
An Exposition of Ramsey’s Result in Logic
By William Gasarch

1 Introduction

In Ramsey’s celebrated paper [4] (see also [2],[3]) his goal was to solve a problem in logic. In this
note we discuss what he proved in logic.

We will first state and prove his theorem in logic for undirected graphs (no self loops), and then
we will state and prove his theorem in logic for colored hypergraphs.

Def 1.1

• A graph is a pair (V,E) where E is a subset of unordered pairs of distinct elements of V . V
is referred to as the set of vertices. E is referred to as the set of edges.

• A clique in a graph is a set of vertices such that every pair of vertices in it has an edge.

• An independent set in a graph is a set of vertices such that every pair of vertices in it has an
edge.

The following is a subcase of Ramsey’s Combinatorial theorem.

Theorem 1.2 For all m there exists a number R(m) such that, for every graph on R(m) vertices,
there is either a clique or independent set of size m.

Note 1.3 It is well known that 2m/2 ≤ R(m) ≤ 22m. A more sophisticated proof, by David

Conlon [1] yields, for all k, n ≥ k
−D log k

log log k
(
2k
k

)
suffices, where D is some constant. A simple

probabilistic argument shows that n ≥ (1 + o(1)) 1
e
√
2
)k2k/2 is necessary. A more sophisticated

argument shown by Spencer [5] (see [2]) shows n ≥ (1 + o(1))
√
2
e k2k/2 is necessary.

Def 1.4 A sentence is in the language of graphs if it only has the usual logical symbols, E a 2-ary
predicate, and =. We will interpret such sentences as being about undirected graphs with no self
loops. Hence we will implicitly assume (1) E(x, y) iff E(y, x) and (2) ¬E(x, x). All of the variables
are quanfitied; hence, if G is a graph and φ is a sentence, either φ is true of G or φ is false of G.

Def 1.5 An E∗A∗ sentence is one that begins with ∃ quantifiers, then has ∀ quantifiers, and then
has a quantifier-free formula.

Def 1.6 If φ is a sentence in the language of graphs then spec(φ) is the set of all n such that there
is G on n vertices such that G |= φ.

Def 1.7 If φ is a sentence in the language of graphs then spec(φ) is the set of all n such that there
is an undirected graph G with no self-loops on n vertices where G |= φ.-
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Convention 1.8 For ease of notation we make the following conventions.

• If there is a contiguous string of the same type of quantifiers then all of the variables in it are
distinct. Hence

(∃x1)(∃x2)(∀y1)(∀y2)[φ(x1, x2, y1)]

actually means
(∃x1)(∃x2 6= x1)(∀y1)(∀y2 6= y1)[φ(x1, x2, y1)]

• There are no self-loops. Hence E(x, y) means E(x, y) ∧ x 6= y.

• E is symmetric. So E(x, y) means E(x, y) ∧ E(y, x).

Example 1.9

1.
φ = (∀x)(∀y)[E(x, y)].

This states that every pair of distinct vertices has an edge. For all n Kn |= φ. Hence,
spec(φ) = N.

2.
φ = (∃x, y, z)(∀w)[E(w, x) ∧ E(w, y) ∧ E(w, z)].

φ states that there are three distinct vertices x, y, z such that every w /∈ {x, y, z} is connected
to x and y and z. For all n ≥ 0 Kn,3 |= φ. If G has on 0,1, or 2 vertices then G 6|= φ. Hence,
spec(φ) = {3, 4, 5, . . . , }. (tNote that K0,3 |= φ vacuously.)

3.
φ = (∃x1)(∃x2)(∀y)[x1 = y ∨ x2 = y].

If G is a graph on 2 vertices then G |= φ; however, if G has any other number of vertices then
G 6|= φ. Hence spec(φ) = {2}.

Note that in all three examples spec(φ) was either co-finite or finite. We will later see that, for
all φ, this is the case.

2 Definitions and a Lemma Needed for the Graph case

Lemma 2.1

1. The following is decidable: Given a sentence φ and a graph G, determine if G |= φ.

2. The following is decidable: Given a sentence φ and a number n, determine if n ∈ spec(φ).

Proof: Use brute force.

We will use Lemma 2.1 without comment.
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3 Ramsey’s Theorem in Logic on Graphs

The following is a simple case of what Ramsey proved.

Theorem 3.1 The following function is computable: Given a E∗A∗ sentence φ, output spec(φ).
(spec(φ) will be a finite or cofinite set; hence it will have an easy description.)

Proof:
Claim 1: Let G |= φ with witnesses v1, . . . , vn. then any induced subgraph H of G that contains
v1, . . . , vn satisfies φ.
Proof of Claim 1:

The statement
(∀y1) · · · (∀ym)[ψ(x1, . . . , xn, y1, . . . , ym)]

is true in H since it is true in G and now there are just less cases to check.
End of Proof of Claim 1

Claim 2: Let N0 = n+ 2nR(m).

