Small Ramsey Numbers

Exposition by William Gasarch

June 25, 2024

Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.

Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.

We state this in terms of colorings of edges of graphs.

For all 2-coloring of the edges of K_6 there is a mono K_3 .

Lets Party Like Its January of 2019

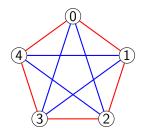
Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.

We state this in terms of colorings of edges of graphs. For all 2-coloring of the edges of K_6 there is a mono K_3 .

Question What if we color the edges of K_5 ?

Coloring of K_5 with no Mono K_3



This graph is not arbitrary.

$$SQ_5 = \{x^2 \pmod{5} : 0 \le x \le 4\} = \{0, 1, 4\}.$$

- ▶ If $i j \in SQ_5$ then RED.
- ▶ If $i j \notin SQ_5$ then BLUE.

Asymmetric Ramsey Numbers

Definition R(a, b) is least n such that for all 2-colorings of K_n there is **either** a red K_a or a blue K_b .

- 1. R(a, b) = R(b, a).
- 2. R(2,b) = b
- 3. R(a,2) = a

$R(a,b) \le R(a-1,b) + R(a,b-1)$

Theorem $R(a, b) \leq R(a-1, b) + R(a, b-1)$ Proof

Let n = R(a-1,b) + R(a,b-1). COL: $\binom{[n]}{2} \to [2]$. Case 1 $(\exists v)[\deg_R(v) \ge R(a-1,b)]$. Look at the R(a-1,b) vertices that are RED to v. By Definition of R(a-1,b) either

- ▶ There is a RED K_{a-1} . Combine with v to get RED K_a .
- ▶ There is a BLUE K_b .

$R(a,b) \le R(a-1,b) + R(a,b-1)$

Theorem $R(a, b) \leq R(a-1, b) + R(a, b-1)$ Proof

Let n = R(a-1,b) + R(a,b-1). COL: $\binom{[n]}{2} \to [2]$. Case 1 $(\exists v)[\deg_R(v) \ge R(a-1,b)]$. Look at the R(a-1,b) vertices that are RED to v. By Definition of R(a-1,b) either

- ▶ There is a RED K_{a-1} . Combine with v to get RED K_a .
- ▶ There is a BLUE K_b .

Case 2 $(\exists v)[\deg_B(v) \geq R(a, b-1)]$. Similar to Case 1.

$$R(a,b) \le R(a-1,b) + R(a,b-1)$$

Theorem
$$R(a, b) \leq R(a-1, b) + R(a, b-1)$$

Proof

Let n = R(a-1,b) + R(a,b-1). COL: $\binom{[n]}{2} \to [2]$. Case 1 $(\exists v)[\deg_R(v) \ge R(a-1,b)]$. Look at the R(a-1,b) vertices that are RED to v. By Definition of R(a-1,b) either

- ▶ There is a RED K_{a-1} . Combine with v to get RED K_a .
- ▶ There is a BLUE K_b .

Case 2
$$(\exists v)[\deg_B(v) \geq R(a, b-1)]$$
. Similar to Case 1.

Case 3

$$(\forall v)[\deg_R(v) \leq R(a-1,b)-1 \wedge \deg_B(v) \leq R(a,b-1)-1]$$

 $(\forall v)[\deg(v) \leq R(a-1,b)+R(a,b-1)-2=n-2]$
Not possible since every vertex of K_n has degree $n-1$.

Lets Compute Bounds on R(a, b)

$$R(3,3) \le R(2,3) + R(3,2) \le 3 + 3 = 6$$

$$Arr$$
 $R(3,4) \le R(2,4) + R(3,3) \le 4+6 = 10$

$$R(3,5) \le R(2,5) + R(3,4) \le 5 + 10 = 15$$

$$Arr$$
 $R(3,6) \le R(2,6) + R(3,5) \le 6 + 15 = 21$

$$Arr$$
 $R(3,7) \le R(2,7) + R(3,6) \le 7 + 21 = 28$

Lets Compute Bounds on R(a, b)

$$Arr$$
 $R(3,3) \le R(2,3) + R(3,2) \le 3+3=6$

$$R(3,4) \le R(2,4) + R(3,3) \le 4+6 = 10$$

$$R(3,5) \le R(2,5) + R(3,4) \le 5 + 10 = 15$$

$$R(3,6) \le R(2,6) + R(3,5) \le 6 + 15 = 21$$

$$R(3,7) \le R(2,7) + R(3,6) \le 7 + 21 = 28$$

Can we make some improvements to this?

