text{RED}\}| \text{ is infinite;} \\ \text{BLUE otherwise.} \end{cases}$$ (5) $$J_1 = \{j \in J_0 \mid COL(e_1) = COL_j(e_1)\}$$ Let $i \geq 2$, and assume that e_1, \ldots, e_{i-1} have been colored. Assume, furthermore, that J_{i-1} is infinite and, for every $j \in J_{i-1}$, $$COL(e_1) = COL_j(e_1)$$ $$COL(e_2) = COL_j(e_2)$$ $$\vdots$$ $$COL(e_{i-1}) = COL_j(e_{i-1})$$ We now color e_i : $$COL(e_i) = \begin{cases} \text{RED if } |\{j \in J_{i-1} \mid COL_j(e_i) = \text{RED}\}| \text{ is infinite;} \\ \text{BLUE otherwise.} \end{cases}$$ (6) $$J_i = \{j \in J_{i-1} \mid COL(e_i) = COL_j(e_i)\}$$ One can show by induction that, for every i, J_i is infinite. Hence this process *never* stops. **Claim:** Let A be a finite subset of $\{k, k+1, \ldots, \}$. Then there exists an infinite number of i such that COL on $\binom{A}{2}$ agrees with COL_i on $\binom{A}{2}$. ### **Proof of Claim** Left to the reader. ### End of Proof of Claim By Theorem 1.2 there is an infinite homog set for COL: $$H = \{x_1 < x_2 < x_3 < \cdots \}.$$ Look at $$H' = \{x_1 < x_2 < \dots < x_{x_1+1}\}$$ This is a homog set with respect to COL. By the claim there is an i (in fact, infinitely many) such that COL and COL_i agree on $\binom{H'}{2}$. Clearly H' is a large homog set for COL_i . This contradicts the definition of COL_i .