
Primitive Recursive
Function and Ramsey

Theory

Exposition by William Gasarch-U of MD



Bounds on a-ary Ramsey Numbers

Def Ra(k) is the least n such that, for all COL :
([n]
a

)
→ [2] there

exists a homog set of size k .

Recall that we showed
R2(k) ≤ 22k−1.
R3(k) ≤ TOW(2k).

What would the bound be on R4(k)?
We do not have a good way to write it down.

Consider the function
(a, k) maps to Ra(k).
What are the bounds on that?

We need a way to express very fast growing functions.



Bounds on a-ary Ramsey Numbers

Def Ra(k) is the least n such that, for all COL :
([n]
a

)
→ [2] there

exists a homog set of size k .

Recall that we showed
R2(k) ≤ 22k−1.
R3(k) ≤ TOW(2k).

What would the bound be on R4(k)?
We do not have a good way to write it down.

Consider the function
(a, k) maps to Ra(k).
What are the bounds on that?

We need a way to express very fast growing functions.



Bounds on a-ary Ramsey Numbers

Def Ra(k) is the least n such that, for all COL :
([n]
a

)
→ [2] there

exists a homog set of size k .

Recall that we showed
R2(k) ≤ 22k−1.
R3(k) ≤ TOW(2k).

What would the bound be on R4(k)?
We do not have a good way to write it down.

Consider the function
(a, k) maps to Ra(k).
What are the bounds on that?

We need a way to express very fast growing functions.



Bounds on a-ary Ramsey Numbers

Def Ra(k) is the least n such that, for all COL :
([n]
a

)
→ [2] there

exists a homog set of size k .

Recall that we showed
R2(k) ≤ 22k−1.
R3(k) ≤ TOW(2k).

What would the bound be on R4(k)?
We do not have a good way to write it down.

Consider the function
(a, k) maps to Ra(k).
What are the bounds on that?

We need a way to express very fast growing functions.



Bounds on a-ary Ramsey Numbers

Def Ra(k) is the least n such that, for all COL :
([n]
a

)
→ [2] there

exists a homog set of size k .

Recall that we showed
R2(k) ≤ 22k−1.
R3(k) ≤ TOW(2k).

What would the bound be on R4(k)?
We do not have a good way to write it down.

Consider the function
(a, k) maps to Ra(k).
What are the bounds on that?

We need a way to express very fast growing functions.



Definition of Primitive Recursive (PR)

Def f (x1, . . . , xn) is PR if either:

1. f (x1, . . . , xn) = 0;

2. f (x1, . . . , xn) = xi ;

3. f (x1, . . . , xn) = xi + 1;

4. g1(x1, . . . , xk), . . ., gn(x1, . . . , xk),h(x1, . . . , xn) PR =⇒

f (x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gn(x1, . . . , xk)) is PR

5. h(x1, . . . , xn+1) and g(x1, . . . , xn−1) PR =⇒

f (x1, . . . , xn−1, 0) = g(x1, . . . , xn−1)

f (x1, . . . , xn−1,m + 1) = h(x1, . . . , xn−1,m, f (x1, . . . , xn−1,m))

is PR.



Definition of Primitive Recursive (PR)

Def f (x1, . . . , xn) is PR if either:

1. f (x1, . . . , xn) = 0;

2. f (x1, . . . , xn) = xi ;

3. f (x1, . . . , xn) = xi + 1;

4. g1(x1, . . . , xk), . . ., gn(x1, . . . , xk),h(x1, . . . , xn) PR =⇒

f (x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gn(x1, . . . , xk)) is PR

5. h(x1, . . . , xn+1) and g(x1, . . . , xn−1) PR =⇒

f (x1, . . . , xn−1, 0) = g(x1, . . . , xn−1)

f (x1, . . . , xn−1,m + 1) = h(x1, . . . , xn−1,m, f (x1, . . . , xn−1,m))

is PR.



Definition of Primitive Recursive (PR)

Def f (x1, . . . , xn) is PR if either:

1. f (x1, . . . , xn) = 0;

2. f (x1, . . . , xn) = xi ;

3. f (x1, . . . , xn) = xi + 1;

4. g1(x1, . . . , xk), . . ., gn(x1, . . . , xk),h(x1, . . . , xn) PR =⇒

f (x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gn(x1, . . . , xk)) is PR

5. h(x1, . . . , xn+1) and g(x1, . . . , xn−1) PR =⇒

f (x1, . . . , xn−1, 0) = g(x1, . . . , xn−1)

f (x1, . . . , xn−1,m + 1) = h(x1, . . . , xn−1,m, f (x1, . . . , xn−1,m))

is PR.



Definition of Primitive Recursive (PR)

Def f (x1, . . . , xn) is PR if either:

1. f (x1, . . . , xn) = 0;

2. f (x1, . . . , xn) = xi ;

3. f (x1, . . . , xn) = xi + 1;

4. g1(x1, . . . , xk), . . ., gn(x1, . . . , xk),h(x1, . . . , xn) PR =⇒

f (x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gn(x1, . . . , xk)) is PR

5. h(x1, . . . , xn+1) and g(x1, . . . , xn−1) PR =⇒

f (x1, . . . , xn−1, 0) = g(x1, . . . , xn−1)

f (x1, . . . , xn−1,m + 1) = h(x1, . . . , xn−1,m, f (x1, . . . , xn−1,m))

is PR.



Definition of Primitive Recursive (PR)

Def f (x1, . . . , xn) is PR if either:

1. f (x1, . . . , xn) = 0;

2. f (x1, . . . , xn) = xi ;

3. f (x1, . . . , xn) = xi + 1;

4. g1(x1, . . . , xk), . . ., gn(x1, . . . , xk),h(x1, . . . , xn) PR =⇒

f (x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gn(x1, . . . , xk)) is PR

5. h(x1, . . . , xn+1) and g(x1, . . . , xn−1) PR =⇒

f (x1, . . . , xn−1, 0) = g(x1, . . . , xn−1)

f (x1, . . . , xn−1,m + 1) = h(x1, . . . , xn−1,m, f (x1, . . . , xn−1,m))

is PR.



Definition of Primitive Recursive (PR)

Def f (x1, . . . , xn) is PR if either:

1. f (x1, . . . , xn) = 0;

2. f (x1, . . . , xn) = xi ;

3. f (x1, . . . , xn) = xi + 1;

4. g1(x1, . . . , xk), . . ., gn(x1, . . . , xk),h(x1, . . . , xn) PR =⇒

f (x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gn(x1, . . . , xk)) is PR

5. h(x1, . . . , xn+1) and g(x1, . . . , xn−1) PR =⇒

f (x1, . . . , xn−1, 0) = g(x1, . . . , xn−1)

f (x1, . . . , xn−1,m + 1) = h(x1, . . . , xn−1,m, f (x1, . . . , xn−1,m))

is PR.



