
Rn → (`2, `2dn), Rn 6→ (`2, `d′n)
Exposition by William Gasarch, Chaewoon Kyoung, Kelin Zhu

1 Introduction

In this paper we present the following theorems:

1. (Szlam [5]) There exists d such that Rn → (`2, `2dn). (He proved a more general theorem. See
his paper for details.)

2. (Conlon & Fox [1]) There exists a constant d′ such that Rn 6→ (`2, `2d′n). We will just prove
the n = 2 case in this paper. (They proved a more general theorem. See their paper for
details.)

2 There exists d Such That Rn → (`2, `2dn)

Notation 2.1 Let Gn = (V,E) be the graph with V = Rn and E = {(x, y) : d(x, y) = 1}. Let c(n)
be the chromatic number of Gn.

It is well known that 5 ≤ c(2) ≤ 7.
The following are known:

Theorem 2.2

1. (Larman and Rogers [3]) c(n) ≤ (3 + o(1))n

2. (Raigorodskii [4]) c(n) ≤ (1.239 . . .+ o(1))n

3. (Frankl and Wilson [2]) c(n) ≥ (1 + o(1))(1.2)n.

We give the proof by Frankl and Wilson and then use the result to obtain Rn → (`2, `2dn).

2.1 First Set System Lemma of Frankl and Wilson

Theorem 2.3 Let k, n, s ∈ N. Let p be a prime. Let µ0, . . . , µs be distinct element of {0, . . . , p−1}.
Assume k ≡ µ0 (mod p). Let F1, . . . , FL ∈

([n]
k

)
be such that:

∀1 ≤ i < j ≤ s)(∃µ ∈ {µ1, . . . , µs})|Fi ∩ Fj | ≡ µ (mod p)].

Then L ≤
(
n
s

)
.

Proof: Let us choose 0 ≤ ai < p for 0 ≤ i ≤ s0 [I THINK s0 SHOULD BE S, BUT PLEASE
CHECK] in such a way that for every integer x we have

s∏
i=1

(x− µi) ≡
s∑
i=0

ai

(
x

i

)
(mod p).

BILL TO BILL- KELIN REC LHS-1 and RHS-0. CHECK THIS. Page 36 of paper.
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2.2 Second Set System Lemma of Frankl and Wilson

We will state and prove a Theorem similar to Theorem 2.3 later. Neither theorm implies the other.
Before that we will state and prove a weaker version which is called the Oddtown Theorem.

Theorem 2.4 Let k, n ∈ N such that k ≤ n and k is odd. Let F1, . . . , FL ∈
([n]
k

)
be such that:

(∀1 ≤ i < j ≤ s)[|Fi ∩ Fj | ≡ 0 (mod 2)].

Then L ≤ n.

Proof: For 1 ≤ i ≤ L let fi be the bit vector for Fi. Note that fi is a vector of n bits, k of
which are 1’s. Let

fi = (fi1, . . . , fin).

Note that fij = 1 iff j ∈ Fi.
We view the fi’s as n-dimensional vectors over F2 = {0, 1} so the arithmetic is mod 2.
We show that the fi’s are linearly independent, hence there are at most n of them, so L ≤ n.

Claim The fi’s are linearly independent (mod 2).
Proof:

fi · fj = fi1fj1 + fi2fj2 + · · · finfjn
= |Fi ∩ Fj |.

Since |Fi ∩ Fj | is even, and |Fi| is odd, we have

fi · fj (mod 2) =

{
0 if i 6= j;

1 if i = j.
(1)

Let λ1, . . . , λL be such that

λ1f1 + · · ·+ λLfL = 0.

Let 1 ≤ i ≤ L. Dot both sides by fi to get λi = 0
Hence, for every 1 ≤ i ≤ L, λi = 0.

End of Proof of Claim

Note 2.5 Theorem 2.4 still holds if we have |Fi| odd rather than |Fi| = k. We state it in the
weaker form since then it is a case of Theorem 2.6

Theorem 2.6 Let k, n ∈ N. Let q be a prime power.

1. Let F1, . . . , FL ∈
([n]
k

)
be such that:

(∀1 ≤ i < j ≤ s)[|Fi ∩ Fj | 6≡ k (mod q)].

Then L ≤
(
n
q−1
)
.
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2. If F1, . . . , F( [n]
q−1)+1

∈
([n]
k

)
then there exists 1 ≤ i < j ≤

(
n
q−1
)

+ 1 with |Fi ∩ Fj | ≡ k (mod q).

