Asy Lower Bounds on Ramsey Numbers

Exposition by William Gasarch

Summary Of Talk

• We obtain asy lower bounds on R(k).

Summary Of Talk

- We obtain asy lower bounds on R(k).
- We then use the method to do other things, outside of Ramsey Theory.

We know that

 $R(k) \leq 2^{2k-1}$

We know that

$$R(k) \le 2^{2k-1}$$

One can also get

$$R(k) \leq {\binom{2k-2}{k-1}} \sim rac{2^{2k}}{\sqrt{k}}$$

We know that

$$R(k) \leq 2^{2k-1}$$

One can also get

$${\sf R}(k) \leq {\binom{2k-2}{k-1}} \sim rac{2^{2k}}{\sqrt{k}}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

We want to find lower bounds

We know that

$$R(k) \leq 2^{2k-1}$$

One can also get

$$R(k) \leq {\binom{2k-2}{k-1}} \sim rac{2^{2k}}{\sqrt{k}}$$

We want to find **lower bounds PROBLEM** We want to find a coloring of the edges of K_n w/o a mono K_k . for some n = f(k).

Theorem $R(k) \ge (k-1)^2$.

Theorem $R(k) \ge (k-1)^2$. Proof

Theorem $R(k) \ge (k-1)^2$. Proof

Here is a coloring of the edges of $K_{(k-1)^2}$ with no mono K_k :

Theorem $R(k) \ge (k-1)^2$. Proof

Here is a coloring of the edges of $K_{(k-1)^2}$ with no mono K_k : First partition $[(k-1)^2]$ into k-1 groups of k-1 each.

Theorem $R(k) \ge (k-1)^2$. Proof

Here is a coloring of the edges of $K_{(k-1)^2}$ with no mono K_k : First partition $[(k-1)^2]$ into k-1 groups of k-1 each.

$$COL(x, y) = \begin{cases} \text{RED} & \text{if } x, y \text{ are in same } V_i \\ \text{BLUE} & \text{if } x, y \text{ are in different } V_i \end{cases}$$
(1)

Theorem $R(k) \ge (k-1)^2$. Proof

Here is a coloring of the edges of $K_{(k-1)^2}$ with no mono K_k : First partition $[(k-1)^2]$ into k-1 groups of k-1 each.

$$COL(x, y) = \begin{cases} \text{RED} & \text{if } x, y \text{ are in same } V_i \\ \text{BLUE} & \text{if } x, y \text{ are in different } V_i \end{cases}$$
(1)

ション ふゆ アメリア メリア しょうくしゃ

Look at any k vertices.

Theorem $R(k) \ge (k-1)^2$. Proof

Here is a coloring of the edges of $K_{(k-1)^2}$ with no mono K_k : First partition $[(k-1)^2]$ into k-1 groups of k-1 each.

$$COL(x, y) = \begin{cases} ext{RED} & ext{if } x, y ext{ are in same } V_i \\ ext{BLUE} & ext{if } x, y ext{ are in different } V_i \end{cases}$$

(1)

ション ふゆ アメリア メリア しょうくしゃ

Look at any k vertices.

• They can't all be in one V_i , so it can't have RED K_k .

Theorem $R(k) \ge (k-1)^2$. Proof

Here is a coloring of the edges of $K_{(k-1)^2}$ with no mono K_k : First partition $[(k-1)^2]$ into k-1 groups of k-1 each.

$$COL(x, y) = \begin{cases} \text{RED} & \text{if } x, y \text{ are in same } V_i \\ \text{BLUE} & \text{if } x, y \text{ are in different } V_i \end{cases}$$
(1)

Look at any k vertices.

- They can't all be in one V_i , so it can't have RED K_k .
- They can't all be in different V_i , so it can't have BLUE K_k .

$$(k-1)^2 \le R(k) \le 2^{2k-1}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

$$(k-1)^2 \le R(k) \le 2^{2k-1}$$

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

Can we do better?

$$(k-1)^2 \le R(k) \le 2^{2k-1}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Can we do better?

PROBLEM We want to **find** a coloring of the edges of K_n without a mono K_k for some $n \ge k^2$.

$$(k-1)^2 \le R(k) \le 2^{2k-1}$$

Can we do better?

PROBLEM We want to **find** a coloring of the edges of K_n without a mono K_k for some $n \ge k^2$.

WRONG QUESTION I only need show that such a coloring exists.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Pick a coloring at Random!

Numb of colorings: $2^{\binom{n}{2}}$.

Pick a coloring at Random!

Numb of colorings: $2^{\binom{n}{2}}$. Numb of colorings: that have mono K_k is bounded by

Pick a coloring at Random!

