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Recap

We gave two proofs of Inf Can Ramsey:

▶ One used 4-ary Ramsey and 1-d Can Ramsey.

▶ One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

Is there a proof that is similar in spirit to the proof of Inf Ramsey?

Yes. It is due to Joesph Mileti.

1. His interest: He got a more constructive proof of Can Ramsey.

2. My interest: educational.

3. My interest: better bounds when finitized.

4. This finization has never been written up. Will be an extra
credit project.
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Min-Homog, Max-Homog, Rainbow

Def: Let COL :
(N
2

)
→ ω. Let V ⊆ N. Assume a < b and c < d .

▶ V is homog if COL(a, b) = COL(c , d) iff TRUE .

▶ V is min-homog if COL(a, b) = COL(c , d) iff a = c .

▶ V is max-homog if COL(a, b) = COL(c , d) iff b = d .

▶ V is rainb if COL(a, b) = COL(c , d) iff a = c and b = d .

Can Ramsey Thm for
(N
2

)
: For all COL :

(N
2

)
→ ω, there exists

an infinite set V such that either V is homog, min-homog,
max-homog, or rainb.



Notation

(∃∞x ∈ A) means for an infinite number of x ∈ A

(∀∞x ∈ A) means for all but a finite number of x ∈ A
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First Step of Construction

The following notation will make later cases similar to this case.
V1 = N
x1 = 1
Have COL :

(V1
2

)
→ ω.

One of the following happens:

▶ (∃c ∈ ω)(∃∞y ∈ V1)[COL(x1, y) = c].
Kill all those who disagree. COL′(x1) = (H, c).
Similar to 1st step of Inf Ramsey.

▶ (∀c ∈ ω)(∀∞y ∈ V1)[COL(x1, y) ̸= c]. For every color c the
set of y with COL(x1, y) = c is finite.
Kill duplicates, so in new set COL(x1,?) are all different.
COL′(x1) = (RB, 1). Similar to proof of 1-ary Can Ramsey.

In both cases let
V2 be the new infinite set.
x2 be the least element of V2.
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Second Step of Construction

Have V2 and x2.
Have COL :

(V2
2

)
→ ω.

▶ (∃c ∈ ω)(∃∞y ∈ V2)[COL(x2, y) = c]. Then restrict to that
set and color x2 with (H, c). Similar to 2nd step of Inf Ram.

▶ (∀c ∈ ω)(∀∞y ∈ V2)[COL(x2, x) ̸= c].
▶ For every color c the set of y with COL(x2, y) = c is finite.

Kill duplicates so that COL(x2, ?) are all different.
New set is W . Will not be final V3.

▶ COL′(x2) = (RB, 1) if x1 and x2 are similar.
COL′(x2) = (RB, 2) if x1 and x2 are different.
See next slide.
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Convention

When we say (H, j) we think of j as a color.
We also say j ∈ ω.

When we say (RB, j) we think of j as an index.
We also say j ∈ N.

Really ω = N so they are all numbers.
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COL′(x1),COL′(x2) ∈ {(RB, 1), (RB, 2)}

W = {w3,w4, . . . , }

Note following

▶ COL(x1,w3), COL(x1,w4), · · · are all different.

▶ COL(x2,w3), COL(x2,w4), · · · are all different.

One of the following occurs.

1. (∃∞w ∈ W )[COL(x1,w) = COL(x2,w)]. Then let
V3 = {w ∈ W : COL(x1,w) = COL(x2,w)}.
COL′(x2) = (RB, 1).
Note that (∀y ∈ V3)[COL(x1, y) = COL(x2, y)] & |V3| = ∞

2. (∃∞w ∈ W )[COL(x1,w) ̸= COL(x2,w)]. Then let
V3 = {w ∈ W : COL(x1,w) ̸= COL(x2,w)}.
COL′(x2) = (RB, 2).
Note that (∀y ∈ V3)[COL(x1, y) ̸= COL(x2, y)] & |V3| = ∞
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Third Step, ith Step

V3 is defined and is infinite. x1, x2 are colored.
x3 is least element of V3.

HW: Do third step.
After third step
COL′(x3) ∈ {(H, j) : j ∈ ω} ∪ {(RB, j) : j ≤ 3}.
V4 will be infinite.

Vi is defined and is infinite. x1, . . . , xi−1 are colored.
xi is least element of Vi .
HW: Do ith step.
After ith step
COL′(xi ) ∈ {(H, j) : j ∈ ω} ∪ {(RB, j) : j ≤ i}.
Vi+1 will be infinite.
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ωth Step, Case 1

Recap We have X = {x1, x2, x3, . . .}

For all x ∈ X
COL′(x) ∈ {(H, j) : j ∈ ω} ∪ {(RB, j) : j ∈ N}.
Key We started with COL :

(N
2

)
→ ω and now have

COL′ : X → ω.
Case 1 H occurs inf often as 1st coordinate and

(∃c0 ∈ ω)(∃∞x ∈ X )[COL′(x) = (H, c0)].