(This is the contrapositive of Part 1.)

3. If F1, . . . , F( [n]
q−1)+1

∈
(

[n]
2q−1

)
then there exists 1 ≤ i < j ≤

(
[n]
q−1
)

+ 1 with |Fi ∩ Fj | = q − 1.

(This is Part 2 with k = 2q−1 coupled with the observation that if |Fi∩Fj | ≡ 2q−1 (mod q)
then |Fi ∩ Fj | = q − 1 since otherwise Fi = Fj.)

Proof:
BILL TO BILL - FILL I LATER.

2.3 The Chromatic Number of Rn

Theorem 2.7

1. For all n,

c(n) >

⌈
max

q prime power

(
n

2q−1
)(

n
q−1
)

+ 1

⌉
See the on the next page for value of c(n) , and see Figure 1 for a graph of n vs c(n). The
curve fitting yields c(n) = 2.54× 20.266n.

2. There exists d such that, for all n, c(n) ≥ 2dn.

Proof:
1) Let S ⊆ Rn be all of the vectors such that

• n− 2q − 1 of the components are 0.

• 2q − 1 of the components are 1√
2q

.

Let F : S →
(

[n]
2q−1

)
by viewing each vector in S as a bit vector though with 1√

2q
instead of 1.

Claim Let u, v ∈ S. If |F (u)∩F (v)| = f then d(u, v) = 2− f+1
q . Hence d(u, v) = 1 iff |F (u)∩F (v)| =

q − 1.
Proof of Claim: Assume |F (u) ∩ F (v)| = f then:

• There are f coordinates where u and v both have 1√
2q

.

• There are 2q − 1− f coordinates where u has 1
2q and v has 0.

• There are 2q − 1− f coordinates where v has 1
2q and u has 0.

• There are n− 4q + f + 2 coordinates where u and v are both 0.
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Hence d(u, v) = 2× (2q − 1− f)× 1
2q = 2q−1−f

q = 2− f+1
q .

End of Proof of Claim
Restrict COL to S. Since |S| =

(
n

2q−1
)

and there are c colors, some color must occur ≥(
n

2q−1
)
/c =

(
n
q−1
)

+ 1 times. Let S′ be the subset of S that has that color. Since S′ ⊆
(

[n]
2q−1

)
and

|S′| ≥
(
n
q−1
)

+ 1, by Theorem 2.6.3, there exists two elements of S with intersection of size q − 1.
Let those two elements be F (u) and F (v). Since |F (u) ∩ F (v)| = q − 1, by the Claim, d(u, v) = 1.

2) We obtain an approximation to the optimal value of c.

n dc(n)e q∗ (prime power)

2 0 2
3 1 2
4 1 2
5 2 2
6 3 2
7 5 2
8 7 2
9 9 2

10 11 2
11 14 2
12 17 2
13 21 2
14 25 2
15 29 2
16 37 3
17 46 3
18 56 3
19 68 3
20 82 3
21 97 3
22 114 3
23 139 4
24 171 4
25 209 4
26 253 4
27 304 4
28 362 4
29 428 4
30 523 5
31 641 5
32 780 5
33 943 5
34 1131 5
35 1349 5
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n dc(n)e q∗ (prime power)

36 1599 5
37 1884 5
38 2209 5
39 2577 5
40 3135 7
41 3919 7
42 4865 7
43 6000 7
44 7355 7
45 8964 7
46 10865 7
47 13102 7
48 15722 7
49 18779 7
50 22535 8
51 27542 8
52 33497 8
53 40549 8
54 48867 8
55 58641 8
56 70083 8
57 84511 9
58 103062 9
59 125147 9
60 151340 9
61 182296 9
62 218756 9
63 261555 9
64 311640 9
65 370073 9
66 438045 9
67 523110 11
68 645540 11
69 793477 11
70 971604 11
71 1185357 11
72 1441022 11
73 1745853 11
74 2108200 11
75 2537648 11
76 3045178 11
77 3643338 11
78 4346438 11
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n dc(n)e q∗ (prime power)

79 5170762 11
80 6134803 11
81 7432409 13
82 9127519 13
83 11173342 13
84 13635265 13
85 16589572 13
86 20125055 13
87 24344824 13
88 29368359 13
89 35333807 13
90 42400569 13
91 50752196 13
92 60599636 13
93 72184861 13
94 85784907 13
95 101716390 13
96 120340518 13
97 142068666 13
98 172041626 16
99 212522008 16

100 261802474 16
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Figure 1: Graph of n vs c(n)
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2.4 There exists d Such That Rn → (`2, `2dn))

Theorem 2.8 (Szlam [5]) There exists d such that Rn → (`2, `2dn).