Examples of PR Functions

f0(x , y) = y + 1. Successor.

f1(x , y) = x + y
f1(x , 0) = x
f1(x , y + 1) = f1(x , y) + 1.
Used Rec Rule Once. Addition.

f2(x , y) = xy :
f2(x , 1) = x (Didn’t start at 0. A detail.)
f2(x , y + 1) = f2(x , y) + x .
Used Rec Rule Twice. Once to get x + y PR, and once here.
Multiplication

The PR functions can be put in a hierarchy depending on how
many times the recursion rule is used to build up to the function.



Examples of PR Functions

f0(x , y) = y + 1. Successor.

f1(x , y) = x + y

f1(x , 0) = x
f1(x , y + 1) = f1(x , y) + 1.
Used Rec Rule Once. Addition.

f2(x , y) = xy :
f2(x , 1) = x (Didn’t start at 0. A detail.)
f2(x , y + 1) = f2(x , y) + x .
Used Rec Rule Twice. Once to get x + y PR, and once here.
Multiplication

The PR functions can be put in a hierarchy depending on how
many times the recursion rule is used to build up to the function.



Examples of PR Functions

f0(x , y) = y + 1. Successor.

f1(x , y) = x + y
f1(x , 0) = x
f1(x , y + 1) = f1(x , y) + 1.
Used Rec Rule Once. Addition.

f2(x , y) = xy :
f2(x , 1) = x (Didn’t start at 0. A detail.)
f2(x , y + 1) = f2(x , y) + x .
Used Rec Rule Twice. Once to get x + y PR, and once here.
Multiplication

The PR functions can be put in a hierarchy depending on how
many times the recursion rule is used to build up to the function.



Examples of PR Functions

f0(x , y) = y + 1. Successor.

f1(x , y) = x + y
f1(x , 0) = x
f1(x , y + 1) = f1(x , y) + 1.
Used Rec Rule Once. Addition.

f2(x , y) = xy :

f2(x , 1) = x (Didn’t start at 0. A detail.)
f2(x , y + 1) = f2(x , y) + x .
Used Rec Rule Twice. Once to get x + y PR, and once here.
Multiplication

The PR functions can be put in a hierarchy depending on how
many times the recursion rule is used to build up to the function.



Examples of PR Functions

f0(x , y) = y + 1. Successor.

f1(x , y) = x + y
f1(x , 0) = x
f1(x , y + 1) = f1(x , y) + 1.
Used Rec Rule Once. Addition.

f2(x , y) = xy :
f2(x , 1) = x (Didn’t start at 0. A detail.)
f2(x , y + 1) = f2(x , y) + x .
Used Rec Rule Twice. Once to get x + y PR, and once here.
Multiplication

The PR functions can be put in a hierarchy depending on how
many times the recursion rule is used to build up to the function.



Examples of PR Functions

f0(x , y) = y + 1. Successor.

f1(x , y) = x + y
f1(x , 0) = x
f1(x , y + 1) = f1(x , y) + 1.
Used Rec Rule Once. Addition.

f2(x , y) = xy :
f2(x , 1) = x (Didn’t start at 0. A detail.)
f2(x , y + 1) = f2(x , y) + x .
Used Rec Rule Twice. Once to get x + y PR, and once here.
Multiplication

The PR functions can be put in a hierarchy depending on how
many times the recursion rule is used to build up to the function.



More PR Functions

f3(x , y) = xy :
f3(x , 0) = 1
f3(x , y + 1) = f3(x , y)x .
Used Rec Rule three times. Exp.

f4(x , y) = TOW(x , y).
f4(x , 0) = 1
f4(x , y + 1) = f4(x , y)x .
Used Rec Rule four times. TOWER.

f5(x , y) = WHAT SHOULD WE CALL THIS?
f5(x , 0) = 1
f5(x , y + 1) = TOW(f5(x , y), x).
Used Rec Rule five times.
What should we call this? Discuss
Its been called WOWER.



More PR Functions

f3(x , y) = xy :

f3(x , 0) = 1
f3(x , y + 1) = f3(x , y)x .
Used Rec Rule three times. Exp.

f4(x , y) = TOW(x , y).
f4(x , 0) = 1
f4(x , y + 1) = f4(x , y)x .
Used Rec Rule four times. TOWER.

f5(x , y) = WHAT SHOULD WE CALL THIS?
f5(x , 0) = 1
f5(x , y + 1) = TOW(f5(x , y), x).
Used Rec Rule five times.
What should we call this? Discuss
Its been called WOWER.



More PR Functions

f3(x , y) = xy :
f3(x , 0) = 1
f3(x , y + 1) = f3(x , y)x .
Used Rec Rule three times. Exp.

f4(x , y) = TOW(x , y).
f4(x , 0) = 1
f4(x , y + 1) = f4(x , y)x .
Used Rec Rule four times. TOWER.

f5(x , y) = WHAT SHOULD WE CALL THIS?
f5(x , 0) = 1
f5(x , y + 1) = TOW(f5(x , y), x).
Used Rec Rule five times.
What should we call this? Discuss
Its been called WOWER.



More PR Functions

f3(x , y) = xy :
f3(x , 0) = 1
f3(x , y + 1) = f3(x , y)x .
Used Rec Rule three times. Exp.

f4(x , y) = TOW(x , y).

f4(x , 0) = 1
f4(x , y + 1) = f4(x , y)x .
Used Rec Rule four times. TOWER.

f5(x , y) = WHAT SHOULD WE CALL THIS?
f5(x , 0) = 1
f5(x , y + 1) = TOW(f5(x , y), x).
Used Rec Rule five times.
What should we call this? Discuss
Its been called WOWER.



More PR Functions

f3(x , y) = xy :
f3(x , 0) = 1
f3(x , y + 1) = f3(x , y)x .
Used Rec Rule three times. Exp.

f4(x , y) = TOW(x , y).
f4(x , 0) = 1
f4(x , y + 1) = f4(x , y)x .
Used Rec Rule four times. TOWER.

f5(x , y) = WHAT SHOULD WE CALL THIS?
f5(x , 0) = 1
f5(x , y + 1) = TOW(f5(x , y), x).
Used Rec Rule five times.
What should we call this? Discuss
Its been called WOWER.



More PR Functions

f3(x , y) = xy :
f3(x , 0) = 1
f3(x , y + 1) = f3(x , y)x .
Used Rec Rule three times. Exp.

f4(x , y) = TOW(x , y).
f4(x , 0) = 1
f4(x , y + 1) = f4(x , y)x .
Used Rec Rule four times. TOWER.

f5(x , y) = WHAT SHOULD WE CALL THIS?

f5(x , 0) = 1
f5(x , y + 1) = TOW(f5(x , y), x).
Used Rec Rule five times.
What should we call this? Discuss
Its been called WOWER.



