Small Ramsey Numbers
Exposition by William Gasarch

June 25, 2024



Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and
can tell your non-math friends about.
If there are 6 people at a party, either 3 know each other
or 3 do not know each other.



Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and
can tell your non-math friends about.
If there are 6 people at a party, either 3 know each other
or 3 do not know each other.

We state this in terms of colorings of edges of graphs.
For all 2-coloring of the edges of Kg there is a mono Ks.



Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and
can tell your non-math friends about.
If there are 6 people at a party, either 3 know each other
or 3 do not know each other.

We state this in terms of colorings of edges of graphs.
For all 2-coloring of the edges of Kg there is a mono Ks.

Question What if we color the edges of Ks?



Coloring of K5 with no Mono K3

This graph is not arbitrary.

SQs = {x?> (mod 5): 0 < x <4} = {0,1,4}.
> If i —j € SQs then RED.
> If i —j ¢ SQs then BLUE.



Asymmetric Ramsey Numbers

Definition R(a, b) is least n such that for all 2-colorings of K,
there is either a red K, or a blue Kp.

1. R(a,b) = R(b, a).
2. R(2,b) = b
3. R(a,2)=a



R(a,b) < R(a—1,b)+ R(a,b—1)

Theorem R(a,b) < R(a—1,b)+ R(a,b—1)

Proof

Let n = R(a—1,b) + R(a,b—1). COL: (1) — [2].

Case 1 (3v)[deggr(v) > R(a— 1, b)]. Look at the R(a — 1, b)

vertices that are RED to v. By Definition of R(a — 1, b) either
» There is a RED K,_1. Combine with v to get RED K.

» There is a BLUE K.
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R(a,b) < R(a—1,b)+ R(a,b—1)

Theorem R(a,b) < R(a—1,b)+ R(a,b—1)

Proof

Let n = R(a—1,b) + R(a,b—1). COL: (1) — [2].

Case 1 (3v)[deggr(v) > R(a— 1, b)]. Look at the R(a — 1, b)

vertices that are RED to v. By Definition of R(a — 1, b) either
» There is a RED K,_1. Combine with v to get RED K.

» There is a BLUE K.

Case 2 (3v)[degg(v) > R(a, b — 1)]. Similar to Case 1.

Case 3

(Vv)[degr(v) < R(a—1,b) — 1 Adegg(v) < R(a,b—1) —1]
(Vv)[deg(v) < R(a—1,b)+ R(a,b—1)—2=n—-2]

Not possible since every vertex of K, has degree n — 1.



Lets Compute Bounds on R(a, b)

> R(3,3) < R(2,3)+ R(3,2) <3+3=

> R(3,4) < R(2,4)+ R(3,3) <4+6=10
> R(3,5) < R(2,5)+ R(3,4) <5+10=15
> R(3,6) < R(2,6) + R(3,5) <6+ 15 =21
> R(3,7) < R(2,7) + R(3,6) <7+21 =28
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Lets Compute Bounds on R(a, b)

> R(3,3) < R(2,3)+R(3,2)<3+3=6

> R(3,4) < R(2,4) + R(3,3) <4+6=10
> R(3,5) < R(2,5)+ R(3,4) <5+10=15
> R(3,6) < R(2,6) + R(3,5) <6+15=21

> R(3,7) < R(2,7) + R(3,6) <7+21 =28
Can we make some improvements to this? YES!
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R(3,4) <9

Theorem R(3,4) <9.

Let COL be a 2-coloring of the edges of Ko.

Case 1 (3v)[degr(v) > 4]. vi, v, v3, v4 are RED to v.

If any of vj, vj is RED, then v, v;, v; are RED Kj3.

If not then vq, w, v3, v4 is BLUE Kj.

Case 2 (Jv)[degg(v) > 6]. v1, v, v3, va, v, v are BLUE to v.
Either:

(1) a RED Kj, or

(2) a BLUE K3, which together with v is a BLUE Kj.

NOTE Can't have any degp(v) < 2.

Case 3 (Vv)[deggr(v) = 3]. The RED subgraph has 9 nodes each
of degree 3. Impossible!
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Reminder of the Odd Vertex Things

Lemma Let G = (V, E) be a graph.

Veven = {v : deg(v) =0 (mod 2)}
Vodaa = {v :deg(v) =1 (mod 2)}

Then |Voqq| =0 (mod 2).
Recall that for any graph G = (V, E):

Z deg(v)+ Z deg(v) = Z deg(v) =2|E| =0 (mod 2).