Proof: By Theorem 2.7 there exists d such that c(n) > 2dn. Thats the d that we use. Let
m = 2dn.

We will need the following notation: ~1 is the vector (1, 0, . . . , 0) in Rn.
Let COL: Rn → [2].

Case 1 There is a BLUE `m. Done
Case 2 There is no BLUE `m. We form a coloring COL: Rn → [m] as follows:

Given point p ∈ Rn look at

p+~1, p+ 2~1, . . . , p+m~1.

Since there is no BLUE `m, there exists i such that COL(p+ i~1) is RED. Color p with the least
such i.

By Theorem 2.7 there exists points u, v ∈ Rn and 1 ≤ i ≤ m such that d(u, v) = 1 and u, v are
the same color. Hence u + i~1 and v + i~1 are both RED. Since d(u, v) = 1, d(u + i~1, v + i~1) = 1.
Hence u+ i~1 and v + i~1 form a RED `2.

2.5 While We’re Here, Constructive Ramsey Lower Bounds

KELIN- BEFORE ADDING THIS SECTION TO THE MONOGRAPH I WILL GIVE IT MORE
CONTEXT.

Frankl and Wilson also used Theorem 2.6 to obtain a constructive lower bound on the Ramsey
number R(k).

Theorem 2.9

1. Let n ∈ N. Let p be a prime (though we will also use that its a prime power). Let G = (V,E)
be defined as follows.

• V is {F ⊆ [n] : |F | = p2 − 1}. Note that |V | =
(

n
p2−1

)
.

• E is (F, F ′) such that |F ∩ F ′| 6≡ −1 (mod p).

Then G contains no
(
n
p−1
)
-clique or

(
n
p−1
)
-ind. set.

2. R(k) ≥ 2(1+o(1) log
2 k/4 log log k with a constructive proof. (Note that this use of k is different

than the use of k in Theorem 2.3, 2.6, and the first part of this theorem.)

Proof:
1a) Let F1, . . . , FL be a complete subgraph of G. By the definition of G,

• F1, . . . , FL ∈
( [n]
p2−1

)
.

• (∀1 ≤ i < j ≤ L)[|Fi ∩ Fj | 6≡ −1 (mod p).
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By Theorem 2.6, with q = p and k = p2 − 1, we obtain L ≤
(
n
p−1
)
.

1b) Let F1, . . . , FL be an independent set in G.
By the definition of G,

• F1, . . . , FL ∈
( [n]
p2−1

)
.

• (∀1 ≤ i < j ≤ L)[|Fi ∩ Fj | ≡ −1 ≡ p− 1 (mod p).

By Theorem 2.3, with k = p2 − 1, µ0 = p− 1, µ1 = p− 1, we obtain L ≤
(
n
2

)
.

KELIN: THE ABOVE LINE DOES NOT WORK SINCE µ0 = µ1. THE PAPER DOES NOT
USE THEOREM 1. THE PAPER INSTEAD REFERS TO EQUATION (2) WHICH IS FROM
A RESULT BY RAY-CHADHUIRI AND WILSON. BUT THEY LATER SAY, RIGHT AFTER
THEOREM 1 Clearly Theorem 1 generalizes (2). HENCE I THOUGHT I COULD AVOID USING
RAY-CHAD... .

TO BILL: theorem 2 implies (2) if you take p > k in theorem 2.
ALSO,

(
n
2

)
SEEMS WAY TO GOOD A BOUND TO GET- FAR MORE THAN WE NEED. I

SUSPECT MY TWO CONFUSIONS ARE RELATED AND WHEN YOU FIGURE OUT ONE,
YOU WILL FIGURE OUT THE OTHER.

TO BILL: I think you misused (2). (2) does not take mods. We apply (2) on the set {|Fi∩Fj | :
1 ≤ i < j ≤ L} which is a subset of {0, 1, . . . , q2 − 1}.

2) Setting n = p3 we obtain the result.
KELIN- WORK THIS OUT.
TO BILL: I couldn’t work this out. Also it’s not clear to me that exp is base 2 since the

exponent cannot be scaled by constant.