More PR Functions

f3(x , y) = xy :
f3(x , 0) = 1
f3(x , y + 1) = f3(x , y)x .
Used Rec Rule three times. Exp.

f4(x , y) = TOW(x , y).
f4(x , 0) = 1
f4(x , y + 1) = f4(x , y)x .
Used Rec Rule four times. TOWER.

f5(x , y) = WHAT SHOULD WE CALL THIS?
f5(x , 0) = 1
f5(x , y + 1) = TOW(f5(x , y), x).
Used Rec Rule five times.
What should we call this? Discuss

Its been called WOWER.



More PR Functions

f3(x , y) = xy :
f3(x , 0) = 1
f3(x , y + 1) = f3(x , y)x .
Used Rec Rule three times. Exp.

f4(x , y) = TOW(x , y).
f4(x , 0) = 1
f4(x , y + 1) = f4(x , y)x .
Used Rec Rule four times. TOWER.

f5(x , y) = WHAT SHOULD WE CALL THIS?
f5(x , 0) = 1
f5(x , y + 1) = TOW(f5(x , y), x).
Used Rec Rule five times.
What should we call this? Discuss
Its been called WOWER.



The Functions That Have No Name

fa(x , y) is defined as

fa(x , 0) = 1
fa(x , y + 1) = fa−1(fa(x , y), x , y)
f0 is Successor
f1 is Addition
f2 is Multiplication
f3 is Exp
f4 is Tower (This name has become standard.)
f5 is Wower (This name is not standard.)
f6 and beyond have no name.



The Functions That Have No Name

fa(x , y) is defined as

fa(x , 0) = 1
fa(x , y + 1) = fa−1(fa(x , y), x , y)

f0 is Successor
f1 is Addition
f2 is Multiplication
f3 is Exp
f4 is Tower (This name has become standard.)
f5 is Wower (This name is not standard.)
f6 and beyond have no name.



The Functions That Have No Name

fa(x , y) is defined as

fa(x , 0) = 1
fa(x , y + 1) = fa−1(fa(x , y), x , y)
f0 is Successor

f1 is Addition
f2 is Multiplication
f3 is Exp
f4 is Tower (This name has become standard.)
f5 is Wower (This name is not standard.)
f6 and beyond have no name.



The Functions That Have No Name

fa(x , y) is defined as

fa(x , 0) = 1
fa(x , y + 1) = fa−1(fa(x , y), x , y)
f0 is Successor
f1 is Addition

f2 is Multiplication
f3 is Exp
f4 is Tower (This name has become standard.)
f5 is Wower (This name is not standard.)
f6 and beyond have no name.



The Functions That Have No Name

fa(x , y) is defined as

fa(x , 0) = 1
fa(x , y + 1) = fa−1(fa(x , y), x , y)
f0 is Successor
f1 is Addition
f2 is Multiplication

f3 is Exp
f4 is Tower (This name has become standard.)
f5 is Wower (This name is not standard.)
f6 and beyond have no name.



The Functions That Have No Name

fa(x , y) is defined as

fa(x , 0) = 1
fa(x , y + 1) = fa−1(fa(x , y), x , y)
f0 is Successor
f1 is Addition
f2 is Multiplication
f3 is Exp

f4 is Tower (This name has become standard.)
f5 is Wower (This name is not standard.)
f6 and beyond have no name.



The Functions That Have No Name

fa(x , y) is defined as

fa(x , 0) = 1
fa(x , y + 1) = fa−1(fa(x , y), x , y)
f0 is Successor
f1 is Addition
f2 is Multiplication
f3 is Exp
f4 is Tower (This name has become standard.)

f5 is Wower (This name is not standard.)
f6 and beyond have no name.



The Functions That Have No Name

fa(x , y) is defined as

fa(x , 0) = 1
fa(x , y + 1) = fa−1(fa(x , y), x , y)
f0 is Successor
f1 is Addition
f2 is Multiplication
f3 is Exp
f4 is Tower (This name has become standard.)
f5 is Wower (This name is not standard.)

f6 and beyond have no name.



The Functions That Have No Name

fa(x , y) is defined as

fa(x , 0) = 1
fa(x , y + 1) = fa−1(fa(x , y), x , y)
f0 is Successor
f1 is Addition
f2 is Multiplication
f3 is Exp
f4 is Tower (This name has become standard.)
f5 is Wower (This name is not standard.)
f6 and beyond have no name.



Levels

Def PRa is the set of PR functions that can be defined with ≤ a
uses of the Recursion rule.

Note One can show that any finite number of exponentials is in
PR3.



Levels

Def PRa is the set of PR functions that can be defined with ≤ a
uses of the Recursion rule.

Note One can show that any finite number of exponentials is in
PR3.



Bounding the Hypergraph Ramsey Numbers

R2(k) ≤ 22k = f3(O(k)). Level 3.
R3(k) ≤ TOW(2k) = f4(O(k)). Level 4.
Ra(k) ≤ fa+1(O(k)). Level a + 1.
LR(k) I only showed exists but did not show a bound.

I can now state my questions and add some more.

I Is R3(k) in PR3?

I Is the function f (a, k) = Ra(k) PR?

I Is LR(k) PR? If so then what level?



Bounding the Hypergraph Ramsey Numbers

R2(k) ≤ 22k = f3(O(k)). Level 3.
R3(k) ≤ TOW(2k) = f4(O(k)). Level 4.
Ra(k) ≤ fa+1(O(k)). Level a + 1.
LR(k) I only showed exists but did not show a bound.
I can now state my questions and add some more.

I Is R3(k) in PR3?

I Is the function f (a, k) = Ra(k) PR?

I Is LR(k) PR? If so then what level?



Bounding the Hypergraph Ramsey Numbers

R2(k) ≤ 22k = f3(O(k)). Level 3.
R3(k) ≤ TOW(2k) = f4(O(k)). Level 4.
Ra(k) ≤ fa+1(O(k)). Level a + 1.
LR(k) I only showed exists but did not show a bound.
I can now state my questions and add some more.

I Is R3(k) in PR3?

I Is the function f (a, k) = Ra(k) PR?

I Is LR(k) PR? If so then what level?



Bounding the Hypergraph Ramsey Numbers

R2(k) ≤ 22k = f3(O(k)). Level 3.
R3(k) ≤ TOW(2k) = f4(O(k)). Level 4.
Ra(k) ≤ fa+1(O(k)). Level a + 1.
LR(k) I only showed exists but did not show a bound.
I can now state my questions and add some more.

I Is R3(k) in PR3?

I Is the function f (a, k) = Ra(k) PR?

I Is LR(k) PR? If so then what level?



Bounding the Hypergraph Ramsey Numbers

R2(k) ≤ 22k = f3(O(k)). Level 3.
R3(k) ≤ TOW(2k) = f4(O(k)). Level 4.
Ra(k) ≤ fa+1(O(k)). Level a + 1.
LR(k) I only showed exists but did not show a bound.
I can now state my questions and add some more.