Lets Compute Bounds on R(a, b)

$$R(3,3) \le R(2,3) + R(3,2) \le 3 + 3 = 6$$

$$R(3,4) \le R(2,4) + R(3,3) \le 4+6 = 10$$

$$R(3,5) \le R(2,5) + R(3,4) \le 5 + 10 = 15$$

$$R(3,6) \le R(2,6) + R(3,5) \le 6 + 15 = 21$$

$$Arr$$
 $R(3,7) \le R(2,7) + R(3,6) \le 7 + 21 = 28$

Can we make some improvements to this? YES!

Theorem $R(3,4) \le 9$.

Let COL be a 2-coloring of the edges of K_9 .

Case 1 $(\exists v)[\deg_R(v) \ge 4]$. v_1, v_2, v_3, v_4 are RED to v.

Theorem $R(3,4) \leq 9$. Let COL be a 2-coloring of the edges of K_9 . Case $\mathbf{1} \ (\exists v)[\deg_R(v) \geq 4]$. v_1, v_2, v_3, v_4 are RED to v. If any of v_i, v_j is RED, then v, v_i, v_j are RED K_3 .

Theorem $R(3,4) \leq 9$. Let COL be a 2-coloring of the edges of K_9 . Case $\mathbf{1}$ $(\exists v)[\deg_R(v) \geq 4]$. v_1, v_2, v_3, v_4 are RED to v. If any of v_i, v_j is RED, then v, v_i, v_j are RED K_3 . If not then v_1, v_2, v_3, v_4 is BLUE K_4 .

Theorem $R(3,4) \le 9$.

Let COL be a 2-coloring of the edges of K_9 .

Case 1 $(\exists v)[\deg_R(v) \ge 4]$. v_1, v_2, v_3, v_4 are RED to v.

If any of v_i , v_i is RED, then v, v_i , v_i are RED K_3 .

If not then v_1, v_2, v_3, v_4 is BLUE K_4 .

Case 2 $(\exists v)[\deg_B(v) \ge 6]$. $v_1, v_2, v_3, v_4, v_5, v_6$ are BLUE to v.

Either:

(1) a RED K_3 , or

(2) a BLUE K_3 , which together with v is a BLUE K_4 .

NOTE Can't have any $\deg_R(v) \leq 2$.

Theorem $R(3,4) \le 9$.

Let COL be a 2-coloring of the edges of K_9 .

Case 1 $(\exists v)[\deg_R(v) \ge 4]$. v_1, v_2, v_3, v_4 are RED to v.

If any of v_i, v_j is RED, then v, v_i, v_j are RED K_3 .

If not then v_1, v_2, v_3, v_4 is BLUE K_4 .

Case 2 $(\exists v)[\deg_B(v) \ge 6]$. $v_1, v_2, v_3, v_4, v_5, v_6$ are BLUE to v.

Either:

(1) a RED K_3 , or

(2) a BLUE K_3 , which together with v is a BLUE K_4 .

NOTE Can't have any $\deg_R(v) \leq 2$.

Case 3 $(\forall v)[\deg_R(v) = 3]$. The RED subgraph has 9 nodes each of degree 3. Impossible!

