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The Square Theorem

Definition Let G ∈ N and c ∈ N. Let COL : [G ]× [G ]→ [c].

1. A mono L is 3 points

(x , y), (x + d , y), (x , y + d)

that are all the same color (d ≥ 1). (This should be called an
mono isosceles right triangle but we just call it a mono L.)

2. A mono Square is 4 points

(x , y), (x + d , y), (x , y + d), (x + d , y + d)

that are all the same color (d ≥ 1). This is a square.



The Square Theorem

Theorem There exists G such that for all COL : [G ]× [G ]→ [2]
there exists a mono square.

1. The proof of The Square Theorem gives enormous bounds
on G ; however, the answer is known to be 15.

2. We will first prove For all c there exists GG = GG (c) such
that for all COL : [GG ]× [GG ]→ [c] there exists a mono L.

3. To prove The Square Theorem (about 2-coloring) we need
to know that GG (c) exists for a very large c .

4. More Colors: For all c there exists G = G (c) such that for all
COL : [G ]× [G ]→ [c] there exists a mono square. Proof
needs a larger c ′ for GG (c ′).
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The L Theorem for c = 2

Theorem For all c there exists GG = GG (c) such that for all
COL : [GG ]× [GG ]→ [c] there exists a mono L.

Proof We prove this for c = 2. We will set H later. Let
COL : [H]× [H]→ [c].

Take the [H]× [H] grid and tile it with 3× 3 tiles.
View a 2-coloring of [H]× [H] as a 29-coloring of the tiles.

This is very typical of VDW-Ramsey Theory: a 2-coloring of
BLAH is viewed as a X -coloring of a different object where
X is quite large.
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Why This Size Tile?

Any 2-coloring of the 3× 3 tile will have two of the same color in
the first column and hence an almost L

Goto White Board.
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Make H Big Enough To Get Two Tiles Same Color

Take H = 3(29 + 1).

View [H]× [H] grid of points as [29 + 1]× [29 + 1] grid of tiles.

Look at the first column of tiles. Two are the same color.

Go to White Board.
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The L Theorem for c = 3

First take 4× 4-tiles.

Any 3-coloring of the 4× 4 tile will have two of the same color in
the first column and hence an almost L

Goto White Board.
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Take Much Bigger Tiles

Take Tile so big that any 3-coloring of it has two different colored
almost-L’s converging to the same point.

Go to White Board.
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Full L Theorem

Theorem For all c there exists GG = GG (c) such that for all
COL : [GG ]× [GG ]→ [c] there exists a mono L.

I We won’t prove this but I am sure any of you could prove it
given what we have done so far. Would be messy.

I Easier to prove it from the Hales-Jewitt Theorem, which we
won’t be doing.
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The Square Theorem

Theorem There exists G such that for all COL : [G ]× [G ]→ [2]
there exists a mono square.

Proof G will be GG (2)GG (2GG(2)2).

Tile the [G ]× [G ] plane with GG (2)× GG (2) Tiles.

View the 2-coloring of [G ]× [G ] as a 2GG(2)2-coloring of the tiles.

For any 2-coloring of [G ]× [G ]:

I Every tile has a mono L

I There is a mono L of tiles.

Go to Whiteboard for rest of proof.
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