Numb of colorings: $2^{\binom{n}{2}}$. Numb of colorings: that have mono K_k is bounded by

$$\binom{n}{k} \times 2 \times 2^{\binom{n}{2} - \binom{k}{2}}$$

Prob that a random 2-coloring HAS a homog set is bounded by

$$\frac{\binom{n}{k} \times 2 \times 2^{\binom{n}{2} - \binom{k}{2}}}{2^{\binom{n}{2}}} \le \frac{\binom{n}{k} \times 2}{2^{\binom{k}{2}}} \le \frac{n^{k}}{k! 2^{k(k-1)/2}}$$

Recap If we color $\binom{[n]}{2}$ at random then

Recap If we color $\binom{[n]}{2}$ at random then Prob that the coloring HAS a homog set of size k is $\leq \frac{n^k}{k!2^{k(k-1)/2}}$.

Recap If we color $\binom{[n]}{2}$ at random then Prob that the coloring HAS a homog set of size k is $\leq \frac{n^k}{k!2^{k(k-1)/2}}$. IF this prob is < 1 then **there exists** a coloring of the edges $\binom{[n]}{2}$ with **no homog set of size** k.

Recap If we color $\binom{[n]}{2}$ at random then

Prob that the coloring HAS a homog set of size k is $\leq \frac{n^k}{k!2^{k(k-1)/2}}$.

IF this prob is < 1 then there exists a coloring of the edges $\binom{[n]}{2}$ with **no homog set of size** k.

So if $\frac{n^k}{k!2^{k(k-1)/2}} < 1$ then there exists a coloring of the edges $\binom{[n]}{2}$ with no homog set of size k.

Recap If we color $\binom{[n]}{2}$ at random then

Prob that the coloring HAS a homog set of size k is $\leq \frac{n^k}{k!2^{k(k-1)/2}}$.

IF this prob is < 1 then there exists a coloring of the edges $\binom{[n]}{2}$ with **no homog set of size** k.

So if $\frac{n^k}{k!2^{k(k-1)/2}} < 1$ then there exists a coloring of the edges $\binom{[n]}{2}$ with no homog set of size k.

We will work out the algebra of $\frac{n^k}{k!2^{k(k-1)/2}} < 1$ on the next slide; however, the real innovation here is that we show that a coloring exists by showing that the prob that it does not exists is < 1.

Recap If we color $\binom{[n]}{2}$ at random then

Prob that the coloring HAS a homog set of size k is $\leq \frac{n^k}{k!2^{k(k-1)/2}}$.

IF this prob is < 1 then there exists a coloring of the edges $\binom{[n]}{2}$ with **no homog set of size** k.

So if $\frac{n^k}{k!2^{k(k-1)/2}} < 1$ then there exists a coloring of the edges $\binom{[n]}{2}$ with no homog set of size k.

We will work out the algebra of $\frac{n^k}{k!2^{k(k-1)/2}} < 1$ on the next slide; however, the real innovation here is that we show that a coloring exists by showing that the prob that it does not exists is < 1. This is **The Probabilistic Method**. We talk more about its history later.

Want
$$\frac{n^k}{k!2^{k(k-1)/2}} < 1$$

Want
$$\frac{n^k}{k!2^{k(k-1)/2}} < 1$$

 $n < (k!)^{1/k}2^{(k-1)/2} = (k!)^{1/k}\frac{1}{\sqrt{2}}2^{k/2}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Want
$$\frac{n^k}{k!2^{k(k-1)/2}} < 1$$

 $n < (k!)^{1/k} 2^{(k-1)/2} = (k!)^{1/k} \frac{1}{\sqrt{2}} 2^{k/2}$
Stirling's Fml $k! \sim (2\pi k)^{1/2} \left(\frac{k}{e}\right)^k$, so $(k!)^{1/k} \sim (2\pi k)^{1/2k} \left(\frac{k}{e}\right)$

Want
$$\frac{n^k}{k!2^{k(k-1)/2}} < 1$$

 $n < (k!)^{1/k} 2^{(k-1)/2} = (k!)^{1/k} \frac{1}{\sqrt{2}} 2^{k/2}$
Stirling's Fml $k! \sim (2\pi k)^{1/2} \left(\frac{k}{e}\right)^k$, so $(k!)^{1/k} \sim (2\pi k)^{1/2k} \left(\frac{k}{e}\right)$
 $n < (k!)^{1/k} \frac{1}{\sqrt{2}} 2^{k/2} \sim (2\pi k)^{1/2k} \left(\frac{k}{e}\right) \frac{1}{\sqrt{2}} 2^{k/2}$
 $\sim (2\pi k)^{1/2k} \frac{1}{e\sqrt{2}} k 2^{k/2}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Want
$$\frac{n^k}{k!2^{k(k-1)/2}} < 1$$

 $n < (k!)^{1/k} 2^{(k-1)/2} = (k!)^{1/k} \frac{1}{\sqrt{2}} 2^{k/2}$
Stirling's Fml $k! \sim (2\pi k)^{1/2} \left(\frac{k}{e}\right)^k$, so $(k!)^{1/k} \sim (2\pi k)^{1/2k} \left(\frac{k}{e}\right)$
 $n < (k!)^{1/k} \frac{1}{\sqrt{2}} 2^{k/2} \sim (2\pi k)^{1/2k} \left(\frac{k}{e}\right) \frac{1}{\sqrt{2}} 2^{k/2}$
 $\sim (2\pi k)^{1/2k} \frac{1}{e\sqrt{2}} k 2^{k/2}$

・ロト・日本・ヨト・ヨト・ヨー つへぐ

Want *n* large. $n = \frac{1}{e\sqrt{2}}k2^{k/2}$ works.