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

```
Lemma Let G=(V,E) be a graph. V_{\rm even}=\{v:\deg(v)\equiv 0\pmod 2\} V_{\rm odd}=\{v:\deg(v)\equiv 1\pmod 2\}
```

Lemma Let G = (V, E) be a graph.

$$V_{\text{even}} = \{v : \deg(v) \equiv 0 \pmod{2}\}$$

 $V_{\text{odd}} = \{v : \deg(v) \equiv 1 \pmod{2}\}$

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

Recall that for any graph G = (V, E):

$$\sum_{\nu \in V_{\mathrm{even}}} \deg(\nu) + \sum_{\nu \in V_{\mathrm{odd}}} \deg(\nu) = \sum_{\nu \in V} \deg(\nu) = 2|E| \equiv 0 \pmod{2}.$$

Lemma Let G = (V, E) be a graph.

$$V_{\text{even}} = \{v : \deg(v) \equiv 0 \pmod{2}\}$$

 $V_{\text{odd}} = \{v : \deg(v) \equiv 1 \pmod{2}\}$

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

Recall that for any graph G = (V, E):

$$\sum_{\nu \in V_{\mathrm{even}}} \deg(\nu) + \sum_{\nu \in V_{\mathrm{odd}}} \deg(\nu) = \sum_{\nu \in V} \deg(\nu) = 2|E| \equiv 0 \pmod{2}.$$

$$\sum_{v \in V_{\mathrm{odd}}} \deg(v) \equiv 0 \pmod{2}.$$

Lemma Let G = (V, E) be a graph.

$$V_{\text{even}} = \{v : \deg(v) \equiv 0 \pmod{2}\}$$

 $V_{\text{odd}} = \{v : \deg(v) \equiv 1 \pmod{2}\}$

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

Recall that for any graph G = (V, E):

$$\sum_{v \in V_{\mathrm{even}}} \deg(v) + \sum_{v \in V_{\mathrm{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.$$

$$\sum_{v \in V_{\text{odd}}} \deg(v) \equiv 0 \pmod{2}.$$

Sum of odds \equiv 0 (mod 2). Must have even numb of them. So $|V_{\rm odd}| \equiv$ 0 (mod 2).

What was it about R(3,4) that made that trick work?

What was it about R(3,4) that made that trick work? We originally had

$$R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 \le 10$$

What was it about R(3,4) that made that trick work? We originally had

$$R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 \le 10$$

Key: R(2,4) and R(3,3) were both **even!**

What was it about R(3,4) that made that trick work? We originally had

$$R(3,4) \le R(2,4) + R(3,3) \le 4 + 6 \le 10$$

Key: R(2,4) and R(3,3) were both even!

Theorem $R(a,b) \leq$

- 1. R(a, b 1) + R(a 1, b) always.
- 2. R(a, b 1) + R(a 1, b) 1 if $R(a, b 1) \equiv R(a 1, b) \equiv 0 \pmod{2}$

Some Better Upper Bounds

- $R(3,3) \le R(2,3) + R(3,2) \le 3+3=6.$
- Arr $R(3,4) \le R(2,4) + R(3,3) \le 4+6-1=9.$
- $R(3,5) \le R(2,5) + R(3,4) \le 5 + 9 = 14.$
- $R(3,6) \le R(2,6) + R(3,5) \le 6 + 14 1 = 19.$
- $R(3,7) \le R(2,7) + R(3,6) \le 7 + 19 = 26$
- $R(4,4) \le R(3,4) + R(4,3) \le 9 + 9 = 18.$
- Arr $R(4,5) \le R(3,5) + R(4,4) \le 14 + 18 1 = 31.$
- Arr $R(5,5) \le R(4,5) + R(5,4) = 62.$

Are these tight?

$$R(3,3) \ge 6$$

$$R(3,3) \ge 6$$

Vertices are $\{0,1,2,3,4\}$.

$$R(3,3) \ge 6$$

Vertices are $\{0,1,2,3,4\}$.

 $COL(a, b) = RED \text{ if } a - b \equiv SQ \pmod{5}$, BLUE OW.

$$R(3,3) \ge 6$$

Vertices are $\{0,1,2,3,4\}$.

 $COL(a, b) = RED \text{ if } a - b \equiv SQ \pmod{5}$, BLUE OW.

Note $-1 = 2^2 \pmod{5}$. Hence $a - b \in SQ$ iff $b - a \in SQ$. So the coloring is well defined.

$$R(3,3) \ge 6$$

 $COL(a, b) = RED \text{ if } a - b \equiv SQ \pmod{5}$, BLUE OW.

