There Is a 2-Coloring Of \mathbb{R}^n Without a mono Red 2-Stick or a mono Blue Big-Stick

Exposition by William Gasarch-U of MD

Credit Where Credit is Due

The main result in these slides is due to

Credit Where Credit is Due

The main result in these slides is due to

Szlam (2001), and

Credit Where Credit is Due

The main result in these slides is due to

Szlam (2001), and

Conlon and Fox (2017).

Recall the Notation $\mathbb{R}^2 \to (\ell_a, \ell_b)$

Notation Let $a, b \geq 2$. $\mathbb{R}^2 \to (\ell_a, \ell_b)$ means

Recall the Notation $\mathbb{R}^2 \to (\ell_a, \ell_b)$

Notation Let $a, b \geq 2$. $\mathbb{R}^2 \to (\ell_a, \ell_b)$ means For all COL: $\mathbb{R}^2 \to [2]$ there exists **Red** ℓ_a or **Blue** ℓ_b .

Recall the Notation $\mathbb{R}^2 \to (\ell_a, \ell_b)$

Notation Let $a,b \geq 2$. $\mathbb{R}^2 \to (\ell_a,\ell_b)$ means For all COL: $\mathbb{R}^2 \to [2]$ there exists $\mathbf{Red}\ \ell_a$ or $\mathbf{Blue}\ \ell_b$. What about $\mathbb{R}^2 \to (\ell_2,\ell_b)$ with $b \geq 3$.

Recall the Notation $\mathbb{R}^2 o (\ell_a, \ell_b)$

Notation Let $a,b \geq 2$. $\mathbb{R}^2 \to (\ell_a,\ell_b)$ means For all COL: $\mathbb{R}^2 \to [2]$ there exists **Red** ℓ_a or **Blue** ℓ_b . What about $\mathbb{R}^2 \to (\ell_2,\ell_b)$ with $b \geq 3$. We show the following (mod some lemmas):

Recall the Notation $\mathbb{R}^2 o (\ell_a, \ell_b)$

Notation Let $a,b\geq 2$. $\mathbb{R}^2\to (\ell_a,\ell_b)$ means For all COL: $\mathbb{R}^2\to [2]$ there exists $\operatorname{Red}\ \ell_a$ or $\operatorname{Blue}\ \ell_b$. What about $\mathbb{R}^2\to (\ell_2,\ell_b)$ with $b\geq 3$. We show the following (mod some lemmas): There exist d, for all n, $\mathbb{R}^n\to (\ell_2,\ell_{2^{dn}})$) (Szlam 2001).

Recall the Notation $\mathbb{R}^2 o (\ell_a, \ell_b)$

Notation Let $a,b\geq 2$. $\mathbb{R}^2\to (\ell_a,\ell_b)$ means For all COL: $\mathbb{R}^2\to [2]$ there exists $\operatorname{Red}\ \ell_a$ or $\operatorname{Blue}\ \ell_b$. What about $\mathbb{R}^2\to (\ell_2,\ell_b)$ with $b\geq 3$. We show the following (mod some lemmas): There exist d, for all n, $\mathbb{R}^n\to (\ell_2,\ell_{2^{dn}})$) (Szlam 2001). There exists d, for all n, $\mathbb{R}^2\to (\ell_2,\ell_{2^{dn}})$ (Conlon-Fox, 2017).

Main Result I

Over the next few (many?) slides we will show

Main Result I

Over the next few (many?) slides we will show There exist d, for all n, $\mathbb{R}^n \to (\ell_2, \ell_{2^{dn}})$ (Szlam 2001).

Chromatic Number of \mathbb{R}^n

Definition c(n) is the least number c such that there exists

$$\mathrm{COL} \colon \mathbb{R}^n \to [c]$$

with no mono unit stick.

Chromatic Number of \mathbb{R}^n

Definition c(n) is the least number c such that there exists

$$\mathrm{COL} \colon \mathbb{R}^n \to [c]$$

with no mono unit stick.

We will need a lower bound on c(n).

Lemma

Lemma

Let $n, k \in \mathbb{N}$. Let q be a prime power.

Lemma

Let
$$n,k\in\mathbb{N}$$
. Let q be a prime power. Let $F_1,\ldots,F_{\binom{n}{q-1}+1}\in\binom{[n]}{2q-1}$.

Lemma

Let $n, k \in \mathbb{N}$. Let q be a prime power.

Let
$$F_1, \ldots, F_{\binom{n}{q-1}+1} \in \binom{[n]}{2q-1}$$
.

Then there exists $1 \le i < j \le {n \choose q-1} + 1$ with

$$|F_i \cap F_j| = q - 1.$$

Lemma

Let $n, k \in \mathbb{N}$. Let q be a prime power.

Let
$$F_1, \ldots, F_{\binom{n}{q-1}+1} \in \binom{[n]}{2q-1}$$
.

Then there exists $1 \le i < j \le \binom{[n]}{q-1} + 1$ with

$$|F_i \cap F_j| = q - 1.$$

The sets F_i are called a **set system**.