I Is R3(k) in PR3?

I Is the function f (a, k) = Ra(k) PR?

I Is LR(k) PR? If so then what level?



More is PR than you Think

The following are PR:

1. f (x , y) = x − y if x ≥ y , 0 otherwise.

2. f (x , y) = the quotient when you divide x by y .

3. f (x , y) = the remainder when you divide x by y .

4. f (x , y) = x (mod y).

5. f (x , y) = GCD(x , y).

6. f (x) = 1 if x is prime, 0 if not.

7. f (x) = 1 if x is the sum of 2 primes, 0 otherwise.



More is PR than you Think

The following are PR:

1. f (x , y) = x − y if x ≥ y , 0 otherwise.

2. f (x , y) = the quotient when you divide x by y .

3. f (x , y) = the remainder when you divide x by y .

4. f (x , y) = x (mod y).

5. f (x , y) = GCD(x , y).

6. f (x) = 1 if x is prime, 0 if not.

7. f (x) = 1 if x is the sum of 2 primes, 0 otherwise.



More is PR than you Think

The following are PR:

1. f (x , y) = x − y if x ≥ y , 0 otherwise.

2. f (x , y) = the quotient when you divide x by y .

3. f (x , y) = the remainder when you divide x by y .

4. f (x , y) = x (mod y).

5. f (x , y) = GCD(x , y).

6. f (x) = 1 if x is prime, 0 if not.

7. f (x) = 1 if x is the sum of 2 primes, 0 otherwise.



More is PR than you Think

The following are PR:

1. f (x , y) = x − y if x ≥ y , 0 otherwise.

2. f (x , y) = the quotient when you divide x by y .

3. f (x , y) = the remainder when you divide x by y .

4. f (x , y) = x (mod y).

5. f (x , y) = GCD(x , y).

6. f (x) = 1 if x is prime, 0 if not.

7. f (x) = 1 if x is the sum of 2 primes, 0 otherwise.



More is PR than you Think

The following are PR:

1. f (x , y) = x − y if x ≥ y , 0 otherwise.

2. f (x , y) = the quotient when you divide x by y .

3. f (x , y) = the remainder when you divide x by y .

4. f (x , y) = x (mod y).

5. f (x , y) = GCD(x , y).

6. f (x) = 1 if x is prime, 0 if not.

7. f (x) = 1 if x is the sum of 2 primes, 0 otherwise.



More is PR than you Think

The following are PR:

1. f (x , y) = x − y if x ≥ y , 0 otherwise.

2. f (x , y) = the quotient when you divide x by y .

3. f (x , y) = the remainder when you divide x by y .

4. f (x , y) = x (mod y).

5. f (x , y) = GCD(x , y).

6. f (x) = 1 if x is prime, 0 if not.

7. f (x) = 1 if x is the sum of 2 primes, 0 otherwise.



More is PR than you Think

The following are PR:

1. f (x , y) = x − y if x ≥ y , 0 otherwise.

2. f (x , y) = the quotient when you divide x by y .

3. f (x , y) = the remainder when you divide x by y .

4. f (x , y) = x (mod y).

5. f (x , y) = GCD(x , y).

6. f (x) = 1 if x is prime, 0 if not.

7. f (x) = 1 if x is the sum of 2 primes, 0 otherwise.



More is PR than you Think

The following are PR:

1. f (x , y) = x − y if x ≥ y , 0 otherwise.

2. f (x , y) = the quotient when you divide x by y .

3. f (x , y) = the remainder when you divide x by y .

4. f (x , y) = x (mod y).

5. f (x , y) = GCD(x , y).

6. f (x) = 1 if x is prime, 0 if not.

7. f (x) = 1 if x is the sum of 2 primes, 0 otherwise.



Most Functions are PR

Virtually any computable function from Nk to N that you
encounter in mathematics is primitive recursive.

Are there any computable functions that are not primitive
recursive?
Discuss.

Yes. We will see a contrived one on the next slide.



Most Functions are PR

Virtually any computable function from Nk to N that you
encounter in mathematics is primitive recursive.

Are there any computable functions that are not primitive
recursive?
Discuss.

Yes. We will see a contrived one on the next slide.



Most Functions are PR

Virtually any computable function from Nk to N that you
encounter in mathematics is primitive recursive.

Are there any computable functions that are not primitive
recursive?
Discuss.

Yes. We will see a contrived one on the next slide.



A Contrived Not PR Function

The PR functions are formed by building up rules. One can encode
the derivation of a PR function as a number. One can then assign
to every number a PR function easily.

Let f1, f2, . . . be all of the PR functions.

F (x) = fx(x) + 1

is computable but not a PR function.



A Contrived Not PR Function

The PR functions are formed by building up rules. One can encode
the derivation of a PR function as a number. One can then assign
to every number a PR function easily.

Let f1, f2, . . . be all of the PR functions.

F (x) = fx(x) + 1

is computable but not a PR function.



A Contrived Not PR Function

The PR functions are formed by building up rules. One can encode
the derivation of a PR function as a number. One can then assign
to every number a PR function easily.

Let f1, f2, . . . be all of the PR functions.

F (x) = fx(x) + 1

is computable but not a PR function.



A “Natural” non PR Function

Def Ackerman’s function is the function defined by

A(0, y) = y + 1

A(x + 1, 0) = A(x , 1)

A(x + 1, y + 1) = A(x ,A(x + 1, y))

1. A is obviously computable.

2. A grows faster than any PR function.

3. Since A is defined using a recursion which involves applying
the function to itself there is no obvious way to take the
definition and make it PR. Not a proof, an intuition.



A “Natural” non PR Function

Def Ackerman’s function is the function defined by

A(0, y) = y + 1

A(x + 1, 0) = A(x , 1)

A(x + 1, y + 1) = A(x ,A(x + 1, y))

1. A is obviously computable.

2. A grows faster than any PR function.

3. Since A is defined using a recursion which involves applying
the function to itself there is no obvious way to take the
definition and make it PR. Not a proof, an intuition.



A “Natural” non PR Function

Def Ackerman’s function is the function defined by

A(0, y) = y + 1

A(x + 1, 0) = A(x , 1)

A(x + 1, y + 1) = A(x ,A(x + 1, y))

1. A is obviously computable.

2. A grows faster than any PR function.

3. Since A is defined using a recursion which involves applying
the function to itself there is no obvious way to take the
definition and make it PR. Not a proof, an intuition.



A “Natural” non PR Function

Def Ackerman’s function is the function defined by

A(0, y) = y + 1

A(x + 1, 0) = A(x , 1)

A(x + 1, y + 1) = A(x ,A(x + 1, y))

1. A is obviously computable.

2. A grows faster than any PR function.

3. Since A is defined using a recursion which involves applying
the function to itself there is no obvious way to take the
definition and make it PR. Not a proof, an intuition.