Upper and Lower Bounds

$$\frac{1}{e\sqrt{2}}k2^{k/2} \le R(k) \le \frac{2^{2k}}{\sqrt{k}}$$

Upper and Lower Bounds

$$\frac{1}{e\sqrt{2}}k2^{k/2} \le R(k) \le \frac{2^{2k}}{\sqrt{k}}$$

David Conlon https://arxiv.org/pdf/math/0607788.pdf using sophisticated methods improved the upper bound to:

Upper and Lower Bounds

$$\frac{1}{e\sqrt{2}}k2^{k/2} \le R(k) \le \frac{2^{2k}}{\sqrt{k}}$$

David Conlon https://arxiv.org/pdf/math/0607788.pdf using sophisticated methods improved the upper bound to:

$$(\forall a \in \mathbb{N}) \left[R(k) \leq \frac{2^{2k}}{k^a} \right]$$
Upper and Lower Bounds

$$\frac{1}{e\sqrt{2}}k2^{k/2} \le R(k) \le \frac{2^{2k}}{\sqrt{k}}$$

David Conlon https://arxiv.org/pdf/math/0607788.pdf using sophisticated methods improved the upper bound to:

$$(\forall a \in \mathbb{N}) \left[R(k) \leq \frac{2^{2k}}{k^a} \right]$$

Joel Spencer spencerLBR using sophisticated methods improved the lower bound to:

Upper and Lower Bounds

$$\frac{1}{e\sqrt{2}}k2^{k/2} \le R(k) \le \frac{2^{2k}}{\sqrt{k}}$$

David Conlon https://arxiv.org/pdf/math/0607788.pdf using sophisticated methods improved the upper bound to:

$$(\forall a \in \mathbb{N}) \left[R(k) \leq \frac{2^{2k}}{k^a} \right]$$

Joel Spencer spencerLBR using sophisticated methods improved the lower bound to:

$$\frac{\sqrt{2}}{e}k2^{k/2} \le R(k).$$

Upper and Lower Bounds

$$\frac{1}{e\sqrt{2}}k2^{k/2} \le R(k) \le \frac{2^{2k}}{\sqrt{k}}$$

David Conlon https://arxiv.org/pdf/math/0607788.pdf using sophisticated methods improved the upper bound to:

$$(\forall a \in \mathbb{N}) \left[R(k) \leq \frac{2^{2k}}{k^a} \right]$$

Joel Spencer spencerLBR using sophisticated methods improved the lower bound to:

$$\frac{\sqrt{2}}{e}k2^{k/2} \le R(k).$$

ション ふゆ アメリア メリア しょうくしゃ

Joel Spencer told me he was hoping for a better improvement.

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

▶ Used a lot in combinatorics, algorithms, complexity theory.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

▶ Used a lot in combinatorics, algorithms, complexity theory.

Uses very sophisticated probability and has been the motivation for new theorems in probability.

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

- ▶ Used a lot in combinatorics, algorithms, complexity theory.
- Uses very sophisticated probability and has been the motivation for new theorems in probability.
- Origin is Ramsey Theory. Erdös developed it to get better lower bounds on R(k) as shown here.

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

- ▶ Used a lot in combinatorics, algorithms, complexity theory.
- Uses very sophisticated probability and has been the motivation for new theorems in probability.
- Origin is Ramsey Theory. Erdös developed it to get better lower bounds on R(k) as shown here.
- I would not call the Prob Method and application of Ramsey. (Some articles do.)

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

- Used a lot in combinatorics, algorithms, complexity theory.
- Uses very sophisticated probability and has been the motivation for new theorems in probability.
- Origin is Ramsey Theory. Erdös developed it to get better lower bounds on R(k) as shown here.
- I would not call the Prob Method and application of Ramsey. (Some articles do.)
- I would say that Ramsey Theory was the initial motivation for the Prob Method which is now used for many other things, some of which are practical.

