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Credit Where Credit is Due

This is all from the paper
Should Tables be Sorted?
by Andrew Yao.

This was the first paper to apply Ramsey Theory to a problem in
Theoretical Computer Science



The Cell Probe Model

Definition The Cell Probe Model for search is as follows:
1. The size of the universe is U. The universe is {1,..., U}.

2. The number of elements from the universe that we will store
is n.

3. The function PUT takes A € ([g]) and outputs the elements
of A in some order. This tells us how to store A in an array.

4. An algorithm FIND that, on input x € U, probes the array (by
asking ‘What is in cell ¢'), and based on the answer probes

another cell, etc, and then says either x is in A, or x is not in
A.



Examples One: Sort

» The function PUT takes A € ([g]) and puts them in an
n-array SORTED.

» The algorithm FIND does Binary Search.

Number of Probes [(] log(n + 1)).
Can we do better?



Examples One: Sort

» The function PUT takes A € ([g]) and puts them in an
n-array SORTED.

» The algorithm FIND does Binary Search.

Number of Probes [(] log(n + 1)).
Can we do better?

This depends on how n and U compare.



0 Probes But Its Stupid

Silly Example: U = n.
> The function PUT takes A € (I") and puts A into an n-array.
Note that everything in U is in the table.
» Just say YES, since EVERY element is in the table.
Number of Probes 0.

Caveat The Model only asked us to determine if x is IN the table,
not to find WHERE in the table x is.



1 Probes But Its Stupid

Silly Example: U = n+ 1.
» The function PUT takes A € (["H]), notes that z is the

ONLY element of U — A, and puts z — 1 (mod U) into the
first spot of the array.

> Given x, look at the first spot of the array and you see w. If
x =w+1 (mod U) then say NO, else say YES.

Number of Probes 1.



1 Probes and More Interesting

U=2n-2.
| have notes on this on the website.
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What makes these examples work?

You probaby think the above examples are silly.

More rigorously If J isn't that much bigger than n, then there are
tricks that lead to a very small number of probes.

| know what you are thinking What if n < U? Then do you
need log n probes? How much bigger than n does U have to be?
Perhaps a Ramsey Number?



Main Result

We saw that if U is small then we can do FIND with << log n
probes.



Main Result

We saw that if U is small then we can do FIND with << log n
probes.
The main result is that if U is big then it REQUIRES log n probes.
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Lemma on Sorting

Lemma If U > 2n —1 and the elements are always put in in sorted
order than ANY probe algorithm requires > log(n + 1) probes.

We omit the proof. Its in the paper. It is an adversary argument.
We can rephrase the lemma as follows:

Lemma Let o be the permutation (1,2,3,...,n). If U>2n—-1
and the elements are always put in in the array using the perm o
then ANY probe algorithm requires > log(n + 1) probes.



Lemma on Any Permutation

Let 0 = (3,4,5,1,2).

Then we can think of putting elements into an array using this o.
A[1] would have the 3rd largest elements

A[2] would have the 4th largest elements

A[3] would have the 5th largest elements

A[4] would have the 1st largest elements

A[5] would have the 2nd largest elements

Lemma Let o be any permutation of {1,...,n}. If U>2n—-1
and the elements are always put in in the array using the perm o
then ANY probe algorithm requires > log(n + 1) probes.

We omit the proof. Its in the paper. It is an adversary argument.
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Main Theorem

Theorem Let U > R,(2n—1,n!)
(n-ary Ramsey, 2n — 1 homog set, n! color).
Then any Cell Probe Search Algorithm requires log,(n + 1) probes.

Proof Color (I as follows: Color X € (IY}) by o such that X
was put into the array via o.

By the n-ary Ramsey Theorem and the definition of U there exists
2n — 1 element that are always put into the array using the SAME
perm, which we call o.

By Lemma above, if you restrict the cell probe algorithm to there
2n — 1 elements then ANY probe-algorithm requires log,(n + 1)
probes.



