BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Infinite Ramsey Theorem For 3-Hypergraph

Exposition by William Gasarch

February 5, 2025

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

(ロト (個) (E) (E) (E) (E) のへの

1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.

2.
$$[n] = \{1, \ldots, n\}.$$

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Let COL: $\binom{A}{a} \rightarrow [2]$. A set $H \subseteq A$ is homogenous if COL restricted to $\binom{H}{a}$ is constant. (From now on homog.)

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Let COL: $\binom{A}{a} \rightarrow [2]$. A set $H \subseteq A$ is homogenous if COL restricted to $\binom{H}{a}$ is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of *A*. Each *a*-subset has either written a paper together or has not.

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Let COL: $\binom{A}{a} \rightarrow [2]$. A set $H \subseteq A$ is homogenous if COL restricted to $\binom{H}{a}$ is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of *A*. Each *a*-subset has either written a paper together or has not. $H \subseteq A$ is a **homog** if either

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Let COL: $\binom{A}{a} \rightarrow [2]$. A set $H \subseteq A$ is homogenous if COL restricted to $\binom{H}{a}$ is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of *A*. Each *a*-subset has either written a paper together or has not. $H \subseteq A$ is a **homog** if either (a) every $\{x_1, \ldots, x_a\} \in {H \choose a}$ has written a paper together, or

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, \ldots, n\}.$
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all *a*-sized subsets of *A*.

Let COL: $\binom{A}{a} \rightarrow [2]$. A set $H \subseteq A$ is homogenous if COL restricted to $\binom{H}{a}$ is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of *A*. Each *a*-subset has either written a paper together or has not. $H \subseteq A$ is a **homog** if either (a) every $\{x_1, \ldots, x_a\} \in {H \choose a}$ has written a paper together, or (b) every $\{x_1, \ldots, x_a\} \in {H \choose a}$ has NOT written a paper together.

Thm For all $a \ge 1$, for all COL: $\binom{\mathbb{N}}{a} \to [2]$ there exists an infinite homog set.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Thm For all $a \ge 1$, for all COL: $\binom{\mathbb{N}}{a} \to [2]$ there exists an infinite homog set.

a = 1: \forall 2-colorings of \mathbb{N} some color appears ∞ . The set of $x \in \mathbb{N}$ of that color is an infinite homog set.

Thm For all $a \ge 1$, for all COL: $\binom{\mathbb{N}}{a} \to [2]$ there exists an infinite homog set.

a = 1: \forall 2-colorings of \mathbb{N} some color appears ∞ . The set of $x \in \mathbb{N}$ of that color is an infinite homog set.

ション ふぼう メリン メリン しょうくしゃ

a = 2: ∞ Ramsey Thm for Graphs. Our proof used a = 1 case.

Thm For all $a \ge 1$, for all COL: $\binom{\mathbb{N}}{a} \to [2]$ there exists an infinite homog set.

a = 1: \forall 2-colorings of \mathbb{N} some color appears ∞ . The set of $x \in \mathbb{N}$ of that color is an infinite homog set.

a = 2: ∞ Ramsey Thm for Graphs. Our proof used a = 1 case.

a = 3: These Slides!. We will use a = 1 and a = 2 cases.

Thm For all $a \ge 1$, for all COL: $\binom{\mathbb{N}}{a} \to [2]$ there exists an infinite homog set.

a = 1: \forall 2-colorings of \mathbb{N} some color appears ∞ . The set of $x \in \mathbb{N}$ of that color is an infinite homog set.

a = 2: ∞ Ramsey Thm for Graphs. Our proof used a = 1 case.

a = 3: These Slides!. We will use a = 1 and a = 2 cases.

We do an example of the first few steps of the construction.

Since every 3-subset has a color, harder to draw pictures so I won't :-(.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Since every 3-subset has a color, harder to draw pictures so I won't :-(.

Look at all triples that have 1 in them.

Since every 3-subset has a color, harder to draw pictures so I won't :-(.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Look at all triples that have 1 in them. $COL(1, 2, 3) = \mathbf{R}$.

Since every 3-subset has a color, harder to draw pictures so I won't :-(.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Look at all triples that have 1 in them. COL(1, 2, 2)

 $COL(1, 2, 3) = \mathbf{R}.$ $COL(1, 2, 4) = \mathbf{B}.$

Since every 3-subset has a color, harder to draw pictures so I won't :-(.

Look at all triples that have 1 in them.

 $COL(1, 2, 3) = \mathbf{R}.$ $COL(1, 2, 4) = \mathbf{B}.$ $COL(1, 2, 5) = \mathbf{B}.$

Since every 3-subset has a color, harder to draw pictures so I won't :-(.