3 Lemmas Needed To Show there exists d, Rn 6→ (`2, `2dn)

We will be 2-coloring the m×m square and then use that to form a periodic coloring of R2. Hence
we think of coloring the m×m square with the two horizontal sides identified and the new vertical
sides identified. We denote this T 2

m. (The T is for torus.)
BILL- THE PAPER USES m×m. I WILL LATER SAY WHY I USE m×m.
KELIN: WE NEED A PICTURE FOR AN EXAMPLE. YOU CAN DO A COLOR PICTURE

OF A colored square. TO BILL: attached
We need several lemmas.

Definition 3.1 Let t ∈ R+. Let P ⊆ T 2
m.

1. P is t-separated if, for all p, q ∈ P , d(p, q) ≥ t.

2. P is maximally t-separated (1) if P is t-separated and (2) for all r /∈ P , P ∪ {r} is not
t-separated.

Lemma 3.2 Let t ∈ R+ and m ∈ N.
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1. There exists P ⊆ T 2
m that is maximally t-seperated.

2. If P ⊆ T 2
m is maximally t-seperated then |P | ≤ (m/t)2

π .

3. If P ⊆ T 2
m is maximally 1

3 -seperated then |P | ≤ (1.7m)2. This follows from Part 2.

Proof:
1) A greedy algorithm forms a maximally t-seperated set.
2) Let p ∈ P . Then there is no element of P inside the circle centered at p of radius t. This circle
has area πt2. The set T 2

m has area m2. Hence

|P | × πt2 ≤ m2, so |P | ≤ (m/t)2

π .

Lemma 3.3 Let t ∈ R+. Let S ⊆ R2 be t-seperated. Let ~p ∈ R2. Let s ≥ 0. The number of points
of S within s of ~p is at most (2s/t+ 1)2.

Proof: Let T be the set of points within t of ~p. For every ~q ∈ T we look at the circle centered
at ~q of radius t/2 (we can’t use radius t since then the circles would not be disjoint). These circles
have no other points of T in them and are disjoint. These circles have area π(t/2)2. The union of
these circles is contained in the circle around ~p of radius s+ t/2 which has area π(s+ t/2)2. Hence
|T | × πt2/4 ≤ π(s+ t/2)2

|T | × (t/2)2 ≤ (s+ t/2)2

|T | ≤ ( s+t/2t/2 )2 = (2s/t+ 1)2.

Definition 3.4 Assume S ⊆ R2 or S ⊆ Tm2 . If p ∈ S then Vp is the set of points of R2 or Tm2 that
are closer (or tied) to p then to any other point of S. The Voronoi Diagram of S is the set of all
the Vp’s.

BILL- DO EXAMPLES

1. A NORMAL EXAMPLE

2. AN EXAMPLE WHERE THE VORONOI CELL IS A POLYGON WITH LOTS OF SIDES.
I THINK IF THE SET OF POINTS IS A p AND m POINTS ON THE CIRCLE OF RADIUS
1 AROUND x THEN Vp would be a m-sided convex polygon.

Note 3.5 There exists S ⊆ Rn and an s ∈ S such that Vp is a convex |S|-gon. See BILL-WILL
NEED FIGURE NUMBER.

Lemma 3.6 Let S ⊆ R2 be a maximal t-separated set. We form the Voronoi diagram of S. The
Voronoi cells are {Vp}p∈S.

1. If x ∈ Vp then d(x, p) ≤ t.

2. If p, p′ ∈ Vp then d(p, p′) ≤ 2t. (This follows from Part 1.)

3. If p, p′ ∈ S and Vp, Vp; share a boundary then d(p, p′) ≤ 2t.
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4. Vp is convex polygon with ≤ 25 sides.

Proof:
1) Assume, by way of contradiction, that there is an x ∈ Vp and d(x, p) > t. Since x ∈ Vp, d(x, p)
is the smallest distance from x to a point of S. Hence x is greater than t away from any point in
S. Since S is maximal, x ∈ S which is a contradiction.
3) Draw a line from p to p′. It will hit a point x that is on both the boundary of Vp and the
boundary of Vp′ . By Part 1

d(p, p′) = d(p, x) + d(x, p′) ≤ t+ t = 2t.
4) Vp is a convex polygon. Map each side of Vp to the p′ such that Vp and Vp′ share that side. Using
Part 2 we get that the number of sides is bounded above by the number of points of p′ ∈ S such
that d(p, p′) ≤ 2t. By Lemma 3.3 the number of such points is ≤ ((2× 2t)/t+ 1)2 = 52 = 25.