DISTINCT DIFF SETS

Exposition by William Gasarch

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Given *n* try to find a set $A \subseteq \{1, ..., n\}$ such that ALL of the differences of elements of *A* are DISTINCT.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Given *n* try to find a set $A \subseteq \{1, ..., n\}$ such that ALL of the differences of elements of *A* are DISTINCT.

$$\{1, 2, 2^2, \dots, 2^{\lfloor \log_2 n \rfloor}\} \sim \log_2 n$$
 elements

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Given *n* try to find a set $A \subseteq \{1, ..., n\}$ such that ALL of the differences of elements of *A* are DISTINCT.

 $\{1, 2, 2^2, \dots, 2^{\lfloor \log_2 n \rfloor}\} \sim \log_2 n$ elements

Can we do better?

STUDENTS break into small groups and try to either do better OR show that you best you can do is $O(\log n)$.

ション ふゆ アメリア メリア しょうくしゃ

Let *a* be a number to be determined.

Let *a* be a number to be determined.

Pick a RANDOM $A \subseteq \{1, \ldots, n\}$ of size a.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Let *a* be a number to be determined.

Pick a RANDOM $A \subseteq \{1, \ldots, n\}$ of size a.

What is the probability that all of the diffs in A are distinct?

Let *a* be a number to be determined.

Pick a RANDOM $A \subseteq \{1, \ldots, n\}$ of size a.

What is the probability that all of the diffs in A are distinct?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

We hope the prob is strictly GREATER THAN 0.

Let *a* be a number to be determined.

Pick a RANDOM $A \subseteq \{1, \ldots, n\}$ of size a.

What is the probability that all of the diffs in A are distinct?

We hope the prob is strictly GREATER THAN 0.

KEY: If the prob is strictly greater than 0 then there must be SOME set of *a* elements where all of the diffs are distinct.

If you pick a RANDOM $A \subseteq \{1, ..., n\}$ of size *a* what is the probability that all of the diffs in *A* are distinct?

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

If you pick a RANDOM $A \subseteq \{1, ..., n\}$ of size *a* what is the probability that all of the diffs in *A* are distinct?

WRONG QUESTION!

If you pick a RANDOM $A \subseteq \{1, ..., n\}$ of size *a* what is the probability that all of the diffs in *A* are distinct?

WRONG QUESTION!

If you pick a RANDOM $A \subseteq \{1, ..., n\}$ of size *a* what is the probability that all of the diffs in *A* are NOT distinct?

We hope the Prob is strictly LESS THAN 1.

If you pick a RANDOM $A \subseteq \{1, ..., n\}$ of size *a* what is the probability that all of the diffs in *A* are NOT distinct?

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

If you pick a RANDOM $A \subseteq \{1, ..., n\}$ of size *a* what is the probability that all of the diffs in *A* are NOT distinct? WRONG QUESTION!

If you pick a RANDOM $A \subseteq \{1, ..., n\}$ of size *a* what is the probability that all of the diffs in *A* are NOT distinct? WRONG QUESTION!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We only need to show that the prob is LESS THAN 1.

Review a Little Bit of Combinatorics

The number of ways to CHOOSE y elements out of x elements is

$$\binom{x}{y} = \frac{x!}{y!(x-y)!}$$

- ▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへの

If a RAND $A \subseteq \{1, ..., n\}$, size *a*, want bound on prob all of the diffs in *A* are NOT distinct. Numb of ways to choose *a* elements out of $\{1, ..., n\}$ is $\binom{n}{a}$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

If a RAND $A \subseteq \{1, \ldots, n\}$, size a, want bound on prob all of the diffs in A are NOT distinct. Numb of ways to choose a elements out of $\{1, \ldots, n\}$ is $\binom{n}{2}$.

Two ways to create a set with a diff repeated:

If a RAND $A \subseteq \{1, \ldots, n\}$, size *a*, want bound on prob all of the diffs in *A* are NOT distinct. Numb of ways to choose *a* elements out of $\{1, \ldots, n\}$ is $\binom{n}{a}$. Two ways to create a set with a diff repeated:

Way One:

- Pick x < y. There are $\binom{n}{2} \le n^2$ ways to do that.
- ▶ Pick diff d such that $x + d \neq y$, $x + d \leq n$, $y + d \leq n$. Can do $\leq n$ ways. Put x, y, x + d, y + d into A.

▶ Pick a - 4 more elements out of the n - 4 left.

If a RAND $A \subseteq \{1, \ldots, n\}$, size *a*, want bound on prob all of the diffs in *A* are NOT distinct. Numb of ways to choose *a* elements out of $\{1, \ldots, n\}$ is $\binom{n}{a}$. Two ways to create a set with a diff repeated:

Way One:

- Pick x < y. There are $\binom{n}{2} \le n^2$ ways to do that.
- ▶ Pick diff d such that $x + d \neq y$, $x + d \leq n$, $y + d \leq n$. Can do $\leq n$ ways. Put x, y, x + d, y + d into A.

▶ Pick a - 4 more elements out of the n - 4 left.