VE Veven veVoad veV

Z deg(v) =0 (mod 2).

vEVodd

Sum of odds =0 (mod 2). Must have even numb of them. So
‘Vodd| =0 (mod 2)
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What was it about R(3,4) that made that trick work?
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A Generalization of this Trick

What was it about R(3,4) that made that trick work?
We originally had

R(3,4) < R(2,4) + R(3,3) <4+6 < 10
Key: R(2,4) and R(3,3) were both even!
Theorem R(a, b) <
1. R(a,b—1)+ R(a—1,b) always.

2. R(a,b—1)+ R(a—1,b)—1if
R(a,b—1)=R(a—1,b) =0 (mod 2)



Some

vVvVvvyVvYvyyypy

>

Better Upper Bounds

R(3,3) < R(2,3)+ R(3,2) <3+3=
R(3,4) < R(2,4)+R(3,3)<4+6—-1=
R(3,5) < R(2,5)+ R(3,4) <5+9=14
R(3,6) < R(2,6)+ R(3,5) <6+14—-1=19
R(3,7) < R(2,7) + R(3,6) <7+19 =26
R(4,4) < R(3,4) + R(4,3) <9+9=18
R(4,5) < R(3,5)+ R(4,4) <14+18—-1=31
R(5,5) < R(4,5) + R(5,4) = 62.

Are these tight?



R(3,3) > 6

R(3,3) > 6: Need coloring of Ks w/o mono K3.
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R(3,3) > 6

R(3,3) > 6: Need coloring of Ks w/o mono K3.
Vertices are {0,1,2,3,4}.
COL(a,b) = RED if a— b= SQ (mod 5), BLUE OW.

Note —1 = 22 (mod 5). Hence a— b € SQ iff b—a € SQ. So the
coloring is well defined.



R(3,3) > 6

COL(a,b) = RED if a— b= SQ (mod 5), BLUE OW.
» Squares mod 5: 1,4.

» If there is a RED triangle then a— b, b— ¢, c — a all SQ's.
SUM is 0. So

x>+ y?>+2°=0 (mod 5) Can show impossible

» |f there is a BLUE triangle then a— b, b — ¢, ¢ — a all
non-SQ’s. Product of nonsq's is a sq. So
2(a—b), 2(b—c), 2(c — a) all squares. SUM to zero- same
proof.

UPSHOT R(3,3) = 6 and the coloring used math of interest!
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R(4,4) > 18: Need coloring of Ki7 w/o mono Kj.
Vertices are {0,...,16}.

Use
COL(a,b) = RED if a— b= 5Q (mod 17), BLUE OW.

Same idea as above for Kg, but more cases.
UPSHOT R(4,4) = 18 and the coloring used math of interest!
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R(3,5) = 14

R(3,5) > 14: Need coloring of Ki3 w/o RED K3 or BLUE Ks.
Vertices are {0,...,13}.

Use
COL(a,b) = RED if a— b= CUBE (mod 14), BLUE OW.

Same idea as above for Kg, but more cases.

UPSHOT R(3,5) = 14 and the coloring used math of interest!
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R(3,4) =9

This is a subgraph of the R(3,5) graph

UPSHOT R(3,4) =9 and the coloring used math of interest!
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Can we extend these Patterns?

Good news R(4,5) = 25.

Bad news

THATS IT.

No other R(a, b) are known using NICE methods.
R(5,5)— | will give you a paper to read on that soon.



Revisit those Numbers

Int means Interesting Math. Bor means Boring Math.
R(3,3) <6. TIGHT. Int
3,4) < 9. TIGHT. Int

>

vVvVvVvyVvVvVvyYyy
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3,5) < 14,
R(3,6) < 19.
3,7) < 26.
R(4,4) < 18.
R(4,5) < 31.
5) < 62.

TIGHT. Int

KNOWN: 18. Upper Bd Bor, Lower Bd Int
KNOWN: 23. Upper Bd Bor, Lower Bd Int
TIGHT. Int

KNOWN: 25. Both bd Bor

KNOWN: Will see it in the paper | give out.



