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On well-quasi-ordering finite trees

B Y C. ST. J. A. NASH-WILLIAMS

King's College, Aberdeen

{Received 9 March 1963)

Abstract. A new and simple proof is given of the known theorem that, if TX,T2,... is an
infinite sequence of finite trees, then there exist i and j such that i < j and Tt is homeo-
morphic to a subtree of 2J.

A quasi-ordered set is a set Q on which a reflexive and transitive relation < is defined.
Q and Q' will denote quasi-ordered sets. An infinite sequence qv qz,... of elements of
Q will be called good if there exist positive integers i, j such that i < j and qi < qf,
if not, the sequence will be called bad. A quasi-ordered set Q is well-quasi-ordered (wqo)
if every infinite sequence of elements of Q is good.

A graph G consists (for our purposes) of a finite set V(G) of elements called vertices
of 0 and a subset E(G) of the Cartesian product V(G) x V(G). The elements of E(G)
are called edges of G. If (£, v) e E{G), we call v a successor of £. If £, v e V(G), a fy-path
is a sequence £0,..., £„ of vertices of 6? such that £0 = £, £re = r) and ( g ^ , £f) e E(G)
for i = 1, ...,n. The sequence with sole term £ is accepted as a ££-path. If there exists
a £i?-path, we say that v follows £. For the purposes of this paper, a tree is a graph T
possessing a vertex p(T) (called its root) such that, for every £ e V(T), there exists
a unique p(T) £-path in T. The letter T (with or without dashes or suffixes) will always
denote a tree. For the purposes of this paper, a homeomorphism of T into T' is a function
(j>: V(T) -*• V(T') such that, for every £ e V(T), the images under (j) of the successors
of £ follow distinct successors of 0(£). The set of all trees will be quasi-ordered by the
rule that T < 71' if and only if there exists a homeomorphism of T into T'. This paper
presents a new and shorter proof of the following theorem of Kruskal (2).

THEOREM 1. The set of all trees is wqo.

If A, B are subsets of Q, a mapping/: A -*• B is non-descending if a ^ /(a) for every
a e J.. The class of finite subsets of Q will be denoted by SQ, and will be quasi-ordered
by the rule that A < B if and only if there exists a one-to-one non-descending mapping
of A into B, where A, B denote members of SQ. The Cartesian product QxQ' will be
quasi-ordered by the rule that (qv q[) < (q2, q'2) if and only if qx ^ q2 and q[ ^ q'2.
The cardinal number of a set .4 will be denoted by \A\.

The following two lemmas are well known (see (1)), but for the reader's convenience
their proofs are given here.

LEMMA 1. If Q, Q' are wqo, then QxQ' is wqo.

Proof. We must prove an arbitrary infinite sequence (qv q[), (q2, q'2), ... of elements
of Q x Q' to be good. Call qm terminal if there is no w > TO such that qm < qn. The number
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of qm which are terminal must be finite, since otherwise they would form a bad sub-
sequence of qltq2,.... Therefore there is an N such that qT is not terminal if r > N.
We can therefore select a positive integer /(I) > N, then an /(2) > / ( l ) such that
?/(i) < <7/(2>> *hen an/(3) > /(2) such that gy(2) < qf{3) and so on. Since Q' is wqo, there
exist i, j such that i < j and q'i(i) < q)^, whence (g/(i), q}^) < (g>y), ?/<#) and therefore
our original sequence is good.

LEMMA 2. If Q is wqo, then SQ is wqo.

Proof. Assume that the lemma is false. Select an Ax e SQ such that A1 is the first
term of a bad sequence of members of SQ and l ^ ] is as small as possible. Then select
an A2 such that Ax, A2 (in that order) are the first two terms of a bad sequence of
members of SQ and \A2\ is as small as possible. Then select an A3 such that Av A2, A3

(in that order) are the first three terms of a bad sequence of members of SQ and |^43|
is as small as possible. Assuming the Axiom of Choice, this process yields a bad sequence
Ax, A2, A3, .... Since this sequence is bad, no At is empty: therefore we can select an
element at from each At. Let Bi = Ai — {aj. If there existed a bad sequence Bf{1),
Bf($, ... such that /(I) < f(i) for all i, the sequence