Number of ways to do this is $\leq n^3 \times \binom{n-4}{a-4}$.

If a RAND $A \subseteq \{1, ..., n\}$, size *a*, want bound on prob all of the diffs in *A* are NOT distinct. Numb of ways to choose *a* elements out of $\{1, ..., n\}$ is $\binom{n}{a}$. Two ways to create a set with a diff repeated:

Way One:

- Pick x < y. There are $\binom{n}{2} \le n^2$ ways to do that.
- ▶ Pick diff d such that $x + d \neq y$, $x + d \leq n$, $y + d \leq n$. Can do $\leq n$ ways. Put x, y, x + d, y + d into A.

▶ Pick a - 4 more elements out of the n - 4 left.

Number of ways to do this is $\leq n^3 \times \binom{n-4}{a-4}$. **Way Two:** Pick x < y. Let d = y - x (so we do NOT pick d). Put x, y = x + d, y + d into A. Pick a - 3 more elements out of the n - 3 left.

If a RAND $A \subseteq \{1, ..., n\}$, size *a*, want bound on prob all of the diffs in *A* are NOT distinct. Numb of ways to choose *a* elements out of $\{1, ..., n\}$ is $\binom{n}{a}$. Two ways to create a set with a diff repeated:

Way One:

- Pick x < y. There are $\binom{n}{2} \le n^2$ ways to do that.
- ▶ Pick diff d such that $x + d \neq y$, $x + d \leq n$, $y + d \leq n$. Can do $\leq n$ ways. Put x, y, x + d, y + d into A.

Pick a - 4 more elements out of the n - 4 left.

Number of ways to do this is $\leq n^3 \times \binom{n-4}{a-4}$. **Way Two:** Pick x < y. Let d = y - x (so we do NOT pick d). Put x, y = x + d, y + d into A. Pick a - 3 more elements out of the n - 3 left.

Number of ways to do this is $\leq n^2 \times \binom{n-3}{a-3}$.

If you pick a RANDOM $A \subseteq \{1, ..., n\}$ of size *a* then a bound on the probability that all of the diffs in *A* are NOT distinct is

$$\frac{n^3 \times \binom{n-4}{a-4} + n^2 \times \binom{n-3}{a-3}}{\binom{n}{a}} = \frac{n^3 \times \binom{n-4}{a-4}}{\binom{n}{a}} + \frac{n^2 \times \binom{n-3}{a-3}}{\binom{n}{a}}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

If you pick a RANDOM $A \subseteq \{1, ..., n\}$ of size *a* then a bound on the probability that all of the diffs in *A* are NOT distinct is

$$\frac{n^3 \times \binom{n-4}{a-4} + n^2 \times \binom{n-3}{a-3}}{\binom{n}{a}} = \frac{n^3 \times \binom{n-4}{a-4}}{\binom{n}{a}} + \frac{n^2 \times \binom{n-3}{a-3}}{\binom{n}{a}}$$
$$= \frac{n^3 a(a-1)(a-2)(a-3)}{n(n-1)(n-2)(n-3)} + \frac{n^2 a(a-1)(a-2)}{n(n-1)(n-2)}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

If you pick a RANDOM $A \subseteq \{1, ..., n\}$ of size *a* then a bound on the probability that all of the diffs in *A* are NOT distinct is

$$\frac{n^3 \times \binom{n-4}{a-4} + n^2 \times \binom{n-3}{a-3}}{\binom{n}{a}} = \frac{n^3 \times \binom{n-4}{a-4}}{\binom{n}{a}} + \frac{n^2 \times \binom{n-3}{a-3}}{\binom{n}{a}}$$
$$= \frac{n^3 a(a-1)(a-2)(a-3)}{n(n-1)(n-2)(n-3)} + \frac{n^2 a(a-1)(a-2)}{n(n-1)(n-2)}$$
$$\leq \frac{32a^4}{n} \text{ Need some Elem Algebra and uses } n \geq 5.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

ANSWER

RECAP: If pick a RANDOM $A \subseteq \{1, ..., n\}$ then the prob that there IS a repeated difference is $\leq \frac{32a^4}{n}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで
ANSWER

RECAP: If pick a RANDOM $A \subseteq \{1, ..., n\}$ then the prob that there IS a repeated difference is $\leq \frac{32a^4}{n}$. So WANT

$$\frac{32a^4}{n} < 1$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

ANSWER

RECAP: If pick a RANDOM $A \subseteq \{1, ..., n\}$ then the prob that there IS a repeated difference is $\leq \frac{32a^4}{n}$. So WANT

$$\frac{32a^4}{n} < 1$$

Take

$$a = \left(\frac{n}{33}\right)^{1/4}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

ANSWER

RECAP: If pick a RANDOM $A \subseteq \{1, ..., n\}$ then the prob that there IS a repeated difference is $\leq \frac{32a^4}{n}$. So WANT

$$\frac{32a^4}{n} < 1$$

Take

$$a = \left(\frac{n}{33}\right)^{1/4}$$

UPSHOT: For all $n \ge 5$ there exists a all-diff-distinct subset of $\{1, \ldots, n\}$ of size roughly $n^{1/4}$.

