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Notation

Let a, n ∈ N. Let A be a set. A can be finite or infinite.

1. N is the naturals which are {1, 2, 3, . . .}.
2. [n] = {1, . . . , n}.
3. 2A is the powerset of A.

4.
(A
a

)
is the set of all a-sized subsets of A.

Let COL :
(A
a

)
→ [2]. A set H ⊆ A is homogenous if COL

restricted to
(H
a

)
is constant. (From now on homog.)

Party Definition There is a party. All the guests are members of
A. Each a-subset has either written a paper together or has not.
H ⊆ A is a homog if either
(a) every {x1, . . . , xa} ∈

(H
a

)
has written a paper together, or

(b) every {x1, . . . , xa} ∈
(H
a

)
has NOT written a paper together.
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The Infinite Hypergraph Ramsey Theorem

Thm For all a ≥ 1, for all COL :
(N
a

)
→ [2] there exists an infinite

homog set.

a = 1: ∀ 2-colorings of N some color appears ∞. The set of x ∈ N
of that color is an infinite homog set.

a = 2: ∞ Ramsey Thm for Graphs. Our proof used a = 1 case.

a = 3: These Slides!. We will use a = 1 and a = 2 cases.

We do an example of the first few steps of the construction.
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First Step of Our Construction

Since every 3-subset has a color, harder to draw pictures so I won’t
:-(.

Look at all triples that have 1 in them.
COL(1, 2, 3) = R.
COL(1, 2, 4) = B.
COL(1, 2, 5) = B.
COL(1, 3, 4) = R.

What to make of this? Discuss.
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Construct a Coloring of
(N

2

)
We are given COL :

(N
3

)
→ [2].

Let

COL′ :

(
N− {1}

2

)
→ [2] be defined by

COL′(y , z) = COL(1, y , z).

Apply the a = 2 case to get a homog (relative to COL′) set H1.

We’ll say the color is c1

For all y , z ∈ H1, COL(1, y , z) = c1.

If y ∈ H1 we say that y agrees.
If y /∈ H1 we say that y disagrees.

Kill all those who disagree!
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Construction of x1,H1, c1, x2,H2, c2

We now have

x1 = 1.

H1: for all y , z ∈ H1, COL(x1, y , z) = c1.

c1.

x2 is the least element of H1.

COL′ :
(H1−{x1,x2}

2

)
→ [2] is defined by

COL′(y , z) = COL′(x2, y , z)

H2 is the homog set.

c2 is the color of the homog set.

Next Slide is General Case.
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Construction of xs+1,Hs+1, cs+1

Assume we have xs , Hs , cs .

xs+1 is the least element of Hs .

COL′ :
(Hs−{x1,...,xs+1}

2

)
→ [2] is defined by

COL′(y , z) = COL′(xs+1, y , z)

Hs+1 is the infinite homog set from COL′.

cs+1 is the color of Hs+1.
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cs+1 is the color of Hs+1.



The Coloring of the Nodes

x1 x2 x3 x4 x5 · · ·

(∀1 < i < j)[COL(x1, xi , xj) = R (more generally c1).
(∀2 < i < j)[COL(x2, xi , xj) = B (more generally c2).
(∀3 < i < j)[COL(x3, xi , xj) = B (more generally c3).
...

...
...

...

What do you think our next step is?
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Some Color Appears Infinitely Often

x1 x2 x3 x4 x5 · · ·

Some color appears infinitely often, say R.

H = {y ∈ X : COL(y) = R}

y1 y2 y3 y4 y5 · · ·

For all i < j < k , COL(xi , xj , xk) = R. (More generally c.)

H is clearly a homog set!
DONE!
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The Infinite a-Ary Ramsey Theorem

Thm For all a ≥ 1, for all COL :
(N
a

)
→ [2] there exists an infinite

homog set.

a = 1: ∀ 2-colorings of N some color appears ∞. The set of x ∈ N
of that color is an infinite homog set.

a = 2: ∞ Ramsey Thm for Graphs. Our proof used a = 1 case.

a = 3: These Slides!. We will use a = 1 and a = 2 cases.

a ≥ 4: Might be a HW. Should be easy for you now.
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Infinite to Finite

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey.
That proof did not give any bounds on R2(k).
Then a direct proof of finite 2-ary Ramsey, sim to infinite.

You can prove finite a-ary Ramsey from infinite a-ary Ramsey.
That proof did not give any bounds on Ra(k).

Next lecture we will give a direct proof of 3-ary Ramsey which
gives bounds on R3(k).

That proof easily extends to Ra(k).



Infinite to Finite

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey.

That proof did not give any bounds on R2(k).
Then a direct proof of finite 2-ary Ramsey, sim to infinite.

You can prove finite a-ary Ramsey from infinite a-ary Ramsey.
That proof did not give any bounds on Ra(k).

Next lecture we will give a direct proof of 3-ary Ramsey which
gives bounds on R3(k).

That proof easily extends to Ra(k).



Infinite to Finite

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey.
That proof did not give any bounds on R2(k).

Then a direct proof of finite 2-ary Ramsey, sim to infinite.

You can prove finite a-ary Ramsey from infinite a-ary Ramsey.
That proof did not give any bounds on Ra(k).

Next lecture we will give a direct proof of 3-ary Ramsey which
gives bounds on R3(k).

That proof easily extends to Ra(k).



Infinite to Finite

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey.
That proof did not give any bounds on R2(k).
Then a direct proof of finite 2-ary Ramsey, sim to infinite.

You can prove finite a-ary Ramsey from infinite a-ary Ramsey.
That proof did not give any bounds on Ra(k).

Next lecture we will give a direct proof of 3-ary Ramsey which
gives bounds on R3(k).

That proof easily extends to Ra(k).



Infinite to Finite

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey.
That proof did not give any bounds on R2(k).
Then a direct proof of finite 2-ary Ramsey, sim to infinite.

You can prove finite a-ary Ramsey from infinite a-ary Ramsey.

That proof did not give any bounds on Ra(k).

Next lecture we will give a direct proof of 3-ary Ramsey which
gives bounds on R3(k).

That proof easily extends to Ra(k).



Infinite to Finite

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey.
That proof did not give any bounds on R2(k).
Then a direct proof of finite 2-ary Ramsey, sim to infinite.

You can prove finite a-ary Ramsey from infinite a-ary Ramsey.
That proof did not give any bounds on Ra(k).

Next lecture we will give a direct proof of 3-ary Ramsey which
gives bounds on R3(k).

That proof easily extends to Ra(k).



Infinite to Finite

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey.
That proof did not give any bounds on R2(k).
Then a direct proof of finite 2-ary Ramsey, sim to infinite.

You can prove finite a-ary Ramsey from infinite a-ary Ramsey.
That proof did not give any bounds on Ra(k).

Next lecture we will give a direct proof of 3-ary Ramsey which
gives bounds on R3(k).

That proof easily extends to Ra(k).



Infinite to Finite

We proved finite 2-ary Ramsey FROM infinite 2-ary Ramsey.
That proof did not give any bounds on R2(k).
Then a direct proof of finite 2-ary Ramsey, sim to infinite.

You can prove finite a-ary Ramsey from infinite a-ary Ramsey.
That proof did not give any bounds on Ra(k).

Next lecture we will give a direct proof of 3-ary Ramsey which
gives bounds on R3(k).

That proof easily extends to Ra(k).