BILL- I DO NOT THINK I NEED THE LEMMA BELOW FOR THE THEOREM. THEY
NEED TO USE A SET OF SIZE m/5 THAT HAS POINTS 5 APART. WE WILL JUST NEED
THAT `m DOES NOT HIT TWO ANALOGOUS VORONOI CELLS FROM DIFF TILES. THIS
WILL BE ACCOMPLISHED BY MAKING THE TILES m×m SINCE THE MAX DISTANCE
BETWEEN POINTS OF `m IS m− 1. THE PAPER DOES MORE COMPLICATED THINGS

Lemma 3.7 Let K be a 1-seperated set. Let s ≥ 1. There is a set K ′ ⊆ K that is s-separated such
that |K ′| ≥ |K|/(2s+ 1)2.

4 There exists d′, Rn 6→ (`2, `2d′n)

Theorem 4.1 There exists d′ such that R2 6→ (`2, `2d′n).

Proof: Let P be a maximal 1
3 -separated subset of Tm2 . We create the Voronoi diagram of P .

Let Q ⊆ P be formed by, for each p ∈ P , choose it with probability x (we will determine x
later).

Let S ⊆ Q be the set of points s ∈ Q such that, for all s′ ∈ Q, d(s, s′) > 5/3.
Recall that we have a Voronoi diagram formed by the points in P . Let the Voronoi cells that

have a point of S in them be denoted V1, . . . , V|S|.
We will color each Vi, including boundary, RED. We will color every other point in Tm2 BLUE.

We will then use this to periodically color R2. We view this as tiling the plane with m ×m tiles
and coloring all the tiles the same.

We will show that if you take a nine tiles arrange 3 × 3 then there is no RED `2 or BLUE `m
with a point in the middle tile. This will suffice.
No RED `2 This part does not use probability.

Let q, q′ both be RED.
Case 1: q, q′ are in the same Voronoi cell. By Lemma 3.6.2 d(q, q′) ≤ 1/3.
Case 2: q, q′ are in the same tile but in different Voronoi cells. Let the Voronoi cells have centers
p, p′. Then

d(p, p′) ≤ d(p, q) + d(q, q′) + d(q′, p′) ≤ 1

3
+ 1 +

1

3
=

5

3
.

But by definition of S, d(p, p′) > 5
3 .
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Case 3: q, q′ are in different tiles but in the analogous Voronoi cells. Let the Voronoi cells have
centers p, p′. Since d(p, p′) = m, d(q, q′) ≥ m− 1

3 > 1.
Case 4: q, q′ are in different tiles and non-analogous Voronoi cells. Since the Voronoi diagram was
on a Taurus this is identical to Case 2.

No BLUE `m
Let L = (q1, . . . , qm) be an `m. We bound the probability that L is BLUE.
Let {pi}m

′−1
i=0 be such that, for 0 ≤ i ≤ m′ − 1, qi ∈ Vpi . We need to bound the probability that

Vpi is BLUE. Not so fast! We need to show that all of the Vpi are distinct.
Let q, q′ ∈ {q0, . . . , qm′−1}. Let {p, p′} be such that q ∈ Vp and q′ ∈ Vp′ .

Case 1 q, q′ are in the same tile and in the same Voronoi cell. This cannot happen since d(q, q′) ≥ 1
and by Lemma 3.6.2 the diameter of these cells is 2/3.
Case 2 q, q′ are in the different tiles but in analogous Voronoi cells. Two points in analogous cells
are at least m− 2

3 apart. Since d(q, q′) ≤ m− 1, q, q′ cannot be in different tiles but in analogous
Voronoi cells.

The probability that L is BLUE is the prob that Vp1 , Vp2 , . . ., Vpm are all BLUE.
Let p ∈ P . We determine a lower bound on the probability that Vp is RED. Recall that Vp is

RED iff p ∈ S.
BILL TO BILL- I NEED TO FINISH THIS. IT REQUIRES THAT LEMMA ABOUT SIGN

PATTERNS.

References

[1] D. Conlon and J. Fox. Line in Euclidean Ramsey theory. Discrete and Computational Geometry,
5:218–225, 2017.

[2] P. Frankl and R. Wilson. Intersection theorems with geometric consequences. Combinatorica,
1:357–368, 1981.

[3] Larman and Rogers. The realization of distances within sets of Euclidean space. Mathemaka,
19:1–24, 1972.

[4] Raigorodskii. On the chromatic number of space. Russian Math Surveys, 55(2):351–352, 2000.

[5] A. Szlam. Monochromatic translates of configurations in the plane. Journal of Combinatorial
Theory-Series A, 2001.

12