Ackerman’s Function is Natural: Security

https://ackerman-security-systems.pissedconsumer.com/

customer-service.html

They are called Ackerman Security since they claim that Burglar
would have to be Ackerman(n)-good to break in.

https://ackerman-security-systems.pissedconsumer.com/customer-service.html
https://ackerman-security-systems.pissedconsumer.com/customer-service.html


Ackerman’s Function is Natural: Security

https://ackerman-security-systems.pissedconsumer.com/

customer-service.html

They are called Ackerman Security since they claim that Burglar
would have to be Ackerman(n)-good to break in.

https://ackerman-security-systems.pissedconsumer.com/customer-service.html
https://ackerman-security-systems.pissedconsumer.com/customer-service.html


Ackerman’s Function is Natural: DS

DS is Data Structure.
UNION-FIND DS for sets that supports:

(1) If a is a number then make {a} a set.
(2) If A,B are sets then make A ∪ B a set.
(3) Given x find which, if any, set it is in.

I There is a DS for this problem that can do n operations in
nA−1(n) steps.

I One can show that there is no better DS.

So nA−1(n, n) is the exact upper and lower bound!



Ackerman’s Function is Natural: DS

DS is Data Structure.
UNION-FIND DS for sets that supports:
(1) If a is a number then make {a} a set.

(2) If A,B are sets then make A ∪ B a set.
(3) Given x find which, if any, set it is in.

I There is a DS for this problem that can do n operations in
nA−1(n) steps.

I One can show that there is no better DS.

So nA−1(n, n) is the exact upper and lower bound!



Ackerman’s Function is Natural: DS

DS is Data Structure.
UNION-FIND DS for sets that supports:
(1) If a is a number then make {a} a set.
(2) If A,B are sets then make A ∪ B a set.

(3) Given x find which, if any, set it is in.

I There is a DS for this problem that can do n operations in
nA−1(n) steps.

I One can show that there is no better DS.

So nA−1(n, n) is the exact upper and lower bound!



Ackerman’s Function is Natural: DS

DS is Data Structure.
UNION-FIND DS for sets that supports:
(1) If a is a number then make {a} a set.
(2) If A,B are sets then make A ∪ B a set.
(3) Given x find which, if any, set it is in.

I There is a DS for this problem that can do n operations in
nA−1(n) steps.

I One can show that there is no better DS.

So nA−1(n, n) is the exact upper and lower bound!



Ackerman’s Function is Natural: DS

DS is Data Structure.
UNION-FIND DS for sets that supports:
(1) If a is a number then make {a} a set.
(2) If A,B are sets then make A ∪ B a set.
(3) Given x find which, if any, set it is in.

I There is a DS for this problem that can do n operations in
nA−1(n) steps.

I One can show that there is no better DS.

So nA−1(n, n) is the exact upper and lower bound!



Ackerman’s Function and Goodstein Seq

Writing a number as a sum of powers of 2.

1000 = 29 + 28 + 27 + 26 + 25 + 23

But we can also write the exponents as sums of power of 2

1000 = 22
3+20 + 22

3
+ 22

2+21+20 + 22
1+20

We can even write the exponents that are not already powers of 2
as sums of powers of 2.

1000 = 22
21+20+20 + 22

21+20

+ 22
2+21+20 + 22

1+20

This is called Hereditary Base n Notation



Ackerman’s Function and Goodstein Seq

Writing a number as a sum of powers of 2.

1000 = 29 + 28 + 27 + 26 + 25 + 23

But we can also write the exponents as sums of power of 2

1000 = 22
3+20 + 22

3
+ 22

2+21+20 + 22
1+20

We can even write the exponents that are not already powers of 2
as sums of powers of 2.

1000 = 22
21+20+20 + 22

21+20

+ 22
2+21+20 + 22

1+20

This is called Hereditary Base n Notation



Ackerman’s Function and Goodstein Seq

Writing a number as a sum of powers of 2.

1000 = 29 + 28 + 27 + 26 + 25 + 23

But we can also write the exponents as sums of power of 2

1000 = 22
3+20 + 22

3
+ 22

2+21+20 + 22
1+20

We can even write the exponents that are not already powers of 2
as sums of powers of 2.

1000 = 22
21+20+20 + 22

21+20

+ 22
2+21+20 + 22

1+20

This is called Hereditary Base n Notation



Ackerman’s Function and Goodstein Seq

Writing a number as a sum of powers of 2.

1000 = 29 + 28 + 27 + 26 + 25 + 23

But we can also write the exponents as sums of power of 2

1000 = 22
3+20 + 22

3
+ 22

2+21+20 + 22
1+20

We can even write the exponents that are not already powers of 2
as sums of powers of 2.

1000 = 22
21+20+20 + 22

21+20

+ 22
2+21+20 + 22

1+20

This is called Hereditary Base n Notation



Ackerman’s Function and Goodstein Seq

1000 = 22
21+20+20 + 22

21+20

+ 22
2+21+20 + 22

1+20

Replace all of the 2’s with 3’s:

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30

This number just went WAY up. Now subtract 1.

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30 − 1

Repeat the process:
Replace 3 by 4, and subtract 1, Replace 4 by 5, and subtract 1, · · · .
Vote Does the sequence:
I Goto infinity (and if so how fast- perhaps Ack-like?)
I Eventually stabilizes (e.g., goes to 18 and then stops there)
I Cycles- goes UP then DOWN then UP then DOWN . . ..

The sequence goes to 0.
The number of steps for n to goto 0 is roughly ACK (n, n).



Ackerman’s Function and Goodstein Seq

1000 = 22
21+20+20 + 22

21+20

+ 22
2+21+20 + 22

1+20

Replace all of the 2’s with 3’s:

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30

This number just went WAY up. Now subtract 1.

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30 − 1

Repeat the process:
Replace 3 by 4, and subtract 1, Replace 4 by 5, and subtract 1, · · · .
Vote Does the sequence:
I Goto infinity (and if so how fast- perhaps Ack-like?)
I Eventually stabilizes (e.g., goes to 18 and then stops there)
I Cycles- goes UP then DOWN then UP then DOWN . . ..

The sequence goes to 0.
The number of steps for n to goto 0 is roughly ACK (n, n).



Ackerman’s Function and Goodstein Seq

1000 = 22
21+20+20 + 22

21+20

+ 22
2+21+20 + 22

1+20

Replace all of the 2’s with 3’s:

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30

This number just went WAY up. Now subtract 1.

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30 − 1

Repeat the process:
Replace 3 by 4, and subtract 1, Replace 4 by 5, and subtract 1, · · · .

Vote Does the sequence:
I Goto infinity (and if so how fast- perhaps Ack-like?)
I Eventually stabilizes (e.g., goes to 18 and then stops there)
I Cycles- goes UP then DOWN then UP then DOWN . . ..