Lemma

Let $n, k \in \mathbb{N}$. Let q be a prime power.

Let
$$F_1, \ldots, F_{\binom{n}{q-1}+1} \in \binom{[n]}{2q-1}$$
.

Then there exists $1 \le i < j \le {n \choose q-1} + 1$ with

$$|F_i \cap F_j| = q - 1.$$

The sets F_i are called a **set system**.

We will not prove this Lemma.

Lemma

Let $n, k \in \mathbb{N}$. Let q be a prime power.

Let
$$F_1, \ldots, F_{\binom{n}{q-1}+1} \in \binom{[n]}{2q-1}$$
.

Then there exists $1 \le i < j \le {n \choose q-1} + 1$ with

$$|F_i \cap F_j| = q - 1.$$

The sets F_i are called a **set system**.

We will not prove this Lemma.

Theorem For all *n*,

$$c(n) > C = \left[\max_{q \text{ prime power } \frac{\binom{n}{2q-1}}{\binom{n}{q-1}+1} \right]$$

Theorem For all *n*,

$$c(n) > C = \left[\max_{q \text{ prime power } \frac{\binom{n}{2q-1}}{\binom{n}{q-1}+1}\right]$$

Let COL: $\mathbb{R}^n \to [C]$.

Theorem For all *n*,

$$c(n) > C = \left[\max_{q \text{ prime power } \frac{\binom{n}{2q-1}}{\binom{n}{q-1}+1}\right]$$

Let COL: $\mathbb{R}^n \to [C]$.

We will

1) define a finite set of points $S\subseteq \mathbb{R}^n$ and then

Theorem For all *n*,

$$c(n) > C = \left[\max_{q \text{ prime power } \frac{\binom{n}{2q-1}}{\binom{n}{q-1}+1}\right]$$

Let COL: $\mathbb{R}^n \to [C]$.

We will

- 1) define a finite set of points $S \subseteq \mathbb{R}^n$ and then
- 2) restrict COL to S.

Let $S \subseteq \mathbb{R}^n$ be all of the vectors such that

Let $S \subseteq \mathbb{R}^n$ be all of the vectors such that n-2q-1 of the components are 0, and

Let $S \subseteq \mathbb{R}^n$ be all of the vectors such that n-2q-1 of the components are 0, and 2q-1 of the components are $\frac{1}{\sqrt{2q}}$.

Let $S \subseteq \mathbb{R}^n$ be all of the vectors such that n-2q-1 of the components are 0, and 2q-1 of the components are $\frac{1}{\sqrt{2q}}$.

Let $F: S \to \binom{[n]}{2q-1}$ by viewing each vector in S as a bit vector though with $\frac{1}{\sqrt{2q}}$ instead of 1.

Claim Let $u, v \in S$. If $|F(u) \cap F(v)| = f$ then $d(u, v) = 2 - \frac{f+1}{q}$. Hence d(u, v) = 1 iff $|F(u) \cap F(v)| = q - 1$.

Claim Let $u, v \in S$. If $|F(u) \cap F(v)| = f$ then $d(u, v) = 2 - \frac{f+1}{q}$. Hence d(u, v) = 1 iff $|F(u) \cap F(v)| = q - 1$. Assume $|F(u) \cap F(v)| = f$ then:

Claim Let $u, v \in S$. If $|F(u) \cap F(v)| = f$ then $d(u, v) = 2 - \frac{f+1}{q}$. Hence d(u, v) = 1 iff $|F(u) \cap F(v)| = q - 1$.

Assume $|F(u) \cap F(v)| = f$ then:

There are f coordinates where u and v both have $\frac{1}{\sqrt{2q}}$.

Claim Let $u, v \in S$. If $|F(u) \cap F(v)| = f$ then $d(u, v) = 2 - \frac{f+1}{q}$. Hence d(u, v) = 1 iff $|F(u) \cap F(v)| = q - 1$.

Assume $|F(u) \cap F(v)| = f$ then:

There are f coordinates where u and v both have $\frac{1}{\sqrt{2q}}$.

There are 2q - 1 - f coordinates where u has $\frac{1}{\sqrt{2q}}$ and v has 0.

Claim about S and F and Proof

Claim Let $u, v \in S$. If $|F(u) \cap F(v)| = f$ then $d(u, v) = 2 - \frac{f+1}{q}$. Hence d(u, v) = 1 iff $|F(u) \cap F(v)| = q - 1$.

Assume $|F(u) \cap F(v)| = f$ then:

There are f coordinates where u and v both have $\frac{1}{\sqrt{2q}}$.

There are 2q - 1 - f coordinates where u has $\frac{1}{\sqrt{2q}}$ and v has 0.

There are 2q-1-f coordinates where v has $\frac{1}{\sqrt{2q}}$ and u has 0.

Claim about S and F and Proof

Claim Let $u, v \in S$. If $|F(u) \cap F(v)| = f$ then $d(u, v) = 2 - \frac{f+1}{q}$. Hence d(u, v) = 1 iff $|F(u) \cap F(v)| = q - 1$.