- ► Squares mod 5: 1,4.
- ▶ If there is a RED triangle then a b, b c, c a all SQ's. SUM is 0. So

$$x^2 + y^2 + z^2 \equiv 0 \pmod{5}$$
 Can show impossible

▶ If there is a BLUE triangle then a-b, b-c, c-a all non-SQ's. Product of nonsq's is a sq. So 2(a-b), 2(b-c), 2(c-a) all squares. SUM to zero-same proof.

UPSHOT R(3,3) = 6 and the coloring used math of interest!

$$R(4,4) = 18$$

 $R(4,4) \ge 18$: Need coloring of K_{17} w/o mono K_4 .

$$R(4,4) = 18$$

 $R(4,4) \ge 18$: Need coloring of K_{17} w/o mono K_4 .

Vertices are $\{0, \ldots, 16\}$.

Use

 $COL(a, b) = RED \text{ if } a - b \equiv SQ \pmod{17}$, BLUE OW.

$$R(4,4) = 18$$

 $R(4,4) \ge 18$: Need coloring of K_{17} w/o mono K_4 .

Vertices are $\{0, \ldots, 16\}$.

Use

$$COL(a, b) = RED \text{ if } a - b \equiv SQ \pmod{17}$$
, BLUE OW.

Same idea as above for K_5 , but more cases.

UPSHOT R(4,4) = 18 and the coloring used math of interest!

$$R(3,5) = 14$$

 $R(3,5) \ge 14$: Need coloring of K_{13} w/o RED K_3 or BLUE K_5 .

$$R(3,5) = 14$$

 $R(3,5) \ge 14$: Need coloring of K_{13} w/o RED K_3 or BLUE K_5 .

Vertices are $\{0, \ldots, 13\}$.

Use

 $COL(a, b) = RED \text{ if } a - b \equiv CUBE \pmod{14}$, BLUE OW.

$$R(3,5) = 14$$

 $R(3,5) \ge 14$: Need coloring of K_{13} w/o RED K_3 or BLUE K_5 .

Vertices are $\{0, \ldots, 13\}$.

Use

$$COL(a, b) = RED \text{ if } a - b \equiv CUBE \pmod{14}$$
, BLUE OW.

Same idea as above for K_5 , but more cases.

$$R(3,5) = 14$$

 $R(3,5) \ge 14$: Need coloring of K_{13} w/o RED K_3 or BLUE K_5 .

Vertices are $\{0, \ldots, 13\}$.

Use

$$COL(a, b) = RED \text{ if } a - b \equiv CUBE \pmod{14}$$
, BLUE OW.

Same idea as above for K_5 , but more cases.

UPSHOT R(3,5) = 14 and the coloring used math of interest!

$$R(3,4) = 9$$

This is a subgraph of the R(3,5) graph

$$R(3,4) = 9$$

This is a subgraph of the R(3,5) graph

UPSHOT R(3,4) = 9 and the coloring used math of interest!

Good news R(4,5) = 25.

Good news R(4,5) = 25.

Bad news

Good news R(4,5) = 25.

Bad news

THATS IT.

Good news R(4,5) = 25.

Bad news

THATS IT.

No other R(a, b) are known using NICE methods.

Good news R(4,5) = 25.

Bad news

THATS IT.

No other R(a, b) are known using NICE methods.

R(5,5)– I will give you a paper to read on that soon.

Revisit those Numbers

Int means Interesting Math. Bor means Boring Math.

- $ightharpoonup R(3,3) \le 6$. TIGHT. Int
- $ightharpoonup R(3,4) \le 9$. TIGHT. Int
- ► $R(3,5) \le 14$. TIGHT. Int
- ▶ $R(3,6) \le 19$. KNOWN: 18. Upper Bd Bor, Lower Bd Int
- ▶ $R(3,7) \le 26$. KNOWN: 23. Upper Bd Bor, Lower Bd Int
- ► $R(4,4) \le 18$. TIGHT. Int
- ▶ $R(4,5) \le 31$. KNOWN: 25. Both bd Bor
- ▶ $R(5,5) \le 62$. KNOWN: Will see it in the paper I give out.