The sequence goes to 0.
The number of steps for n to goto 0 is roughly ACK (n, n).



Ackerman’s Function and Goodstein Seq

1000 = 22
21+20+20 + 22

21+20

+ 22
2+21+20 + 22

1+20

Replace all of the 2’s with 3’s:

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30

This number just went WAY up. Now subtract 1.

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30 − 1

Repeat the process:
Replace 3 by 4, and subtract 1, Replace 4 by 5, and subtract 1, · · · .
Vote Does the sequence:
I Goto infinity (and if so how fast- perhaps Ack-like?)
I Eventually stabilizes (e.g., goes to 18 and then stops there)
I Cycles- goes UP then DOWN then UP then DOWN . . ..

The sequence goes to 0.
The number of steps for n to goto 0 is roughly ACK (n, n).



Ackerman’s Function and Goodstein Seq

1000 = 22
21+20+20 + 22

21+20

+ 22
2+21+20 + 22

1+20

Replace all of the 2’s with 3’s:

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30

This number just went WAY up. Now subtract 1.

33
31+30+30 + 33

31+30

+ 33
3+31+30 + 33

1+30 − 1

Repeat the process:
Replace 3 by 4, and subtract 1, Replace 4 by 5, and subtract 1, · · · .
Vote Does the sequence:
I Goto infinity (and if so how fast- perhaps Ack-like?)
I Eventually stabilizes (e.g., goes to 18 and then stops there)
I Cycles- goes UP then DOWN then UP then DOWN . . ..

The sequence goes to 0.
The number of steps for n to goto 0 is roughly ACK (n, n).



Vote

1. R3(k) is in PR3 (finite stack-of-2’s rather than TOW)
YES, NO, UNKNOWN
YES We will show R3(k) ≤ 22

O(k)
.

2. Ra(k) is PR.
YES, NO, UNKNOWN
YES We will “show” Ra(k) is ≤ stack-of-(a− 1) 2’s.

3. LR2(k) is PR.
YES, NO, UNKNOWN
YES LR2(k) ≤ 22

5k
. Proof Messy.

4. f (a, k) = LRa(k) is PR
YES, NO, UNKNOWN
NO. See next slide.



Vote

1. R3(k) is in PR3 (finite stack-of-2’s rather than TOW)
YES, NO, UNKNOWN

YES We will show R3(k) ≤ 22
O(k)

.

2. Ra(k) is PR.
YES, NO, UNKNOWN
YES We will “show” Ra(k) is ≤ stack-of-(a− 1) 2’s.

3. LR2(k) is PR.
YES, NO, UNKNOWN
YES LR2(k) ≤ 22

5k
. Proof Messy.

4. f (a, k) = LRa(k) is PR
YES, NO, UNKNOWN
NO. See next slide.



Vote

1. R3(k) is in PR3 (finite stack-of-2’s rather than TOW)
YES, NO, UNKNOWN
YES

We will show R3(k) ≤ 22
O(k)

.

2. Ra(k) is PR.
YES, NO, UNKNOWN
YES We will “show” Ra(k) is ≤ stack-of-(a− 1) 2’s.

3. LR2(k) is PR.
YES, NO, UNKNOWN
YES LR2(k) ≤ 22

5k
. Proof Messy.

4. f (a, k) = LRa(k) is PR
YES, NO, UNKNOWN
NO. See next slide.



Vote

1. R3(k) is in PR3 (finite stack-of-2’s rather than TOW)
YES, NO, UNKNOWN
YES We will show R3(k) ≤ 22

O(k)
.

2. Ra(k) is PR.
YES, NO, UNKNOWN
YES We will “show” Ra(k) is ≤ stack-of-(a− 1) 2’s.

3. LR2(k) is PR.
YES, NO, UNKNOWN
YES LR2(k) ≤ 22

5k
. Proof Messy.

4. f (a, k) = LRa(k) is PR
YES, NO, UNKNOWN
NO. See next slide.



Vote

1. R3(k) is in PR3 (finite stack-of-2’s rather than TOW)
YES, NO, UNKNOWN
YES We will show R3(k) ≤ 22

O(k)
.

2. Ra(k) is PR.
YES, NO, UNKNOWN

YES We will “show” Ra(k) is ≤ stack-of-(a− 1) 2’s.

3. LR2(k) is PR.
YES, NO, UNKNOWN
YES LR2(k) ≤ 22

5k
. Proof Messy.

4. f (a, k) = LRa(k) is PR
YES, NO, UNKNOWN
NO. See next slide.



Vote

1. R3(k) is in PR3 (finite stack-of-2’s rather than TOW)
YES, NO, UNKNOWN
YES We will show R3(k) ≤ 22

O(k)
.

2. Ra(k) is PR.
YES, NO, UNKNOWN
YES

We will “show” Ra(k) is ≤ stack-of-(a− 1) 2’s.

3. LR2(k) is PR.
YES, NO, UNKNOWN
YES LR2(k) ≤ 22

5k
. Proof Messy.

4. f (a, k) = LRa(k) is PR
YES, NO, UNKNOWN
NO. See next slide.



Vote

1. R3(k) is in PR3 (finite stack-of-2’s rather than TOW)
YES, NO, UNKNOWN
YES We will show R3(k) ≤ 22

O(k)
.

2. Ra(k) is PR.
YES, NO, UNKNOWN
YES We will “show” Ra(k) is ≤ stack-of-(a− 1) 2’s.

3. LR2(k) is PR.
YES, NO, UNKNOWN
YES LR2(k) ≤ 22

5k
. Proof Messy.

4. f (a, k) = LRa(k) is PR
YES, NO, UNKNOWN
NO. See next slide.



Vote

1. R3(k) is in PR3 (finite stack-of-2’s rather than TOW)
YES, NO, UNKNOWN
YES We will show R3(k) ≤ 22

O(k)
.

2. Ra(k) is PR.
YES, NO, UNKNOWN
YES We will “show” Ra(k) is ≤ stack-of-(a− 1) 2’s.

3. LR2(k) is PR.
YES, NO, UNKNOWN

YES LR2(k) ≤ 22
5k

. Proof Messy.

4. f (a, k) = LRa(k) is PR
YES, NO, UNKNOWN
NO. See next slide.



Vote

1. R3(k) is in PR3 (finite stack-of-2’s rather than TOW)
YES, NO, UNKNOWN
YES We will show R3(k) ≤ 22

O(k)
.

2. Ra(k) is PR.
YES, NO, UNKNOWN
YES We will “show” Ra(k) is ≤ stack-of-(a− 1) 2’s.

3. LR2(k) is PR.
YES, NO, UNKNOWN
YES

LR2(k) ≤ 22
5k

. Proof Messy.

4. f (a, k) = LRa(k) is PR
YES, NO, UNKNOWN
NO. See next slide.