We proved an object existed by showing that the Prob that it exists is **nonzero!**.

We proved an object existed by showing that the Prob that it exists is **nonzero**!.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Is the proof constructive?

We proved an object existed by showing that the Prob that it exists is **nonzero!**.

Is the proof constructive?

Old view: proof is nonconstructive since it does not say how to obtain the object.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

We proved an object existed by showing that the Prob that it exists is **nonzero**!.

Is the proof constructive?

Old view: proof is nonconstructive since it does not say how to obtain the object.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

New view: proof is constructive since can DO the random experiment and will probably get what you want.

We proved an object existed by showing that the Prob that it exists is **nonzero**!.

Is the proof constructive?

- Old view: proof is nonconstructive since it does not say how to obtain the object.
- New view: proof is constructive since can DO the random experiment and will probably get what you want.
- Caveat: Evan Golub's PhD thesis took some prob constructions and showed how to make them really work. I was his advisor.

ション ふゆ アメリア メリア しょうくしゃ

We proved an object existed by showing that the Prob that it exists is **nonzero**!.

Is the proof constructive?

- Old view: proof is nonconstructive since it does not say how to obtain the object.
- New view: proof is constructive since can DO the random experiment and will probably get what you want.
- Caveat: Evan Golub's PhD thesis took some prob constructions and showed how to make them really work. I was his advisor.
- Caveat: If the Prob Proof has high prob of getting the object, then seems constructive. If all you prove is nonzero, than maybe not.

Actually Can Do Better

- With a maximal set argument can do $\Omega(n^{1/3})$.
- Better is known: Ω(n^{1/2}) which is optimal. (That is a result by Kolmos-Sulyok-Szemeredi from 1975)

SUM FREE SET PROBLEM

Exposition by William Gasarch

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

A More Sophisticated Use of Prob Method. **Definition:** A set of numbers A is *sum free* if there is NO $x, y, z \in A$ such that x + y = z.

Example: Let $y_1, \ldots, y_m \in (1/3, 2/3)$ (so they are all between 1/3 and 2/3). Note that $y_i + y_j > 2/3$, hence $y_i + y_j \notin \{y_1, \ldots, y_m\}$.

ANOTHER EXAMPLE

Def: $\operatorname{frac}(x)$ is the fractional part of x. E.g., $\operatorname{frac}(1.414) = .414$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Def: $\operatorname{frac}(x)$ is the fractional part of x. E.g., $\operatorname{frac}(1.414) = .414$. **Lemma:** If y_1, y_2, y_3 are such that $\operatorname{frac}(y_1), \operatorname{frac}(y_2), \operatorname{frac}(y_3) \in (1/3, 2/3)$ then $y_1 + y_2 \neq y_3$.

Def: $\operatorname{frac}(x)$ is the fractional part of x. E.g., $\operatorname{frac}(1.414) = .414$. **Lemma:** If y_1, y_2, y_3 are such that $\operatorname{frac}(y_1), \operatorname{frac}(y_2), \operatorname{frac}(y_3) \in (1/3, 2/3)$ then $y_1 + y_2 \neq y_3$. **Proof:** STUDENTS DO THIS. ITS EASY. **Example:** Let $A = \{y_1, \ldots, y_m\}$ all have fractional part in (1/3, 2/3). A is sum free by above Lemma.

QUESTION

Given $x_1, \ldots, x_n \in R$ does there exist a LARGE sum-free subset? How Large?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

QUESTION

Given $x_1, \ldots, x_n \in \mathbb{R}$ does there exist a LARGE sum-free subset? How Large? **VOTE:**

- 1. There is a sumfree set of size roughly n/3.
- 2. There is a sumfree set of size roughly \sqrt{n} .
- 3. There is a sumfree set of size roughly $\log n$.

QUESTION

Given $x_1, \ldots, x_n \in \mathbb{R}$ does there exist a LARGE sum-free subset? How Large?

- 1. There is a sumfree set of size roughly n/3.
- 2. There is a sumfree set of size roughly \sqrt{n} .
- 3. There is a sumfree set of size roughly $\log n$.

STUDENTS - WORK ON THIS IN GROUPS.

