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Goodstein Sequences

Exposition by William Gasarch-U of MD



Goodstein Sequences

Writing a number as a sum of powers of 2.

1000 = 29 + 28 + 27 + 26 + 25 + 23

But we can also write the exponents as sums of powers of 2

1000 = 22
3+20 + 22

3
+ 22

2+21+20 + 22
2+21 + 22

2+20 + 22
1+20

We can even write the exponents that are not already powers of 2
as sums of powers of 2.

1000 = 22
22

0
+20+20 +22

21+20

+22
2+22

0
+20 +22

2+22
0

+22
2+20 +22

20+20

This is called Hereditary Base n Notation
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Ackermann’s Function and Goodstein Seq

1000 = 22
22

0
+20+20 +22

21+20

+22
2+22

0
+20 +22

2+22
0

+22
2+20 +22

20+20

Replace all of the 2’s with 3’s:

33
33

0
+30+30 + 33

31+30

+ 33
3+33

0
+30 + 33

3+33
0

+ 33
3+30 + 33

30+30

This number just went WAY up. Now subtract 1.

33
33

0
+30+30 + 33

31+30

+ 33
3+33

0
+30 + 33

3+33
0

+ 33
3+30 + 33

30+30 − 1

Repeat the process:
Replace 3 by 4, and subtract 1, Replace 4 by 5, and subtract 1, · · · .
Vote Does the sequence:
I Goto infinity (and if so how fast- perhaps Ack-like?)
I Eventually stabilizes (e.g., goes to 18 and then stops there)
I Cycles- goes UP then DOWN then UP then DOWN . . ..
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The Sequence. . .

goes to 0.

The number of steps for n to goto 0 is much bigger than A(n, n).

Really? Really!
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An Example of a Similar Sequence

We will not deal with the actual Goodstein Sequence defined
above.

Boo!

We will instead deal with a weaker version that

1. Contains most of the ideas. Yeah!

2. Will go to 0 before the heat death of the Universe. Yeah!
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Weak Goodstein: Unit Position

Take a number in base 10.

(986)10 = 9× 102 + 8× 101 + 6× 100.

Increase the base and subtract 1. Assume BWOC that the seq
goes on forever.

9×112+8×111+6×110−1 = 9×112+8×111+5×110 = (985)11.

Repeat this to get: (984)12, (983)13, (982)14, (981)15, (980)16.

(980)16 = 9× 162 + 8× 161

Note that the right most digit is 0. That will happen ∞ often.
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Weak Goodstein: Second Position

(980)16 = 9× 162 + 8× 161

Increase the base and subtract 1 to get

9× 172 + 8× 171− 1 = 9× 172 + 7× 171 + 16× 170 = (97(16))17

The second digit decreased!

Recap and go forward:

(986)10 → (980)16 → (97(16))17 → (970)33

→ (96(33))34 → (960)67 → (95(67))68

(95(47))88 → · · · → (900)y
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Weak Goodstein: Second Position

(900)y = 9× y2

Increase base and subtract 1 to get

9× (y + 1)2− 1 = 8× (y + 1)2 + x(y + 1)1 + y(y + 1)0 = (8yy)y+1

(8yy)x+1 → · · · → (zzy)z+1

Now its a 2-digit number and use induction.
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Why Does the Sequence Always Go To 0?

1. If original number is 1-digit long then it will clearly go to 0.

2. If the original number is L digits long then

2.1 The left most digit is 0 ∞ often.
2.2 Within that the second digit is 0 ∞ often.
2.3 · · · within that the lead digit is eventually 0. Then the

problem is an L− 1 digit long seq. Use Induction.
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Natural Mathematical Objects
The term Natural Theorem is not well defined.

Even so, here are some uses of it:

1) The Simplex Method is a really fast algorithm for Linear
Programming. There are some unnatural instances for which is
runs in exponential time. Why unnatural? Because these
instances were constructed for the sole purpose of being hard
for the simplex method. They would never occur in real life.

2) Intermediate Sets. Assume P 6= NP. Is there a set X
between P and NP? That is, (a) X /∈ P, (b)X ∈ NP, (c) X is not
NP-complete?
Ladner showed YES, but the X was construted for the sole purpose
of a,b,c.
Graph Isomophism and Factoring are natural examples of problems
that might be intermediary.

3) Natural Mathemtical Statement We’ll take this to be a
statement of intereting math content. We will soon disuss an
unnatural math statement.
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Weak Goodstein and Strong Goodstein

1. From what I’ve presented you can prove rigorously that the
weak Goodstein seq always goes to 0.

2. The proof for strong Goodstein is similar but requires some
other ideas.

Goodstein’s Thm The strong Goodstein seq always goes to 0.

Do you find his theorem to be natural? This is not a VOTE since
it’s a matter of opinion and natural is not well defined.

Next Slide will indicate why am asking this.
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Peano Arithmetic and Godel’s Inc. Thm
Peano Arithmetic (PA) is a standard system of axioms. Almost
all theorems from Number Theory and combinatorics can be
proven in PA.

Godel’s Inc Thm ∃ statements that are TRUE but cannot be
proven in PA.

The statements Godel obtained were not natural. They were
designed for the whole purpose of being unprovable in PA.

The question arose: Are there Natural statements that are not
provable in PA?

There are a few such statements.

1. Every strong Goodstein Sequence goes to 0.

2. Finitary versions of Kruskal’s Tree Theorem.

3. Harvey Friedman has done much research on this. Here is one
of his theorems:
https:

//cpb-us-w2.wpmucdn.com/u.osu.edu/dist/1/1952/

files/2014/01/FIiniteSeqInc062214a-v9w7q4.pdf
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Is Ra(k) Prim Rec?

R3(k) is bounded by TOW which is PR: 6 recursions.
R4(k) is bounded by WOW which is PR: 7 recursions.
Ra(k) is bounded by NO NAME which is PR: a + 3 recursions.
Function f (a, k) = Ra(k) is bounded by A(a, k) Not PR.
Thats just a bound. What is the reality? Vote
1) f (a, k) = Ra(k) grows at rate around A(a, k).
2) f (a, k) is Prim Rec.
Answer on Next Slide.
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