Look at all triples that have 1 in them.

```
COL(1, 2, 3) = R.

COL(1, 2, 4) = B.

COL(1, 2, 5) = B.

COL(1, 3, 4) = R.
```

Since every 3-subset has a color, harder to draw pictures so I won't :-(.

ション ふぼう メリン メリン しょうくしゃ

Look at all triples that have 1 in them.

COL(1, 2, 3) = R. COL(1, 2, 4) = B. COL(1, 2, 5) = B.COL(1, 3, 4) = R.

What to make of this?

Since every 3-subset has a color, harder to draw pictures so I won't :-(.

ション ふぼう メリン メリン しょうくしゃ

Look at all triples that have 1 in them.

COL(1, 2, 3) = R. COL(1, 2, 4) = B. COL(1, 2, 5) = B.COL(1, 3, 4) = R.

What to make of this? Discuss.

We are given $\operatorname{COL}: \binom{\mathbb{N}}{3} \to [2].$

We are given COL: $\binom{\mathbb{N}}{3} \rightarrow [2]$.

Let

$$\operatorname{COL}' \colon \binom{\mathbb{N} - \{1\}}{2}
ightarrow [2]$$
 be defined by

*ロト *昼 * * ミ * ミ * ミ * のへぐ

We are given COL: $\binom{\mathbb{N}}{3} \rightarrow [2]$.

Let

$$\operatorname{COL}' \colon {\mathbb{N}-\{1\} \choose 2} o [2]$$
 be defined by

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\operatorname{COL}'(y, z) = \operatorname{COL}(1, y, z).$

We are given COL: $\binom{\mathbb{N}}{3} \rightarrow [2]$.

Let

$$\operatorname{COL}' \colon \binom{\mathbb{N} - \{1\}}{2}
ightarrow [2]$$
 be defined by

 $\operatorname{COL}'(y, z) = \operatorname{COL}(1, y, z).$

Apply the a = 2 case to get a homog (relative to COL') set H_1 .

We are given COL: $\binom{\mathbb{N}}{3} \rightarrow [2]$.

Let

$$\operatorname{COL}' \colon \binom{\mathbb{N} - \{1\}}{2}
ightarrow [2]$$
 be defined by

 $\operatorname{COL}'(y, z) = \operatorname{COL}(1, y, z).$

Apply the a = 2 case to get a homog (relative to COL') set H_1 . We'll say the color is c_1

We are given COL: $\binom{\mathbb{N}}{3} \rightarrow [2]$.

Let

$$\operatorname{COL}' \colon \binom{\mathbb{N} - \{1\}}{2}
ightarrow [2]$$
 be defined by

 $\operatorname{COL}'(y, z) = \operatorname{COL}(1, y, z).$

Apply the a = 2 case to get a homog (relative to COL') set H_1 . We'll say the color is c_1

For all $y, z \in H_1$, $COL(1, y, z) = c_1$.

We are given COL: $\binom{\mathbb{N}}{3} \rightarrow [2]$.

Let

$$\operatorname{COL}' \colon \binom{\mathbb{N} - \{1\}}{2}
ightarrow [2]$$
 be defined by

 $\operatorname{COL}'(y, z) = \operatorname{COL}(1, y, z).$

Apply the a = 2 case to get a homog (relative to COL') set H_1 . We'll say the color is c_1 For all $y, z \in H_1$, COL $(1, y, z) = c_1$.

If $y \in H_1$ we say that y agrees.

We are given COL: $\binom{\mathbb{N}}{3} \rightarrow [2]$.

Let

$$\operatorname{COL}' \colon \binom{\mathbb{N} - \{1\}}{2}
ightarrow [2]$$
 be defined by

 $\operatorname{COL}'(y, z) = \operatorname{COL}(1, y, z).$

Apply the a = 2 case to get a homog (relative to COL') set H_1 . We'll say the color is c_1 For all $y, z \in H_1$, $COL(1, y, z) = c_1$. If $y \in H_1$ we say that y agrees.

If $y \notin H_1$ we say that y **disagrees**.

We are given COL: $\binom{\mathbb{N}}{3} \rightarrow [2]$.

Let

$$\operatorname{COL}' \colon \binom{\mathbb{N} - \{1\}}{2}
ightarrow [2]$$
 be defined by

 $\operatorname{COL}'(y, z) = \operatorname{COL}(1, y, z).$

Apply the a = 2 case to get a homog (relative to COL') set H_1 . We'll say the color is c_1

For all $y, z \in H_1$, $COL(1, y, z) = c_1$.

If $y \in H_1$ we say that y agrees. If $y \notin H_1$ we say that y disagrees.