Theorem For all $\epsilon > 0$, for all A that are a set of n real numbers, there is a sum-free subset of A of size $(1/3 - \epsilon)n$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

SUM SET PROBLEM

Theorem For all $\epsilon > 0$, for all A that are a set of n real numbers, there is a sum-free subset of A of size $(1/3 - \epsilon)n$. **Proof:** Let L be LESS than everything in A and U be BIGGER than everything in A. We will make U - L LARGE later. For $a \in [L, U]$ let

$$B_a = \{x \in A : \operatorname{frac}(ax) \in (1/3, 2/3)\}.$$

ション ふゆ アメリア メリア しょうくしゃ

SUM SET PROBLEM

Theorem For all $\epsilon > 0$, for all A that are a set of n real numbers, there is a sum-free subset of A of size $(1/3 - \epsilon)n$. **Proof:** Let L be LESS than everything in A and U be BIGGER than everything in A. We will make U - L LARGE later. For $a \in [L, U]$ let

$$B_a = \{x \in A : \operatorname{frac}(ax) \in (1/3, 2/3)\}.$$

ション ふゆ アメリア メリア しょうくしゃ

For all a, B_a is sum-free by Lemma above. SO we need an a such that B_a is LARGE.

What is the EXPECTED VALUE of $|B_a|$?

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

What is the EXPECTED VALUE of $|B_a|$? Let $x \in A$.

 $\Pr_{\boldsymbol{a}\in[L,U]}(\operatorname{frac}(\boldsymbol{a}\boldsymbol{x})\in(1/3,2/3))$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

What is the EXPECTED VALUE of $|B_a|$? Let $x \in A$.

$$\Pr_{\boldsymbol{a}\in[L,U]}(\operatorname{frac}(\boldsymbol{a}\boldsymbol{x})\in(1/3,2/3))$$

We take U - L large enough so that this prob is $\geq (1/3 - \epsilon)$.

$$E(|B_a|) = \sum_{x \in A} \Pr_{a \in [L, U]}(\operatorname{frac}(ax) \in (1/3, 2/3))$$
$$= \sum_{x \in A} (1/3 - \epsilon)$$
$$= (1/3 - \epsilon)n.$$

*ロト *目 * * * * * * * * * * * * * *

What is the EXPECTED VALUE of $|B_a|$? Let $x \in A$.

$$\Pr_{\boldsymbol{a}\in[\boldsymbol{L},\boldsymbol{U}]}(\operatorname{frac}(\boldsymbol{a}\boldsymbol{x})\in(1/3,2/3))$$

We take U - L large enough so that this prob is $\geq (1/3 - \epsilon)$.

$$\begin{split} E(|B_a|) &= \sum_{x \in A} \Pr_{a \in [L, U]}(\operatorname{frac}(ax) \in (1/3, 2/3)) \\ &= \sum_{x \in A} (1/3 - \epsilon) \\ &= (1/3 - \epsilon)n. \end{split}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

So THERE EXISTS an *a* such that $|B_a| \ge (1/3 - \epsilon)n$. What is *a*? I DON"T KNOW AND I DON"T CARE! End of Proof

Exposition by William Gasarch

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Theorem If G = (V, E) is a graph, |V| = n, and |E| = e, then G has an ind set of size at least

$$\frac{n}{\frac{2e}{n}+1}.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem If G = (V, E) is a graph, |V| = n, and |E| = e, then G has an ind set of size at least

$$\frac{n}{\frac{2e}{n}+1}$$

•

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Turan proved this in 1941 with a complicated proof.

Theorem If G = (V, E) is a graph, |V| = n, and |E| = e, then G has an ind set of size at least

$$\frac{n}{\frac{2e}{n}+1}.$$

Turan proved this in 1941 with a complicated proof. We proof this

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

more easily using Probability, but first need a lemma.

Theorem If G = (V, E) is a graph, |V| = n, and |E| = e, then G has an ind set of size at least

$$\frac{n}{\frac{2e}{n}+1}$$

Turan proved this in 1941 with a complicated proof. We proof this

more easily using Probability, but first need a lemma. The proof

we give is due to Ravi Boppana and appears in the Alon-Spencer book on *The Probabilistic Method*

Lemma

Lemma If G = (V, E) is a graph. Then

$$\sum_{v\in V} \deg(v) = 2e.$$

・ロト・4回ト・4回ト・4回ト・回りの()

Lemma

Lemma If G = (V, E) is a graph. Then

$$\sum_{v\in V} deg(v) = 2e.$$

Proof: Try to count the edges by summing the degrees at each vertex. This counts every edge TWICE.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Theorem If G = (V, E) is a graph, |V| = n, and |E| = e, then G has an ind set of size

$$\geq \frac{n}{\frac{2e}{n}+1}.$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Theorem If G = (V, E) is a graph, |V| = n, and |E| = e, then G has an ind set of size

$$\geq \frac{n}{\frac{2e}{n}+1}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Proof: Take the graph and RANDOMLY permute the vertices.

Theorem If G = (V, E) is a graph, |V| = n, and |E| = e, then G has an ind set of size

$$\geq \frac{n}{\frac{2e}{n}+1}$$

Proof: Take the graph and RANDOMLY permute the vertices.