Moral of the Story

1. At first there seemed to be interesting mathematics with
mods and primes leading to nice graphs.



Moral of the Story

1. At first there seemed to be interesting mathematics with
mods and primes leading to nice graphs.
(Joel Spencer) The Law of Small Numbers: Patterns that
persist for small numbers will vanish when the calculations
get to hard.



Moral of the Story

1. At first there seemed to be interesting mathematics with
mods and primes leading to nice graphs.
(Joel Spencer) The Law of Small Numbers: Patterns that
persist for small numbers will vanish when the calculations
get to hard.

2. Seemed like a nice Math problem that would involve
interesting and perhaps deep mathematics. No. The work on
it is interesting and clever, but (1) the math is not deep, and
(2) progress is slow.



When Will We Know R(5,5)

1. (Quote from Joel Spencer): Erdos asks us to imagine an alien
force, vastly more powerful than us, landing on Earth and
demanding the value of R(5,5) or they will destroy our planet.
In that case, he claims, we should marshal all our computers
and all our mathematicians and attempt to find the value.
But suppose, instead, that they ask for R(6,6). In that case,
he believes, we should attempt to destroy the aliens.



When Will We Know R(5,5)

1. (Quote from Joel Spencer): Erdos asks us to imagine an alien
force, vastly more powerful than us, landing on Earth and
demanding the value of R(5,5) or they will destroy our planet.
In that case, he claims, we should marshal all our computers
and all our mathematicians and attempt to find the value.
But suppose, instead, that they ask for R(6,6). In that case,
he believes, we should attempt to destroy the aliens.

2. | asked Stanislaw Radziszowski, the worlds leading authority
on Small Ramsey Numbers, what R(5,5) is and when we
would know it. He said its 43 and we will never know it.
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Upper Bounds on R(k)

Recall that
R(a,2) = a
R(2,b) = b

R(a,b) < R(a,b— 1)+ R(a—1,b)
We use these to get an upper bound on R(k) = R(k, k).
Discuss!
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Upper Bounds on R(k) (cont)

Thm For all a,b > 2, R(a, b) < 2215,
Proof by Induction on a+ b

Baseat+b=4s0oa=b=2 R(2,2)=2<222=2%
Ind Hyp (Va',b',a' + b/ < a+ b)[R(d, b)) < 27+¥]
Ind Step

R(a, b) < R(a, b—1)+R(a—1,b) < 22Ftb-1 pa-14b _ 9y patb=1 _ patb

End of Proof
Corollary R(k) = R(k, k) < 2k+k = 22k,
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Can We Do Better?

Vote
1. R(k) <22k /\/k.
2. R(k) <2k,
3. R(k) < 2K/?
4. R(k) < 2k/3
5. R(k) < k000,

Answer on next slide.
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What We Know

Known
1. R(k) < 2%k/\/k. TRUE. We will do this.
2. R(k) <2k, UNKNOWN TO SCIENCE.
3. R(k) < 2K/2. FALSE by just a little. We will show this.
4. R(k) < 2K/3. FALSE.
5. R(k) < k1000,



What We Know

22k /\/k. TRUE. We will do this.
2k, UNKNOWN TO SCIENCE.

2k/2 FALSE by just a little. We will show this.
2k/3 FALSE.

k1000 FALSE.

VAN VAN VAN VAN VAN
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Lemma Needed For Better Bounds on R(k)

n n—1 n—1
Thm (7) = (",7) + (i_0)-
Proof We could prove by algebra. We are too cool for that!

(1) is the number of ways of choosing k numbers out of {1,..., n}.
We split this problem into two problems.

n is not chosen. Then there are (", ') ways to do to.

n is chosen. Then there are (Zj) ways to do to.

So the number of ways to choose k numbers out of {1,...,n} is

(") 5
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Thm R(a, b) < (*1%,?). Proof by Induction on a + b Base
atb=4soa=b=2 R22,2)=2<(}) =2
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Better Bounds on R(k)

Thm R(a, b) < (*1%,?). Proof by Induction on a + b Base
atb=4soa=b=2 R22,2)=2<(}) =2

IH (va', 0,2 + b < a+ bR, b) < (V379)].
IS

R(a,b) < R(a,b—1)+ R(a—1,b) < <a‘;f;3>+(a—;fz3>

b—2
= (a—ia—_ 1 ) by the Lemma.

End of Proof
Cor R(k) = R(k, k) < (373) <22k /\/k.
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The proof is difficult and we won't be doing it.
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