Moral of the Story

1. At first there seemed to be **interesting mathematics** with mods and primes leading to nice graphs.

Moral of the Story

1. At first there seemed to be **interesting mathematics** with mods and primes leading to nice graphs.

(Joel Spencer) The Law of Small Numbers: Patterns that persist for small numbers will vanish when the calculations get to hard.

Moral of the Story

- 1. At first there seemed to be **interesting mathematics** with mods and primes leading to nice graphs.

 (Joel Spencer) The Law of Small Numbers: Patterns that persist for small numbers will vanish when the calculations get to hard.
- Seemed like a nice Math problem that would involve interesting and perhaps deep mathematics. No. The work on it is interesting and clever, but (1) the math is not deep, and (2) progress is slow.

When Will We Know R(5,5)

1. (Quote from Joel Spencer): Erdos asks us to imagine an alien force, vastly more powerful than us, landing on Earth and demanding the value of R(5,5) or they will destroy our planet. In that case, he claims, we should marshal all our computers and all our mathematicians and attempt to find the value. But suppose, instead, that they ask for R(6,6). In that case, he believes, we should attempt to destroy the aliens.

When Will We Know R(5,5)

- 1. (Quote from Joel Spencer): Erdos asks us to imagine an alien force, vastly more powerful than us, landing on Earth and demanding the value of R(5,5) or they will destroy our planet. In that case, he claims, we should marshal all our computers and all our mathematicians and attempt to find the value. But suppose, instead, that they ask for R(6,6). In that case, he believes, we should attempt to destroy the aliens.
- 2. I asked Stanislaw Radziszowski, the worlds leading authority on Small Ramsey Numbers, what R(5,5) is and when we would know it. He said its 43 and we will **never** know it.

$$R(a,2)=a$$

$$R(a, 2) = a$$

$$R(2,b)=b$$

$$R(a, 2) = a$$

$$R(2, b) = b$$

$$R(a,b) \leq R(a,b-1) + R(a-1,b)$$

Recall that

$$R(a, 2) = a$$

$$R(2, b) = b$$

$$R(a, b) \le R(a, b - 1) + R(a - 1, b)$$

We use these to get an upper bound on R(k) = R(k, k).

Recall that

$$R(a, 2) = a$$

$$R(2, b) = b$$

$$R(a, b) \le R(a, b - 1) + R(a - 1, b)$$

We use these to get an upper bound on R(k) = R(k, k).

Discuss!

Thm For all $a, b \ge 2$, $R(a, b) \le 2^{a+b}$.

Thm For all $a, b \ge 2$, $R(a, b) \le 2^{a+b}$. Proof by Induction on a + b

Thm For all $a, b \ge 2$, $R(a, b) \le 2^{a+b}$. Proof by Induction on a + bBase a + b = 4 so a = b = 2. $R(2, 2) = 2 \le 2^{2+2} = 2^4$.

Thm For all $a, b \ge 2$, $R(a, b) \le 2^{a+b}$. Proof by Induction on a + bBase a + b = 4 so a = b = 2. $R(2, 2) = 2 \le 2^{2+2} = 2^4$. Ind Hyp $(\forall a', b', a' + b' < a + b)[R(a', b') \le 2^{a'+b'}]$.

Thm For all $a, b \ge 2$, $R(a, b) \le 2^{a+b}$. Proof by Induction on a + bBase a + b = 4 so a = b = 2. $R(2, 2) = 2 \le 2^{2+2} = 2^4$. Ind Hyp $(\forall a', b', a' + b' < a + b)[R(a', b') \le 2^{a'+b'}]$. Ind Step

$$R(a,b) \le R(a,b-1) + R(a-1,b) \le 2^{a+b-1} + 2^{a-1+b} = 2 \times 2^{a+b-1} = 2^{a+b}$$

End of Proof Corollary $R(k) = R(k, k) \le 2^{k+k} = 2^{2k}$.