Example:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Theorem If G = (V, E) is a graph, |V| = n, and |E| = e, then G has an ind set of size

$$\geq \frac{n}{\frac{2e}{n}+1}$$

Proof: Take the graph and RANDOMLY permute the vertices.

Example:

The set of vertices that have NO edges coming out on the right form an Ind Set. Call this set I.
How Big is *I*?

How big is I

How Big is *I*?

How big is / WRONG QUESTION!

How Big is *I*?

How big is *I* WRONG QUESTION!

What is the EXPECTED VALUE of the size of *I*. (NOTE- we permuted the vertices RANDOMLY)

Let $v \in V$. What is prob that $v \in I$

Let $v \in V$. What is prob that $v \in I$

v has degree d_v . How many ways can *v* and its vertices be laid out: $(d_v + 1)!$. In how many of them is *v* on the right? $d_v!$.

Let $v \in V$. What is prob that $v \in I$

v has degree d_v . How many ways can *v* and its vertices be laid out: $(d_v + 1)!$. In how many of them is *v* on the right? $d_v!$.

$$\Pr(v \in I) = \frac{d_v!}{(d_v + 1)!} = \frac{1}{d_v + 1}$$

Let $v \in V$. What is prob that $v \in I$

v has degree d_v . How many ways can *v* and its vertices be laid out: $(d_v + 1)!$. In how many of them is *v* on the right? $d_v!$.

$$\Pr(v \in I) = \frac{d_v!}{(d_v + 1)!} = \frac{1}{d_v + 1}.$$

Hence

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ● ● ● ●

Let $v \in V$. What is prob that $v \in I$

v has degree d_v . How many ways can *v* and its vertices be laid out: $(d_v + 1)!$. In how many of them is *v* on the right? $d_v!$.

$$\Pr(v \in I) = \frac{d_v!}{(d_v + 1)!} = \frac{1}{d_v + 1}.$$

Hence

$$\mathsf{E}(|\mathsf{I}|) = \sum_{\mathsf{v}\in\mathsf{V}}\frac{1}{\mathsf{d}_{\mathsf{v}}+1}.$$

How Big is this Sum?

Need to find lower bound on

$$\sum_{\nu\in V}\frac{1}{d_{\nu}+1}.$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Rephrase

NEW PROBLEM: Minimize

$$\sum_{v \in V} \frac{1}{x_v + 1}$$

relative to the constraint:

$$\sum_{v \in V} x_v = 2e$$

۱

KNOWN: This sum is minimized when all of the x_v are $\frac{2e}{|V|} = \frac{2e}{n}$. So the min the sum can be is

$$\sum_{v \in V} \frac{1}{\frac{2e}{n} + 1} = \frac{n}{\frac{2e}{n} + 1}$$

$$E(|I|) = \sum_{v \in V} \frac{1}{d_v+1}$$
 and $\sum_{v \in V} d_v = 2e$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

$$E(|I|) = \sum_{v \in V} \frac{1}{d_v+1}$$
 and $\sum_{v \in V} d_v = 2e$.

To lower bound E(|I|) we solve a continuous problem: minimize $\sum_{v \in V} \frac{1}{x_v+1}$ with constraint $\sum_{v \in V} x_v = 2e$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$E(|I|) = \sum_{v \in V} \frac{1}{d_v + 1}$$
 and $\sum_{v \in V} d_v = 2e$.

To lower bound E(|I|) we solve a continuous problem: minimize $\sum_{v \in V} \frac{1}{x_v+1}$ with constraint $\sum_{v \in V} x_v = 2e$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

The min occurs when $(\forall v)[x_v = \frac{2e}{n}]$. Hence

$$E(|I|) = \sum_{v \in V} \frac{1}{d_v + 1}$$
 and $\sum_{v \in V} d_v = 2e$.

To lower bound E(|I|) we solve a continuous problem: minimize $\sum_{v \in V} \frac{1}{x_v+1}$ with constraint $\sum_{v \in V} x_v = 2e$.

The min occurs when $(\forall v)[x_v = \frac{2e}{n}]$. Hence

$$E(I) \geq \sum_{v \in V} \frac{1}{x_v + 1} \geq \sum_{v \in V} \frac{1}{\frac{2e}{n} + 1} = \frac{n}{\frac{2e}{n} + 1}.$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

END OF THIS TALK/TAKEAWAY

END OF THIS TALK

TAKEAWAY: There are TWO ways (probably more) to show that an object exists using probability.

- 1. Show that the probability that it exists is NONZERO. Hence there must be some set of random choices that makes it exist. We did this for the distinct-sums problem.
- You want to show that an object of a size ≥ s exists. Show that if you do a probabilistic experiment then you (a) always get the object of the type you want, and (b) the expected size is ≥ s. Hence again SOME set of random choices produces an object of size ≥ s.