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We proved using Ramsey’'s Thm.

What about other equations?
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Terminology: Mono Solution

Def Let E(xi,...,Xpn) be an equation (e.g., x +y = z).

Let R,c e N.

Let COL: [R]—[c].

A monochromatic solution (mono sol) is a tuple of numbers in
[R], (di,...,dpn) such that

1) di,...,d, are all the same color.

2) E(d1,...,dy) is true.

A distinct monochromatic solution (d-mono sol) is a mono sol
where all of the elements are different.

We can restate Schur’'s Thm

Thm (Vc)(3S = S(c)) st V COL : [S]—|c] there is a mono sol to
X+y=z

(We can modify the proof to get a d-mono sol.)
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Terminology: Regular

Def Let E(xi,...,x,) be an equation (e.g., x +y = z).
E is regular if the following is true:

(Vc € N)(3R € N) ¥ COL: [R]—|c] there is a mono sol.

One can define d-regular with d-mono sol.

We can restate Schur's Thm
Thm x + y = z is regular. (Can also show d-regular.)
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Want

2w + 3x = by

2(a+ Wd) + 3(a+ Xd) = 5(a+ Yd)

2a+2Wd 4+ 3a+ 3Xd = 5a+5Y WOW all of the a's Drop out!
2Wd + 3Xd = 5Yd WOW all of the d’'s Drop out!

2W 43X =5Y

Coulddo W =1, X =1, Y =1. But this causes x = y = z.
Willdo W =0, X =5, Y =3.

So get x = a x =a+bd y =a+3d.
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Recap The Proof

Thm 2w + 3x = 5y is d-regular.

Given ¢, let R = R(c) = W(6, ¢).

COL : [R]—=]c].

By VDW da, d, COL(a) = COL(a+ d) = --- = COL(a + 5d).

w=a x = a—+5d y=a+3d

COL(a+ d) = COL(a + 5d) = COL(a + 3d)

2(a)+3(a+5d) =5(a+ 3d)
Done!
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What Was Special About 2w + 3x = 5y?

2w + 3x = by

Set w =a+ Wd, x=a+ Xd, y = a+ Yd and the a's dropped out.
Then all the d's dropped out so we go equation in just W, X, Y.
What is it about

2w 4+ 3x = by

that made all of the a's drop out? Discuss.
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Mini Rado Thm (Statement)

The key to 2w + 3x =5y is that 24 3 = 5.
Can phrase as 2w + 3x — by = 0 and say sum of coefficients is 0.

Thm Let a1,...,an € Nand by,...,b, € N be st
>ty ai =iy bj. Then

27;1 aiXi = 27:1 b,-y,- is d-regular.
(One exception: x = y.)

We won't prove this but you have seen most of the ideas needed to
prove it.
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Thm 2w + 3x = 5y + z is d-regular.
Let ¢ € N.Use VDW'’s thm with ¢ and with k we pick later.
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w=a+ Wd x =a+ Xd y=a+Yd z=a+ Zd
Good News: COL(w) = COL(x) = COL(y) = COL(z).
Want

2w+ 3x =by 4z

2(a+ Wd) + 3(a+ Xd) =5(a+ Yd) + (a + Zd)
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Want
2w+ 3x=by +z

2(a+ Wd) +3(a+ Xd) =5(a+ Yd) + (a+ Zd)

2a4+2Wd +3a+3Xd =ba+5Y +a+ Zd

WOW Nothing drops out.
What to do? Discuss.

We would like to set z = Zd instead of z = a + Zd.
Need a Variant of VDW'’s Thm.
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Pf. Ind on c.

E(k,1) = k.

We show E(k,c) < W(kX,c) for a large X.

COL: [W(kX, c)]—[c].

By VDW there exists A, D:

AJA+D,...,A+ kXD is color (we can assume) c.
AA+D,...,A+ (k—1)D are color ¢ . So COL(D) # c.

AA+2D,...,A+2(k—1)D are c . So COL(2D) # c.

A, A+ XD,A+2XD,...,A+ (k—1)XD. So
COL((k — 1)XD) # c.
D,2D,...,(k—1)XD use [c — 1], only ¢ — 1 colors.
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Real EVDW

What | presented above is NOT the EVDW. This is:
EVDW Thm
(Vk,c,e € N)(IE = E(k, e, c)(VCOL: [E]—][c])(Fa, d) st

a,a+d,a+2d,...,a+ (k—1)d,de

are all the same color.
This | leave to the reader.
We will only use the e =1 case.
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2w +3x =by + z

Thm 2w + 3x = 5y + z is regular.
Let ¢ € N.Use EVDW's thm with ¢ and with k we pick later.
AW for all COL[W]—[c] Ja, d

a,a+d,...,a+ (k—1)d,d are all the same color

We pick 0 < W, X, Y, Z < k later and then set

w=a+ Wd x =a+ Xd y=a+Yd z=2d
Good News: COL(w) = COL(x) = COL(y) = COL(z).
Want

2w+ 3x =by 4z

2(a+ Wd) + 3(a+ Xd) =5(a+ Yd) + (Zd)
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How We Get What We Want

Want
2w+ 3x =by 4+ z

2(a+ Wd) +3(a+ Xd) =5(a+ Yd) + (Zd)
2a+4+2Wd 4+ 3a+3Xd =5a+5Yd + Zd WOW The a's drop out.
2Wd + 3Xd =5Yd + Zd WOW The d'’s drop out.