Vote

1. $R(k) \leq 2^{2k}/\sqrt{k}$.

- 1. $R(k) \leq 2^{2k}/\sqrt{k}$.
- 2. $R(k) \leq 2^k$.

- 1. $R(k) \leq 2^{2k}/\sqrt{k}$.
- 2. $R(k) \leq 2^k$.
- 3. $R(k) \leq 2^{k/2}$

- 1. $R(k) \leq 2^{2k}/\sqrt{k}$.
- 2. $R(k) \leq 2^k$.
- 3. $R(k) \leq 2^{k/2}$
- 4. $R(k) \leq 2^{k/3}$

- 1. $R(k) \leq 2^{2k}/\sqrt{k}$.
- 2. $R(k) \leq 2^k$.
- 3. $R(k) \leq 2^{k/2}$
- 4. $R(k) \leq 2^{k/3}$
- 5. $R(k) \leq k^{1000}$.

Vote

- 1. $R(k) \leq 2^{2k}/\sqrt{k}$.
- 2. $R(k) \leq 2^k$.
- 3. $R(k) \leq 2^{k/2}$
- 4. $R(k) \leq 2^{k/3}$
- 5. $R(k) \leq k^{1000}$.

Answer on next slide.

What We Know

Known

What We Know

Known

1. $R(k) \leq 2^{2k}/\sqrt{k}$.

What We Know

Known

1. $R(k) \le 2^{2k}/\sqrt{k}$. TRUE. We will do this.

- 1. $R(k) \le 2^{2k}/\sqrt{k}$. TRUE. We will do this.
- 2. $R(k) \leq 2^k$.

- 1. $R(k) \le 2^{2k}/\sqrt{k}$. TRUE. We will do this.
- 2. $R(k) \le 2^k$. UNKNOWN TO SCIENCE.

- 1. $R(k) \le 2^{2k}/\sqrt{k}$. TRUE. We will do this.
- 2. $R(k) \le 2^k$. UNKNOWN TO SCIENCE.
- 3. $R(k) \leq 2^{k/2}$.

- 1. $R(k) \le 2^{2k}/\sqrt{k}$. TRUE. We will do this.
- 2. $R(k) \le 2^k$. UNKNOWN TO SCIENCE.
- 3. $R(k) \le 2^{k/2}$. FALSE by just a little. We will show this.

- 1. $R(k) \le 2^{2k}/\sqrt{k}$. TRUE. We will do this.
- 2. $R(k) \le 2^k$. UNKNOWN TO SCIENCE.
- 3. $R(k) \le 2^{k/2}$. FALSE by just a little. We will show this.
- 4. $R(k) \leq 2^{k/3}$.

- 1. $R(k) \le 2^{2k}/\sqrt{k}$. TRUE. We will do this.
- 2. $R(k) \le 2^k$. UNKNOWN TO SCIENCE.
- 3. $R(k) \le 2^{k/2}$. FALSE by just a little. We will show this.
- 4. $R(k) \leq 2^{k/3}$. FALSE.

- 1. $R(k) \le 2^{2k}/\sqrt{k}$. TRUE. We will do this.
- 2. $R(k) \le 2^k$. UNKNOWN TO SCIENCE.
- 3. $R(k) \le 2^{k/2}$. FALSE by just a little. We will show this.
- 4. $R(k) \le 2^{k/3}$. FALSE.
- 5. $R(k) \leq k^{1000}$.

- 1. $R(k) \le 2^{2k}/\sqrt{k}$. TRUE. We will do this.
- 2. $R(k) \le 2^k$. UNKNOWN TO SCIENCE.
- 3. $R(k) \le 2^{k/2}$. FALSE by just a little. We will show this.
- **4**. $R(k) \le 2^{k/3}$. FALSE.
- 5. $R(k) \le k^{1000}$. FALSE.

Thm
$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$
.

Thm $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$. Proof We could prove by algebra.

Thm $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$. Proof We could prove by algebra. We are too cool for that!