Kill all those who disagree!

Construction of x_1 , H_1 , c_1 , x_2 , H_2 , c_2

We now have

Construction of x_1 , H_1 , c_1 , x_2 , H_2 , c_2

We now have $x_1 = 1$.

We now have $x_1 = 1$.

 H_1 : for all $y, z \in H_1$, $COL(x_1, y, z) = c_1$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

We now have $x_1 = 1$.

 H_1 : for all $y, z \in H_1$, $COL(x_1, y, z) = c_1$. c_1 .

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

We now have $x_1 = 1$.

```
H_1: for all y, z \in H_1, COL(x_1, y, z) = c_1.
c_1.
```

 x_2 is the least element of H_1 .

We now have $x_1 = 1$.

$$H_1$$
: for all $y, z \in H_1$, $\operatorname{COL}(x_1, y, z) = c_1$.
 c_1 .

 $\begin{array}{l} x_2 \text{ is the least element of } H_1. \\ \mathrm{COL}' \colon \binom{H_1 - \{x_1, x_2\}}{2} \to [2] \text{ is defined by} \\ \mathrm{COL}'(y, z) = \mathrm{COL}'(x_2, y, z) \end{array}$

We now have $x_1 = 1$.

$$H_1$$
: for all $y, z \in H_1$, $\operatorname{COL}(x_1, y, z) = c_1$.
 c_1 .

$$x_2$$
 is the least element of H_1 .
 $\operatorname{COL}': \binom{H_1 - \{x_1, x_2\}}{2} \to [2]$ is defined by
 $\operatorname{COL}'(y, z) = \operatorname{COL}'(x_2, y, z)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

 H_2 is the homog set.

We now have $x_1 = 1$.

$$H_1$$
: for all $y, z \in H_1$, $\operatorname{COL}(x_1, y, z) = c_1$.
 c_1 .

$$x_2$$
 is the least element of H_1 .
 $\operatorname{COL}': \begin{pmatrix} H_1 - \{x_1, x_2\} \\ 2 \end{pmatrix} \rightarrow [2]$ is defined by
 $\operatorname{COL}'(y, z) = \operatorname{COL}'(x_2, y, z)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

 H_2 is the homog set.

 c_2 is the color of the homog set.

We now have $x_1 = 1$.

$$H_1$$
: for all $y, z \in H_1$, $\operatorname{COL}(x_1, y, z) = c_1$.
 c_1 .

$$x_2$$
 is the least element of H_1 .
 $\operatorname{COL}': \begin{pmatrix} H_1 - \{x_1, x_2\} \\ 2 \end{pmatrix} \rightarrow [2]$ is defined by
 $\operatorname{COL}'(y, z) = \operatorname{COL}'(x_2, y, z)$

 H_2 is the homog set.

 c_2 is the color of the homog set.

Next Slide is General Case.

Assume we have x_s , H_s , c_s .

Assume we have x_s , H_s , c_s . x_{s+1} is the least element of H_s .

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assume we have x_s , H_s , c_s . x_{s+1} is the least element of H_s . $\operatorname{COL}': \binom{H_s - \{x_1, \dots, x_{s+1}\}}{2} \to [2]$ is defined by

ション ふぼう メリン メリン しょうくしゃ

Assume we have x_s , H_s , c_s . x_{s+1} is the least element of H_s . $\operatorname{COL}': \begin{pmatrix} H_s - \{x_1, \dots, x_{s+1}\} \\ 2 \end{pmatrix} \rightarrow [2]$ is defined by $\operatorname{COL}'(y, z) = \operatorname{COL}'(x_{s+1}, y, z)$

ション ふぼう メリン メリン しょうくしゃ

Assume we have x_s , H_s , c_s .

 $\begin{array}{l} x_{s+1} \text{ is the least element of } H_s. \\ \mathrm{COL}' \colon {H_s - \{x_1, \dots, x_{s+1}\} \\ 2} \to [2] \text{ is defined by} \\ \mathrm{COL}'(y, z) = \mathrm{COL}'(x_{s+1}, y, z) \end{array}$

 H_{s+1} is the infinite homog set from COL'.

ション ふぼう メリン メリン しょうくしゃ

Assume we have x_s , H_s , c_s .

 $\begin{array}{l} x_{s+1} \text{ is the least element of } H_s. \\ \mathrm{COL}' \colon {H_s - \{x_1, \ldots, x_{s+1}\} \choose 2} \to [2] \text{ is defined by} \\ \mathrm{COL}'(y, z) = \mathrm{COL}'(x_{s+1}, y, z) \\ H_{s+1} \text{ is the infinite homog set from COL'}. \end{array}$

ション ふぼう メリン メリン しょうくしゃ

 c_{s+1} is the color of H_{s+1} .