2W +3X =5Y+Z
We'll take W =2, X =4,Y =3, 2Z=1

So take w = a + 2d x=a-+4d y=a+3d z=d
So take EVDW with k = 5.

Done
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Rado’s Thm (Half of it)

Thm Let a;1,...,ax € Z be st some subset of the a;'s sums to 0.
Then

aix1 + - -+ akxx = 0 is regular.

We won't prove. You have seen most of the ideas needed to prove
it.
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x+2y =4z

We define COL: N—[4] st

X + 2y = 4z has no mono solution.

COL(5%b) = b mod 5. Note that b # 0.

If a1, a», a3 is a mono solution, say color is b.

a) = 5el b1 dy = 562b2 a3z = 5 b3

by = by = b3 = b (mod 5)
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Case e; < e, €3

a) = 5el b1 dy = 562b2 a3z = 5 b3

by = by = b3 = b (mod 5) and e; < e, 3.
Recall b # 0.

a1 +2ay = 4a3
51hy + 2 x 5% by = 4 x 5% b3
Divide by 5 to get:

bi +2 x 5271 by = 4 x 5% by

Take this mod 5 to get:

b=0 (mod 5) contradiction
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a) = 5el b1 dy = 562b2 a3z = 5 b3
by = by = b3 = b (mod 5) and e; < €1, e3. Recall b # 0.
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Case e; < e1, €3
a) = 5el b1 dy = 562b2 a3z = 5 b3
by = by = b3 = b (mod 5) and e; < €1, e3. Recall b # 0.
a1 +2ap, = 4a3
51bh; +2 x 5%2py = 4 x 5e3b3
Divide by 5% to get:

517%2h +2 X by =4 x 582,

Take this mod 5 to get:

2b=0 (mod 5) contradiction

Key 5 is prime: 2b =0 (mod 5) implies b =0 (mod 5).
Contradiction



Case e3 < e1, €

Similar to e; < ey, 33.
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a) = 581 bl dy = 562b2 a3 = 563 b3
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Case e = e, < e3

a) = 5e bl ay = 562b2 a3z = 5 b3

by = by = b3 = b (mod 5) and e, < €1, e3. Recall b # 0.
a; + 2ap = 4a3
51b1 +2 x 5%1by = 4 x 5% b3
Divide by 5 to get:

b1 +2by = 4 x 5% b3
Take this mod 5 to get:

b+2b=0 (mod5)

3b=0 (mod 5)
3b=0 (mod 5) implies b= 0 (mod 5). Contradiction.
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Similar to e; = e < e3.
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Case e = ey = e3

al) = 591 b]_ dp = 562b2 a3 = 5€3b3
by = by = b3 = b (mod 5) and e; < eg, e3. Recall b # 0.

a1 + 2ap = 4a3
51hy + 2 x 5%1hy = 4 x 5% b3
Divide by 5 to get:

b1 + 2by = 4b3
Take this mod 5 to get 3b=4b so b= 0 (mod 5) Contradiction.
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What Was Special About x + 2y = 4z? About 5?7

1. The proof used that NO subset of 1,2, —4 sums to 0.
2. We used 5 since

2.1 We need a prime p
2.2 We needed 3b =0 (mod p) implies b =0 (mod p)
5 is the lowest such prime.
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Rado’s Thm (Other Half of it)

Thm Let a;1,...,ax € Z be st no subset of the a;'s sums to 0.
aix1+ -+ akxk =0
is not regular.

We will not prove this but you have all of the ideas you need to
prove it.

(The c-coloring that shows non-regularity uses c=the first prime
bigger then any sum of the coefficients.)

Research Question

1. For x + 2y = 4z what about 4-coloring? 3-coloring?
2-coloring?

2. More generally one can take an equation where no sum of the
coefficients is 0 and look at colorings with a small number of
colors.
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Full Rado

Full Rado Thm A linear equation Y i, ajx; = 0 is regular iff
some subset of the coefficient sum to 0.

(For most equations with the coefficients sum to 0 you actually get
d-regular.)
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Research Questions

(Some is known about some of these.)
Prove or disprove that the equations below are regular.

1. Y°7 1 aix; = A for some A.

2. Higher degree equations (seems hard).
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Other Equations

1. There is a matrix form of Rado which we omit.

2. Folkman's Thm For all k, ¢ there exists N = N(k, c) st for
all COL: [N]—|c] there exists a, ..., ax st ALL non-empty
sums of the a;'s are the same color.

3. For all ¢ there exists N = N(c¢) st for any COL: [N]—|c]
there is a mono solution to 16x% + 9y? = z2.

(This equation has certain properties that make it work, so
there is really a more general thm here.) http:
//fourier.math.uoc.gr/~ergodic/Slides/Host.pdf
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x? 4+ y? = 72 Result by Heule&Kullmann&Marek

Thm There exists N st for any COL: [N]—[2] there is a mono

solution to x? + y? = z°.

Do we know what N is? We actually do!

» 3 2-col of [7824] w/o mono sol to x? + y? = 72,

» V 2-col of [7825] 3 mono sol to x? + y? = Z2.
Thm proven by SAT-Solver. 200 terabytes: longest proof ever.
Research Questions
1) See how large and N you can color just with your laptop.

Greedy, Randomized Greedy, are worth trying. Does Rand-Greedy
do better? (I think so.)

2) Once you have done (1) try it out on other equations.

3) (Might be Hard) Obtain a human-readable proof with perhaps a
much bigger N, but which can be generalized to ¢ = 3 and beyond.