Thm $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$. Proof We could prove by algebra. We are too cool for that! $\binom{n}{k}$ is the number of ways of choosing k numbers out of $\{1, \ldots, n\}$.

Thm $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$. Proof We could prove by algebra. We are too cool for that! $\binom{n}{k}$ is the number of ways of choosing k numbers out of $\{1, \ldots, n\}$. We split this problem into two problems.

```
Thm \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}. Proof We could prove by algebra. We are too cool for that! \binom{n}{k} is the number of ways of choosing k numbers out of \{1,\ldots,n\}. We split this problem into two problems. n is not chosen. Then there are \binom{n-1}{k} ways to do to.
```

```
Thm \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}. Proof We could prove by algebra. We are too cool for that! \binom{n}{k} is the number of ways of choosing k numbers out of \{1,\ldots,n\}. We split this problem into two problems. n is not chosen. Then there are \binom{n-1}{k} ways to do to. n is chosen. Then there are \binom{n-1}{k-1} ways to do to.
```

```
Thm \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}. Proof We could prove by algebra. We are too cool for that! \binom{n}{k} is the number of ways of choosing k numbers out of \{1,\ldots,n\}. We split this problem into two problems. n is not chosen. Then there are \binom{n-1}{k} ways to do to. n is chosen. Then there are \binom{n-1}{k-1} ways to do to. So the number of ways to choose k numbers out of \{1,\ldots,n\} is
```

Thm $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$.

Proof We **could** prove by algebra. We are too cool for that!

 $\binom{n}{k}$ is the number of ways of choosing k numbers out of $\{1, \ldots, n\}$. We split this problem into two problems.

n is **not** chosen. Then there are $\binom{n-1}{k}$ ways to do to.

n is chosen. Then there are $\binom{n-1}{k-1}$ ways to do to.

So the number of ways to choose k numbers out of $\{1,\ldots,n\}$ is

$$\binom{n-1}{k} + \binom{n-1}{k-1}.$$

Thm $R(a,b) \leq {a+b-2 \choose a-1}$.

Thm $R(a,b) \leq {a+b-2 \choose a-1}$. Proof by Induction on a+b

Thm $R(a, b) \le {a+b-2 \choose a-1}$. Proof by Induction on a + b Base a + b = 4 so a = b = 2. $R(2, 2) = 2 \le {2 \choose 1} = 2$.

Thm $R(a,b) \le {a+b-2 \choose a-1}$. Proof by Induction on a+b Base a+b=4 so a=b=2. $R(2,2)=2 \le {2 \choose 1}=2$. IH $(\forall a',b',a'+b'< a+b)[R(a',b') \le {a'+b'-2 \choose a'-1}]$.

Thm
$$R(a,b) \leq {a+b-2 \choose a-1}$$
. Proof by Induction on $a+b$ Base $a+b=4$ so $a=b=2$. $R(2,2)=2 \leq {2 \choose 1}=2$. IH $(\forall a',b',a'+b'< a+b)[R(a',b') \leq {a'+b'-2 \choose a'-1}]$. IS

$$R(a,b) \le R(a,b-1) + R(a-1,b) \le {a+b-3 \choose a-2} + {a+b-3 \choose a-1}$$

$$= {a+b-2 \choose a-1} \text{ by the Lemma.}$$

End of Proof

Cor
$$R(k) = R(k, k) \le {2k-2 \choose k-1} \le 2^{2k} / \sqrt{k}$$
.

In 2006 David Conlon showed that there is a C such that

In 2006 David Conlon showed that there is a C such that

$$R(k) \leq k^{-C\frac{\log k}{\log\log k}} \binom{2k}{k}.$$

In 2006 David Conlon showed that there is a C such that

$$R(k) \leq k^{-C \frac{\log k}{\log \log k}} \binom{2k}{k}.$$

The proof is difficult and we won't be doing it.

In 2006 David Conlon showed that there is a C such that

$$R(k) \leq k^{-C \frac{\log k}{\log \log k}} \binom{2k}{k}.$$

The proof is difficult and we won't be doing it.

The link is

https://arxiv.org/abs/math/0607788