1. If there exists N0 ≥ N such that N ∈ spec(φ) then

{n+m, . . . , N0, . . . , } ⊆ spec(φ).

(We show the N0 for pedagogical value later.)

2. If N0 /∈ spec(φ) then
spec(φ) ⊆ {0, . . . , N0 − 1}.

Proof of Claim 2:
1) Since N0 ≥ n + 2nR(m) ∈ spec(φ) there exists G = (V,E), a graph on N0 vertices, where φ is
true. Let v1, . . . , vn be vertices such that the following is true of G:

(∀y1) · · · (∀ym)[ψ(v1, . . . , vn, y1, . . . , ym)].

Let X = {v1, . . . , vn} and U = V − X. Note that |U | ≥ 2nR(m). Map every u ∈ U to
(b1, . . . , bn) ∈ {0, 1}n such that

bi =

{
0 if (u, vi) /∈ E
1 if (u, vi) ∈ E

(1)

Hence every u ∈ U is mapped to a description of how it relates to every element in X. Since
|U | ≥ 2nR(m) there exists R(m) vertices that map to the same vector. Apply Ramsey’s theorem
to these R(m) vertices to obtain u1, . . . , um such that the following are true.

• Either the ui’s form a clique or the ui’s form an ind. set. We will assume the ui’s form a
clique (the other case is similar).

• All of the ui’s map to the same vector. Hence they all look the same to v1, . . . , vn.

Let H0 be the graph restricted to X ∪ {u1, . . . , um}. By Claim 1.a H0 satisfied φ. For every
p ≥ 1 we form a graph Hp = (Vp, Ep) on n+m+ p vertices such that Hp |= φ.
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• Vp = X ∪ {u1, . . . , um, um+1, . . . , um+p} where um+1, . . . , um+p are new vertices.

• Ep is the union of the following edges.

– The edges in H0,

– For all 1 ≤ i < j ≤ n+m+ p put an edge between ui and uj . (If i, j ≤ m then there is
already an edge there.)

– Let (b1, . . . , bn) be the vector that all of the elements of {u1, . . . , um} mapped to. For
m+ 1 ≤ j ≤ m+ p, for 1 ≤ i ≤ m such that bi = 1, put an edge between uj and vi.

As far as X is concerned, all of the u1, . . . , um+p look the same. Hence any subset of the
{u1, . . . , um+p} of size m will look just like u1, . . . , um as far as both X is concerned and as far as
their connectivity to each other. Hence Hp |= φ. Hence n+m+ p ∈ spec(φ).

2) By Part 1 of this Claim,

{N0, . . .} ∩ spec(φ) 6= ∅ =⇒ {n+m, . . . , N0, . . .} ⊆ spec(φ).

We take the contrapositive with a weaker premise.

N0 /∈ spec(φ) =⇒ {N0, . . .} ∩ spec(φ) = ∅

Clearly this implies

spec(φ) ⊆ {0, . . . , N0 − 1}.

End of Proof of Claim 2
We can now give an algorithm for this problem:

1. Input
φ = (∃x1) · · · (∃xn)(∀y1) · · · (∀ym)[ψ(x1, . . . , xn, y1, . . . , ym)].

2. Let N0 = n+ 2nR(m). Determine if N0 ∈ spec(φ).

(a) If YES then by Claim 2a {n+m, . . .} ⊆ spec(φ).

For 0 ≤ i ≤ n + m − 1 test if i ∈ spec(φ). You now know spec(φ) which is co-finite.
Output it.

(b) If NO then, by Claim 2b spec(φ) ⊆ {0, . . . , N0 − 1}.
For n+1 ≤ i ≤ N0 test if i ∈ spec(φ). You now know spec(φ) which is finite set. Output
it.
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4 What Ramsey Really Did

Ramsey did not work with graphs. He didn’t even work with hypergraphs. He worked with colored
≤ a-ary hypergraphs.

We state his main theorem and then discuss the proof.

Def 4.1 Let a, c ∈ N. A c-colored ≤ a-ary hypergraph is:

1. a set of vertices V ,

2. a set E ⊆
(
V
≤a
)
,

3. a map of from E to [c].

Theorem 3.1 was about the logic of graphs. The only symbol was E(x, y). To pin down the
logic of c-colored ≤ a-ary hypergraphs we need symbols that tell us both arity and color. Hence
we have, for 1 ≤ i ≤ a and 1 ≤ d ≤ c, the i-ary predicate Ei

a(x1, . . . , xi).
We can now state Ramsey’s Theorem in Logic.

Theorem 4.2 The following function is computable: Given φ, a E∗A∗ sentence in the language of
c-colored, ≤ a-ary hypergraphs of the form output spec(φ). (spec(φ) will be a finite or cofinite set;
hence it will have an easy description.)

The proof of Theorem 4.2 is similar to the proof of Theorem 3.1. The main difference is that
we use an iterated hypergraph Ramsey Theorem rather than the version on graphs.
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