H = {x ∈ X : COL′(x) = (H, c0)}
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ωth Step, Case 2

Recap We have X = {x1, x2, x3, . . .}

COL′(x) ∈ {(H, j) : j ∈ ω} ∪ {(RB, j) : j ∈ N}.
Case 2 H occurs inf often as 1st coordinate and

(∀c)(∀∞x)[COL′(x) ̸= (H, c)].

Eliminate Duplicates to get

H = {h1, h2, h3, . . .}

where COL′(hi ) = (H, ci ) with ci ’s different.
H is min-homog.
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If Cases 1,2 Do Not Occur Then . . .

Case 1 H occurs inf often as 1st coordinate and

(∃c0 ∈ ω)(∃∞x ∈ X )[COL′(x) = (H, c0)].

Case 2 H occurs inf often as 1st coordinate and

(∀c)(∀∞x)[COL′(x) ̸= (H, c)].

If neither happens then H only occurs finite often as 1st coordinate.
Eliminate those finite x such that COL′(x) = (H, ?).
Keep the name of the set X too avoid to much notation.
For Cases 3,4 assume (∀x ∈ X )[COL′(x) = (RB, ?)].
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ωth Step, Case 3

Recap We have X = {x1, x2, x3, . . .}

COL′(x) ∈ {(RB, j) : j ∈ N}.
Case 3 (∃i0 ∈ N)(∃∞x ∈ X )[COL′(x) = (RB, i0)].

H = {x ∈ X : COL′(x) = (RB, i0)}

H is max-homog.
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ωth Step, Case 4

Recap We have X = {x1, x2, x3, . . .}

COL′(x) ∈ {(RB, j) : j ∈ N}.
If Case 1,2,3 do not occur then have:
Case 4
(∀x)(∀∞i)[COL′(x) ̸= (RB, i)]. Eliminate Duplicates to get

H = {h1, h2, h3, . . .}

where COL′(hj) = (RB, cj) with cj ’s different.
So where are we now?
Let a < b < c .

▶ All of the edges out of ha to the right, are different from each
other.

▶ COL(ha, hc) ̸= COL(hb, hc).

So is H a rainbow set?
No. Counterexample on next slide.
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Countexample Due to Liam Gerst

COL :
(N
2

)
→ ω

COL(i , j) = |i − j |

Let a < b < c .

▶ All of the edges out of a to the right are different from each
other.

▶ COL(a, c) ̸= COL(b, c).
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ωth Step, Case 4 (cont)

Recap

H = {h1, h2, h3, . . .}

Let a < b < c .

▶ All of the edges out of ha to the right are different from each
other.

▶ COL(ha, hc) ̸= COL(hb, hc).

Claim For all i ∈ N, c a color, degc(hi ) ≤ 2.
Proof Assume, BWOC that degc(hi ) ≥ 3.
Case 1 There two vertices x , y to the right of hi such that
COL(hi , x) = COL(hi , y) = c . This contradicts that all the edges
coming out of hi are different.
Case 2 There two vertices x , y to the left of hi such that
COL(x , hi ) = COL(y , hi ) = c . This contradicts that x and y
disagree.
End of Proof of Claim



ωth Step, Case 4 (cont)

Recap

H = {h1, h2, h3, . . .}

Let a < b < c .
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COL(hi , x) = COL(hi , y) = c . This contradicts that all the edges
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COL(x , hi ) = COL(y , hi ) = c . This contradicts that x and y
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End of Proof of Claim



ωth Step, Case 4 (cont)

Recap

H = {h1, h2, h3, . . .}

Let a < b < c .

▶ All of the edges out of ha to the right are different from each
other.

▶ COL(ha, hc) ̸= COL(hb, hc).

Claim For all i ∈ N, c a color, degc(hi ) ≤ 2.
Proof Assume, BWOC that degc(hi ) ≥ 3.
Case 1 There two vertices x , y to the right of hi such that
COL(hi , x) = COL(hi , y) = c . This contradicts that all the edges
coming out of hi are different.
Case 2 There two vertices x , y to the left of hi such that
COL(x , hi ) = COL(y , hi ) = c . This contradicts that x and y
disagree.
End of Proof of Claim



Last Step

Recall
Lemma Let X be infinite. Let COL :

(X
2

)
→ ω. Let d ∈ ω. If for

every x ∈ X and c ∈ ω, degc(x) ≤ d then there is an infinite rainb
set.
We apply this to our set H with d = 2 to get a rainbow set.