Vote

1. R3(k) is in PR3 (finite stack-of-2’s rather than TOW)
YES, NO, UNKNOWN
YES We will show R3(k) ≤ 22

O(k)
.

2. Ra(k) is PR.
YES, NO, UNKNOWN
YES We will “show” Ra(k) is ≤ stack-of-(a− 1) 2’s.

3. LR2(k) is PR.
YES, NO, UNKNOWN
YES LR2(k) ≤ 22

5k
. Proof Messy.

4. f (a, k) = LRa(k) is PR
YES, NO, UNKNOWN
NO. See next slide.



Vote

1. R3(k) is in PR3 (finite stack-of-2’s rather than TOW)
YES, NO, UNKNOWN
YES We will show R3(k) ≤ 22

O(k)
.

2. Ra(k) is PR.
YES, NO, UNKNOWN
YES We will “show” Ra(k) is ≤ stack-of-(a− 1) 2’s.

3. LR2(k) is PR.
YES, NO, UNKNOWN
YES LR2(k) ≤ 22

5k
. Proof Messy.

4. f (a, k) = LRa(k) is PR
YES, NO, UNKNOWN

NO. See next slide.



Vote

1. R3(k) is in PR3 (finite stack-of-2’s rather than TOW)
YES, NO, UNKNOWN
YES We will show R3(k) ≤ 22

O(k)
.

2. Ra(k) is PR.
YES, NO, UNKNOWN
YES We will “show” Ra(k) is ≤ stack-of-(a− 1) 2’s.

3. LR2(k) is PR.
YES, NO, UNKNOWN
YES LR2(k) ≤ 22

5k
. Proof Messy.

4. f (a, k) = LRa(k) is PR
YES, NO, UNKNOWN
NO. See next slide.



What is known about LRa(k)?

Thm For all a, k there exists n = LRa(k) such that for all
COL :

({k,...,k+n}
a

)
→ [2] ∃ a large homog set.

Let f (a, k) = LRa(k). The following are known.

1. f (a, k) grows faster than any primitive rec function.

2. f (a, k) grows faster than Ackerman’s function.

3. We defined PR1, PR2. One can define PRω and that is where
ACKERMAN is. One can then define PRα for all countable
ordinals α < ε0 (won’t get into that).

For all α < ε0, f (a, k) is not in any PRα.



What is known about LRa(k)?

Thm For all a, k there exists n = LRa(k) such that for all
COL :

({k,...,k+n}
a

)
→ [2] ∃ a large homog set.

Let f (a, k) = LRa(k). The following are known.

1. f (a, k) grows faster than any primitive rec function.

2. f (a, k) grows faster than Ackerman’s function.

3. We defined PR1, PR2. One can define PRω and that is where
ACKERMAN is. One can then define PRα for all countable
ordinals α < ε0 (won’t get into that).

For all α < ε0, f (a, k) is not in any PRα.



What is known about LRa(k)?

Thm For all a, k there exists n = LRa(k) such that for all
COL :

({k,...,k+n}
a

)
→ [2] ∃ a large homog set.

Let f (a, k) = LRa(k). The following are known.

1. f (a, k) grows faster than any primitive rec function.

2. f (a, k) grows faster than Ackerman’s function.

3. We defined PR1, PR2. One can define PRω and that is where
ACKERMAN is. One can then define PRα for all countable
ordinals α < ε0 (won’t get into that).

For all α < ε0, f (a, k) is not in any PRα.



What is known about LRa(k)?

Thm For all a, k there exists n = LRa(k) such that for all
COL :

({k,...,k+n}
a

)
→ [2] ∃ a large homog set.

Let f (a, k) = LRa(k). The following are known.

1. f (a, k) grows faster than any primitive rec function.

2. f (a, k) grows faster than Ackerman’s function.

3. We defined PR1, PR2. One can define PRω and that is where
ACKERMAN is. One can then define PRα for all countable
ordinals α < ε0 (won’t get into that).

For all α < ε0, f (a, k) is not in any PRα.



What is known about LRa(k)?

Thm For all a, k there exists n = LRa(k) such that for all
COL :

({k,...,k+n}
a

)
→ [2] ∃ a large homog set.

Let f (a, k) = LRa(k). The following are known.

1. f (a, k) grows faster than any primitive rec function.

2. f (a, k) grows faster than Ackerman’s function.

3. We defined PR1, PR2. One can define PRω and that is where
ACKERMAN is. One can then define PRα for all countable
ordinals α < ε0 (won’t get into that).

For all α < ε0, f (a, k) is not in any PRα.



What is known about LRa(k)?

Thm For all a, k there exists n = LRa(k) such that for all
COL :

({k,...,k+n}
a

)
→ [2] ∃ a large homog set.

Let f (a, k) = LRa(k). The following are known.

1. f (a, k) grows faster than any primitive rec function.

2. f (a, k) grows faster than Ackerman’s function.

3. We defined PR1, PR2. One can define PRω and that is where
ACKERMAN is. One can then define PRα for all countable
ordinals α < ε0 (won’t get into that).

For all α < ε0, f (a, k) is not in any PRα.



What is known about LR2(k)?

For large arity, LRa(k) is large.

What about if we just look at graphs?

We will also vary the number of colors, that can’t matter.
Thm For all k there exists n = LR2(k , c) such that for all
COL :

({k,...,k+n}
2

)
→ [c] ∃ a large homog set.

LR2(k, c) grows as fast as Ackerman’s function!

So just on graphs LR grows fast!

Num of colors matters—1st time in this course!



What is known about LR2(k)?

For large arity, LRa(k) is large.

What about if we just look at graphs?

We will also vary the number of colors, that can’t matter.
Thm For all k there exists n = LR2(k , c) such that for all
COL :

({k,...,k+n}
2

)
→ [c] ∃ a large homog set.

LR2(k, c) grows as fast as Ackerman’s function!

So just on graphs LR grows fast!

Num of colors matters—1st time in this course!



What is known about LR2(k)?

For large arity, LRa(k) is large.

What about if we just look at graphs?

We will also vary the number of colors, that can’t matter.
Thm For all k there exists n = LR2(k , c) such that for all
COL :

({k,...,k+n}
2

)
→ [c] ∃ a large homog set.

LR2(k, c) grows as fast as Ackerman’s function!

So just on graphs LR grows fast!

Num of colors matters—1st time in this course!



What is known about LR2(k)?

For large arity, LRa(k) is large.

What about if we just look at graphs?

We will also vary the number of colors, that can’t matter.
Thm For all k there exists n = LR2(k , c) such that for all
COL :

({k,...,k+n}
2

)
→ [c] ∃ a large homog set.

LR2(k, c) grows as fast as Ackerman’s function!

So just on graphs LR grows fast!

Num of colors matters—1st time in this course!



What is known about LR2(k)?

