There is no 3-coloring of 15×15

Assume there is a 3-coloring of 15×15 .

Assume there is a 3-coloring of 15×15 .

Let R be the color that appears the most times.

Assume there is a 3-coloring of 15×15 .

Let **R** be the color that appears the most times. **R** appears $\geq \frac{225}{3} = 75$ times.

Assume there is a 3-coloring of 15×15 .

Let **R** be the color that appears the most times.

R appears $\geq \frac{225}{3} = 75$ times.

Let X be the set of grid-points that are \mathbb{R} .

Assume there is a 3-coloring of 15×15 .

Let **R** be the color that appears the most times.

R appears $\geq \frac{225}{3} = 75$ times.

Let X be the set of grid-points that are \mathbb{R} .

$$|X| \ge 75.$$

For $1 \le i \le 15$ let x_i be the number of elements of X in the ith column.

For $1 \le i \le 15$ let x_i be the number of elements of X in the ith column.

The number of pairs of $\{j, k\}$ such that some column has a pair of elements of X: one in the j-spot, one in the k-spot is

For $1 \le i \le 15$ let x_i be the number of elements of X in the ith column.

The number of pairs of $\{j, k\}$ such that some column has a pair of elements of X: one in the j-spot, one in the k-spot is

$$\sum_{i=1}^{15} \binom{x_i}{2}.$$

For $1 \le i \le 15$ let x_i be the number of elements of X in the ith column.

The number of pairs of $\{j, k\}$ such that some column has a pair of elements of X: one in the j-spot, one in the k-spot is

$$\sum_{i=1}^{15} \binom{x_i}{2}.$$

Plan The number of pairs of $\{1, \ldots, 15\}$ is $\binom{15}{2} = 105$.

For $1 \le i \le 15$ let x_i be the number of elements of X in the ith column.

The number of pairs of $\{j, k\}$ such that some column has a pair of elements of X: one in the j-spot, one in the k-spot is

$$\sum_{i=1}^{15} \binom{x_i}{2}.$$

Plan The number of pairs of $\{1, \ldots, 15\}$ is $\binom{15}{2} = 105$. We will find a lower bound L on $\sum_{i=1}^{15} \binom{x_i}{2}$.

For $1 \le i \le 15$ let x_i be the number of elements of X in the ith column.

The number of pairs of $\{j, k\}$ such that some column has a pair of elements of X: one in the j-spot, one in the k-spot is

$$\sum_{i=1}^{15} \binom{x_i}{2}.$$

Plan The number of pairs of $\{1, \ldots, 15\}$ is $\binom{15}{2} = 105$. We will find a lower bound L on $\sum_{i=1}^{15} \binom{x_i}{2}$.

We will show L > 105, hence some four elements of X form a rectangle.

Inequality

Want to show that $\sum_{i=1}^{15} {x_i \choose 2} \ge 106$.

Inequality

Want to show that $\sum_{i=1}^{15} {x_i \choose 2} \ge 106$.

Want to find MIN of

$$\sum_{i=1}^{15} {x_i \choose 2}$$
 The x_i 's are natural numbers

Inequality

Want to show that $\sum_{i=1}^{15} {x_i \choose 2} \ge 106$.

Want to find MIN of

$$\sum_{i=1}^{15} {x_i \choose 2}$$
 The x_i 's are natural numbers

relative to the constraint

$$\sum_{i=1}^{15} x_i = 75.$$

Let M_N be the min of

$$\sum_{i=1}^{15} {x_i \choose 2}$$
 The x_i 's are natural numbers

Let M_N be the min of

$$\sum_{i=1}^{15} {x_i \choose 2}$$
 The x_i 's are natural numbers

relative to the constraint $\sum_{i=1}^{15} x_i = 75$.

Let M_N be the min of

$$\sum_{i=1}^{15} {x_i \choose 2}$$
 The x_i 's are natural numbers

relative to the constraint $\sum_{i=1}^{15} x_i = 75$.

Let M_R be the min of

$$\sum_{i=1}^{15} {x_i \choose 2}$$
 The x_i 's are reals

Let M_N be the min of

$$\sum_{i=1}^{15} {x_i \choose 2}$$
 The x_i 's are natural numbers

relative to the constraint $\sum_{i=1}^{15} x_i = 75$.

Let M_R be the min of

$$\sum_{i=1}^{15} {x_i \choose 2}$$
 The x_i 's are reals

relative to the constraint $\sum_{i=1}^{15} x_i = 75$.