A x , A 2 , ..., A f ( i ) _ x , B f { 1 ) , -S / (2 ) , •••

would be bad (since At < Bj entails Ai ^ A^ and is therefore impossible if i < j).
Since this would contradict the definition of Afil), there can be no bad sequence
j?/(1), JS/(2), ... such that/( 1) < f(i) for all i. I t follows that the class (93, say) of sets Bt is
wqo, since any bad sequence of sets Bi would have a (bad) infinite subsequence in
which no suffix was less than the first. Therefore, by Lemma 1, Q x 93 is wqo. Therefore
there exist i, j such that i < j and (ai,Bi) «S (a^Bj), which implies that Ai ^ A} and
thus contradicts the badness of Ax, A2, .... This contradiction proves the lemma.

The branch of T at a vertex £ is the tree R such that V(R) is the set of those vertices
of T which follow £ and

E(R) = E(T) n (F(.ff) x

Proof of Theorem 1. Assume that the theorem is false. Select a tree Tx such that Tx

is the first term of a bad sequence of trees and | F(7\) [ is as small as possible. Then select
a T2 such that Tlt T2 (in that order) are the first two terms of a bad sequence of
trees and | F(T^)| is as small as possible. Continuing this process as in the proof of
Lemma 2 yields a bad sequence T±, T2, .... Let Bt be the set of branches of Tt at the
successors of its root, and let B = Bx u B2 u .... If there existed a bad sequence
RX,R2, ... suchthati?£ejB/ ( i )and/(l) < f(i) for every i, the sequence

Tx, T2, . . . , *jn)-i! Ri> i&ii •••

would be bad (since Tt < R e B} entails Tt < Tt and is therefore impossible if i < j).
Since this would contradict the definition of Tfti), there can be no bad sequence
R1} R2, ... such that Rt e Bfii) and/(I) </(i) for every i. Since any bad sequence of
elements of B would have a bad subsequence of this form, it follows that no sequence of
elements of B is bad. Therefore B is wqo and hence, by Lemma 2, SB is wqo. Therefore
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Bi ^ Bj for some pair i, j such that i < j . Therefore there is a one-to-one non-
descending mapping cj>: Bi -* Bj. For each R e Biy R ^ <}>(R) and so there exists a
homeomorphism hR of R into <fi(R). A homeomorphism A of T% into 2} may thus be
defined by writing }i(p(T>)) = p(Tj) and making h coincide with hB on the vertices of
each R e Bt. Therefore Tt < Tp which contradicts the badness of Tx, T2, ... and thus
proves Theorem 1.

.The Tree Theorem of (2) is stronger than Theorem 1 of the present paper, but the
above proof of Theorem 1 can easily be adapted to prove the Tree Theorem by con-
sidering X x F(B) in place of SB (where X, F have the meanings stated in (2)). Because
the necessary changes are easy to make, I have sacrificed this much generality in the
interests of readability.

Note added 10 Atigust 1963. I t has been brought to the author's notice that
Kruskal's proof of the Tree Theorem (2) anticipated a somewhat similar proof
obtained independently by S. Tarkowski (Bull. Acad. Polon. Sci. Ser. Sd. Math.
Astr. Phys. 8 (1960), 39-41).
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An application of harmonic coordinates in general relativity
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We suppose the first derivatives of the components of a continuous metric tensor to
exhibit jumps across a non-null hypersurface. We shall show that harmonic coordinates
(see Fock (l), p. 175) lead to an automatic smoothing of the metric.

Let xm (m = 1,2,3,4) be coordinates in a certain region of Riemannian space-time.
We write F e (GN, CN+K) to mean that F(xm) has continuous Nth. partial derivatives
throughout the region with its (N+ l)th,..., (N + K)th derivatives discontinuous
only across a hypersurface u(xm) = 0. Lichnerowicz ((2), p. 5) requires the metric
tensor g^x™-) in ' admissible' coordinates to satisfy gtj e (C1, Cz) with respect to hyper-
surfaces for which u e (G2, G4). This state of affairs is preserved by a (G2, C4) coordinate
transformation. Now suppose we leave the class of admissible coordinate systems by

https://doi.org/10.1017/S0305004100003844
Downloaded from https://www.cambridge.org/core, on subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0305004100003844
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