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

▲□▶▲□▶▲□▶▲□▶ = ● ● ●

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

What do you think our next step is?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣�?

Some color appears infinitely often, say R.

$$H = \{y \in X : \operatorname{COL}(y) = \mathsf{R}\}$$

Some color appears infinitely often, say R.

Some color appears infinitely often, say R.

Some color appears infinitely often, say R.

$$H = \{y \in X : \operatorname{COL}(y) = \mathbb{R}\}$$

For all $i < j < k$, $\operatorname{COL}(x_i, x_j, x_k) = \mathbb{R}$. (More generally c .)
 H is clearly a homog set!

Some color appears infinitely often, say R.

$$H = \{y \in X : \operatorname{COL}(y) = \mathbb{R}\}$$

For all $i < j < k$, $\operatorname{COL}(x_i, x_j, x_k) = \mathbb{R}$. (More generally c.)
 H is clearly a homog set!
DONE!

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 = の々ぐ

Thm For all $a \ge 1$, for all COL: $\binom{\mathbb{N}}{a} \to [2]$ there exists an infinite homog set.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Thm For all $a \ge 1$, for all COL: $\binom{\mathbb{N}}{a} \to [2]$ there exists an infinite homog set.

a = 1: \forall 2-colorings of \mathbb{N} some color appears ∞ . The set of $x \in \mathbb{N}$ of that color is an infinite homog set.

Thm For all $a \ge 1$, for all COL: $\binom{\mathbb{N}}{a} \to [2]$ there exists an infinite homog set.

a = 1: \forall 2-colorings of \mathbb{N} some color appears ∞ . The set of $x \in \mathbb{N}$ of that color is an infinite homog set.

a = 2: ∞ Ramsey Thm for Graphs. Our proof used a = 1 case.

Thm For all $a \ge 1$, for all COL: $\binom{\mathbb{N}}{a} \to [2]$ there exists an infinite homog set.

a = 1: \forall 2-colorings of \mathbb{N} some color appears ∞ . The set of $x \in \mathbb{N}$ of that color is an infinite homog set.

a = 2: ∞ Ramsey Thm for Graphs. Our proof used a = 1 case.

a = 3: These Slides!. We will use a = 1 and a = 2 cases.

Thm For all $a \ge 1$, for all COL: $\binom{\mathbb{N}}{a} \to [2]$ there exists an infinite homog set.

a = 1: \forall 2-colorings of \mathbb{N} some color appears ∞ . The set of $x \in \mathbb{N}$ of that color is an infinite homog set.

a = 2: ∞ Ramsey Thm for Graphs. Our proof used a = 1 case.

a = 3: These Slides!. We will use a = 1 and a = 2 cases.

 $a \ge 4$: Might be a HW. Should be easy for you now.

<ロト < 個 ト < 目 ト < 目 ト 目 の < @</p>

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey.

(ロト (個) (E) (E) (E) (E) のへの

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey. That proof did not give any bounds on $R_2(k)$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey. That proof did not give any bounds on $R_2(k)$. Then a direct proof of finite 2-ary Ramsey, sim to infinite.

・ロト・日本・モト・モト・モー うへぐ
We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey. That proof did not give any bounds on $R_2(k)$. Then a direct proof of finite 2-ary Ramsey, sim to infinite.

You can prove finite *a*-ary Ramsey from infinite *a*-ary Ramsey.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey. That proof did not give any bounds on $R_2(k)$. Then a direct proof of finite 2-ary Ramsey, sim to infinite.

You can prove finite *a*-ary Ramsey from infinite *a*-ary Ramsey. That proof did not give any bounds on $R_a(k)$.

ション ふゆ アメビア メロア しょうくしゃ

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey. That proof did not give any bounds on $R_2(k)$. Then a direct proof of finite 2-ary Ramsey, sim to infinite.

You can prove finite *a*-ary Ramsey from infinite *a*-ary Ramsey. That proof did not give any bounds on $R_a(k)$.

Next lecture we will give a direct proof of 3-ary Ramsey which gives bounds on $R_3(k)$.

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey. That proof did not give any bounds on $R_2(k)$. Then a direct proof of finite 2-ary Ramsey, sim to infinite.

You can prove finite *a*-ary Ramsey from infinite *a*-ary Ramsey. That proof did not give any bounds on $R_a(k)$.

Next lecture we will give a direct proof of 3-ary Ramsey which gives bounds on $R_3(k)$.

That proof easily extends to $R_a(k)$.