Let M_N be the min of

$$\sum_{i=1}^{15} {x_i \choose 2}$$
 The x_i 's are natural numbers

relative to the constraint $\sum_{i=1}^{15} x_i = 75$.

Let M_R be the min of

$$\sum_{i=1}^{15} {x_i \choose 2}$$
 The x_i 's are reals

relative to the constraint $\sum_{i=1}^{15} x_i = 75$.

Clearly $M_{\mathsf{R}} \leq M_{\mathsf{N}}$.

Let M_N be the min of

$$\sum_{i=1}^{15} {x_i \choose 2}$$
 The x_i 's are natural numbers

relative to the constraint $\sum_{i=1}^{15} x_i = 75$.

Let M_R be the min of

$$\sum_{i=1}^{15} {x_i \choose 2}$$
 The x_i 's are reals

relative to the constraint $\sum_{i=1}^{15} x_i = 75$.

Clearly $M_{\mathsf{R}} \leq M_{\mathsf{N}}$.

Hence, to show $M_{\rm N} \geq 106$, it suffices to show $M_{\rm R} \geq 106$.

Well Known Theorem

The Min of

$$\sum_{i=1}^{15} \frac{x_i(x_i-1)}{2}$$
 The x_i 's are reals

relative to the constraint

$$\sum_{i=1}^{15} x_i = 75$$

occurs when all of the x_i s are equal.

Well Known Theorem

The Min of

$$\sum_{i=1}^{15} \frac{x_i(x_i-1)}{2}$$
 The x_i 's are reals

relative to the constraint

$$\sum_{i=1}^{15} x_i = 75$$

occurs when all of the x_i s are equal.

We take
$$x_i = 75/15 = 5$$
.

Well Known Theorem

The Min of

$$\sum_{i=1}^{15} \frac{x_i(x_i-1)}{2}$$
 The x_i 's are reals

relative to the constraint

$$\sum_{i=1}^{15} x_i = 75$$

occurs when all of the x_i s are equal.

We take $x_i = 75/15 = 5$.

$$\sum_{i=1}^{15} \frac{x_i(x_i-1)}{2} \ge \sum_{i=1}^{15} \frac{5\times 4}{2} = 15\times 10 = 150 > 106.$$

The number of vertical pairs is $\binom{15}{2} = 105$

The number of vertical pairs is $\binom{15}{2} = 105$

The number of vertical pairs of points in X is

The number of vertical pairs is $\binom{15}{2} = 105$

The number of vertical pairs of points in X is

$$\geq \sum_{i=1}^{15} \frac{x_i(x_i-1)}{2} \geq \sum_{i=1}^{15} \frac{5\times 4}{2} = 15\times 10 = 150 > 106.$$

The number of vertical pairs is $\binom{15}{2} = 105$

The number of vertical pairs of points in X is

$$\geq \sum_{i=1}^{15} \frac{x_i(x_i-1)}{2} \geq \sum_{i=1}^{15} \frac{5\times 4}{2} = 15\times 10 = 150 > 106.$$

Hence some vertical pair of points occurs twice, so X has a rectangle.

The number of vertical pairs is $\binom{15}{2}=105$

The number of vertical pairs of points in X is

$$\geq \sum_{i=1}^{15} \frac{x_i(x_i-1)}{2} \geq \sum_{i=1}^{15} \frac{5\times 4}{2} = 15\times 10 = 150 > 106.$$

Hence some vertical pair of points occurs twice, so X has a rectangle.

That will be a R rectangle. Contradiction.

The number of vertical pairs is $\binom{15}{2}=105$

The number of vertical pairs of points in X is

$$\geq \sum_{i=1}^{15} \frac{x_i(x_i-1)}{2} \geq \sum_{i=1}^{15} \frac{5\times 4}{2} = 15\times 10 = 150 > 106.$$

Hence some vertical pair of points occurs twice, so X has a rectangle.

That will be a R rectangle. Contradiction.

Speculation

150 is much larger than 106. Hence 15 is way to big. Lets try 11.

There is no 3-coloring of 11×11

Assume there is a 3-coloring of $11\times11.$

Assume there is a 3-coloring of 11×11 .

Let **R** be the color that appears the most times.

Assume there is a 3-coloring of 11×11 .

Let **R** be the color that appears the most times. **R** appears $\geq \left\lceil \frac{11 \times 11}{3} \right\rceil = 41$ times.

Assume there is a 3-coloring of 11×11 .

Let **R** be the color that appears the most times.