For large arity, LRa(k) is large.

What about if we just look at graphs?

We will also vary the number of colors, that can’t matter.
Thm For all k there exists n = LR2(k , c) such that for all
COL :

({k,...,k+n}
2

)
→ [c] ∃ a large homog set.

LR2(k, c) grows as fast as Ackerman’s function!

So just on graphs LR grows fast!

Num of colors matters—1st time in this course!



What is known about LR2(k)?

For large arity, LRa(k) is large.

What about if we just look at graphs?

We will also vary the number of colors, that can’t matter.
Thm For all k there exists n = LR2(k , c) such that for all
COL :

({k,...,k+n}
2

)
→ [c] ∃ a large homog set.

LR2(k, c) grows as fast as Ackerman’s function!

So just on graphs LR grows fast!

Num of colors matters—1st time in this course!



What is known about LR Thm?

LR Thm For all a, k there exists n = LRa(k) such that for all
COL :

({k,...,k+n}
a

)
→ [2] there exists a large homog set.

1. Godel(1933) prove that ∃ a TRUE statement φ that
CANNOT be proven in Peano Arithmetic (PA), or any similar
system. Most of mathematics can be done in PA.

2. φ is not of mathematical interest. It was a contrived
statement constructed for the sole point of being
True-but-not-provable.

3. Since then mathematicians have been looking for interesting
statements that could not be proven in PA.

4. Paris & Harrington(1977) showed LR could not be proven in
PA, using Model Theory. Solovay & Ketonen (1981) showed
LR not provable in PA via f (a, k) growing fast.

Vote Is the LR Theorem a natural theorem? YES, NO,
UNKNOWN TO SCIENCE.
Commentary on next slide.



What is known about LR Thm?

LR Thm For all a, k there exists n = LRa(k) such that for all
COL :

({k,...,k+n}
a

)
→ [2] there exists a large homog set.

1. Godel(1933) prove that ∃ a TRUE statement φ that
CANNOT be proven in Peano Arithmetic (PA), or any similar
system. Most of mathematics can be done in PA.

2. φ is not of mathematical interest. It was a contrived
statement constructed for the sole point of being
True-but-not-provable.

3. Since then mathematicians have been looking for interesting
statements that could not be proven in PA.

4. Paris & Harrington(1977) showed LR could not be proven in
PA, using Model Theory. Solovay & Ketonen (1981) showed
LR not provable in PA via f (a, k) growing fast.

Vote Is the LR Theorem a natural theorem? YES, NO,
UNKNOWN TO SCIENCE.
Commentary on next slide.



What is known about LR Thm?

LR Thm For all a, k there exists n = LRa(k) such that for all
COL :

({k,...,k+n}
a

)
→ [2] there exists a large homog set.

1. Godel(1933) prove that ∃ a TRUE statement φ that
CANNOT be proven in Peano Arithmetic (PA), or any similar
system. Most of mathematics can be done in PA.

2. φ is not of mathematical interest. It was a contrived
statement constructed for the sole point of being
True-but-not-provable.

3. Since then mathematicians have been looking for interesting
statements that could not be proven in PA.

4. Paris & Harrington(1977) showed LR could not be proven in
PA, using Model Theory. Solovay & Ketonen (1981) showed
LR not provable in PA via f (a, k) growing fast.

Vote Is the LR Theorem a natural theorem? YES, NO,
UNKNOWN TO SCIENCE.
Commentary on next slide.



What is known about LR Thm?

LR Thm For all a, k there exists n = LRa(k) such that for all
COL :

({k,...,k+n}
a

)
→ [2] there exists a large homog set.

1. Godel(1933) prove that ∃ a TRUE statement φ that
CANNOT be proven in Peano Arithmetic (PA), or any similar
system. Most of mathematics can be done in PA.

2. φ is not of mathematical interest. It was a contrived
statement constructed for the sole point of being
True-but-not-provable.

3. Since then mathematicians have been looking for interesting
statements that could not be proven in PA.

4. Paris & Harrington(1977) showed LR could not be proven in
PA, using Model Theory. Solovay & Ketonen (1981) showed
LR not provable in PA via f (a, k) growing fast.

Vote Is the LR Theorem a natural theorem? YES, NO,
UNKNOWN TO SCIENCE.
Commentary on next slide.



What is known about LR Thm?

LR Thm For all a, k there exists n = LRa(k) such that for all
COL :

({k,...,k+n}
a

)
→ [2] there exists a large homog set.

1. Godel(1933) prove that ∃ a TRUE statement φ that
CANNOT be proven in Peano Arithmetic (PA), or any similar
system. Most of mathematics can be done in PA.

2. φ is not of mathematical interest. It was a contrived
statement constructed for the sole point of being
True-but-not-provable.

3. Since then mathematicians have been looking for interesting
statements that could not be proven in PA.

4. Paris & Harrington(1977) showed LR could not be proven in
PA, using Model Theory. Solovay & Ketonen (1981) showed
LR not provable in PA via f (a, k) growing fast.

Vote Is the LR Theorem a natural theorem? YES, NO,
UNKNOWN TO SCIENCE.
Commentary on next slide.



Is the Large Ramsey Theorem Natural?

1. When did the Large Ramsey Theorem first appear?

In Paris-Harrington paper that showed LR was Ind of PA.
Thats an argument for LR being contrived.

2. LR is far more interesting than Godel’s Sentence.

3. The proof of LR is interesting since you get it from infinite
Ramsey but can’t get it a more normal way.



Is the Large Ramsey Theorem Natural?

1. When did the Large Ramsey Theorem first appear?
In Paris-Harrington paper that showed LR was Ind of PA.

Thats an argument for LR being contrived.

2. LR is far more interesting than Godel’s Sentence.

3. The proof of LR is interesting since you get it from infinite
Ramsey but can’t get it a more normal way.



Is the Large Ramsey Theorem Natural?

1. When did the Large Ramsey Theorem first appear?
In Paris-Harrington paper that showed LR was Ind of PA.
Thats an argument for LR being contrived.

2. LR is far more interesting than Godel’s Sentence.

3. The proof of LR is interesting since you get it from infinite
Ramsey but can’t get it a more normal way.



Is the Large Ramsey Theorem Natural?

1. When did the Large Ramsey Theorem first appear?
In Paris-Harrington paper that showed LR was Ind of PA.
Thats an argument for LR being contrived.

2. LR is far more interesting than Godel’s Sentence.

3. The proof of LR is interesting since you get it from infinite
Ramsey but can’t get it a more normal way.



Is the Large Ramsey Theorem Natural?

1. When did the Large Ramsey Theorem first appear?
In Paris-Harrington paper that showed LR was Ind of PA.
Thats an argument for LR being contrived.

2. LR is far more interesting than Godel’s Sentence.

3. The proof of LR is interesting since you get it from infinite
Ramsey but can’t get it a more normal way.