R appears $\geq \left\lceil \frac{11 \times 11}{3} \right\rceil = 41$ times.

Let X be the set of grid-points that are \mathbb{R} .

Assume there is a 3-coloring of 11×11 .

Let **R** be the color that appears the most times.

R appears $\geq \left\lceil \frac{11 \times 11}{3} \right\rceil = 41$ times.

Let X be the set of grid-points that are \mathbb{R} .

$$|X| \ge 41.$$

Assume there is a 3-coloring of 11×11 .

Let R be the color that appears the most times.

R appears $\geq \left\lceil \frac{11 \times 11}{3} \right\rceil = 41$ times.

Let X be the set of grid-points that are \mathbb{R} .

$$|X| \ge 41.$$

For $1 \le i \le 11$

let x_i be the number of elements of X in the ith column.

Assume there is a 3-coloring of 11×11 .

Let R be the color that appears the most times.

R appears $\geq \left\lceil \frac{11 \times 11}{3} \right\rceil = 41$ times.

Let X be the set of grid-points that are \mathbb{R} .

$$|X| \ge 41$$
.

For $1 \le i \le 11$

let x_i be the number of elements of X in the ith column.

Need

$$\sum_{i=1}^{11} \binom{x_i}{2} \ge \binom{11}{2} = 55.$$

The Min of

$$\sum_{i=1}^{11} \frac{x_i(x_i-1)}{2}$$
 The x_i 's are reals

The Min of

$$\sum_{i=1}^{11} \frac{x_i(x_i-1)}{2}$$
 The x_i 's are reals

We take
$$x_i = \frac{41}{11}$$
.

The Min of

$$\sum_{i=1}^{11} \frac{x_i(x_i-1)}{2}$$
 The x_i 's are reals

We take
$$x_i = \frac{41}{11}$$
. Note $\frac{1}{2} \times \frac{41}{11} (\frac{41}{11} - 1) = \frac{615}{121}$.

The Min of

$$\sum_{i=1}^{11} \frac{x_i(x_i-1)}{2}$$
 The x_i 's are reals

We take
$$x_i = \frac{41}{11}$$
. Note $\frac{1}{2} \times \frac{41}{11} (\frac{41}{11} - 1) = \frac{615}{121}$.

$$\sum_{i=1}^{11} \frac{x_i(x_i-1)}{2} \ge 11 \frac{615}{121} = 55.9090... > 55$$

The Min of

$$\sum_{i=1}^{11} \frac{x_i(x_i-1)}{2}$$
 The x_i 's are reals

relative to the constraint $\sum_{i=1}^{11} x_i = 41$ occurs when all of the x_i 's are equal.

We take
$$x_i = \frac{41}{11}$$
. Note $\frac{1}{2} \times \frac{41}{11} (\frac{41}{11} - 1) = \frac{615}{121}$.

$$\sum_{i=1}^{11} \frac{x_i(x_i-1)}{2} \ge 11 \frac{615}{121} = 55.9090 \dots > 55$$

DONE.

The Min of

$$\sum_{i=1}^{11} \frac{x_i(x_i-1)}{2}$$
 The x_i 's are reals

relative to the constraint $\sum_{i=1}^{11} x_i = 41$ occurs when all of the x_i 's are equal.

We take
$$x_i = \frac{41}{11}$$
. Note $\frac{1}{2} \times \frac{41}{11} (\frac{41}{11} - 1) = \frac{615}{121}$.

$$\sum_{i=1}^{11} \frac{x_i(x_i-1)}{2} \ge 11 \frac{615}{121} = 55.9090 \dots > 55$$

DONE.

Speculation 55.90... is just a bit bigger than 55. This technique will not work to show 10×10 is not 3-colorable.

The Min of

$$\sum_{i=1}^{11} \frac{x_i(x_i-1)}{2}$$
 The x_i 's are reals

relative to the constraint $\sum_{i=1}^{11} x_i = 41$ occurs when all of the x_i 's are equal.

We take
$$x_i = \frac{41}{11}$$
. Note $\frac{1}{2} \times \frac{41}{11} (\frac{41}{11} - 1) = \frac{615}{121}$.

$$\sum_{i=1}^{11} \frac{x_i(x_i-1)}{2} \ge 11 \frac{615}{121} = 55.9090 \dots > 55$$

DONE.

Speculation 55.90... is just a bit bigger than 55. This technique will not work to show 10×10 is not 3-colorable. **In Fact** It is know that 10×10 is 3-colorable.