Assume $|F(u) \cap F(v)| = f$ then:

There are f coordinates where u and v both have $\frac{1}{\sqrt{2q}}$.

There are 2q-1-f coordinates where u has $\frac{1}{\sqrt{2q}}$ and v has 0.

There are 2q - 1 - f coordinates where v has $\frac{1}{\sqrt{2q}}$ and u has 0.

There are n - 4q + f + 2 coordinates where u and v are both 0.

Claim about S and F and Proof

Claim Let $u, v \in S$. If $|F(u) \cap F(v)| = f$ then $d(u, v) = 2 - \frac{f+1}{q}$. Hence d(u, v) = 1 iff $|F(u) \cap F(v)| = q - 1$.

Assume $|F(u) \cap F(v)| = f$ then:

There are f coordinates where u and v both have $\frac{1}{\sqrt{2q}}$.

There are 2q - 1 - f coordinates where u has $\frac{1}{\sqrt{2q}}$ and v has 0.

There are 2q - 1 - f coordinates where v has $\frac{1}{\sqrt{2q}}$ and u has 0.

There are n - 4q + f + 2 coordinates where u and v are both 0.

Hence
$$d(u, v) = 2 \times (2q - 1 - f) \times \frac{1}{2q} = \frac{2q - 1 - f}{q} = 2 - \frac{f + 1}{q}$$
.

Restrict COL to S.

Restrict COL to S.

Since $|S| = \binom{n}{2q-1}$ and there are c colors, **RED** must occur

Restrict COL to S.

Since $|S| = \binom{n}{2q-1}$ and there are c colors, **RED** must occur

$$\geq {n \choose 2q-1}/c = {n \choose q-1}+1$$
 times

Restrict COL to *S*.

Since $|S| = \binom{n}{2a-1}$ and there are c colors, **RED** must occur

$$\geq inom{n}{2q-1}/c = inom{n}{q-1} + 1$$
 times

Let S' be the subset of S that has that color.

Restrict COL to *S*.

Since $|S| = \binom{n}{2a-1}$ and there are c colors, **RED** must occur

$$\geq inom{n}{2q-1}/c = inom{n}{q-1} + 1$$
 times

Let S' be the subset of S that has that color.

Since
$$S' \subseteq \binom{[n]}{2q-1}$$
 and $|S'| \ge \binom{n}{q-1} + 1$.

Restrict COL to *S*.

Since $|S| = \binom{n}{2a-1}$ and there are c colors, **RED** must occur

$$\geq inom{n}{2q-1}/c = inom{n}{q-1} + 1$$
 times

Let S' be the subset of S that has that color.

Since
$$S' \subseteq \binom{[n]}{2q-1}$$
 and $|S'| \ge \binom{n}{q-1} + 1$.

By Lemma there exists two elements of S with intersection of size q-1, say F(u) and F(v).

Restrict COL to S.

Since $|S| = \binom{n}{2a-1}$ and there are c colors, **RED** must occur

$$\geq inom{n}{2q-1}/c = inom{n}{q-1} + 1$$
 times

Let S' be the subset of S that has that color.

Since $S' \subseteq \binom{[n]}{2q-1}$ and $|S'| \ge \binom{n}{q-1} + 1$.

By Lemma there exists two elements of S with intersection of size q-1, say F(u) and F(v).

Since $|F(u) \cap F(v)| = q - 1$, by the Claim, d(u, v) = 1.

From

$$c(n) > \left[\max_{q \text{ prime power } \frac{\binom{n}{2q-1}}{\binom{n}{q-1}+1}\right]$$

From

$$c(n) > \left[\max_{q \text{ prime power } \frac{\binom{n}{2q-1}}{\binom{n}{q-1}+1}\right]$$

1) One can show there exists d, for all n, $c(n) \ge 2^{dn}$. (KELIN-HAVE WE DONE THAT YET?)

From

$$c(n) > \left\lceil \max_{q \text{ prime power } \frac{\binom{n}{2q-1}}{\binom{n}{q-1}+1} \right\rceil$$

- 1) One can show there exists d, for all n, $c(n) \ge 2^{dn}$. (KELIN-HAVE WE DONE THAT YET?)
- 2) Kelin plotted the graph and it seems that $c(n) \ge 2.54 \times 2^{0.266n}$.

$$\mathbb{R}^n o (\ell_2,\ell_{2^{dn}})$$

Theorem There exists d such that $\mathbb{R}^n \to (\ell_2, \ell_{2^{dn}})$.

$$\mathbb{R}^{\it n} o (\ell_2,\ell_{2^{\it dn}})$$

Theorem There exists d such that $\mathbb{R}^n \to (\ell_2, \ell_{2^{dn}})$. Let COL: $\mathbb{R}^n \to [2]$.

$$\mathbb{R}^n o (\ell_2, \ell_{2^{dn}})$$

Theorem There exists d such that $\mathbb{R}^n \to (\ell_2, \ell_{2^{dn}})$.

Let COL: $\mathbb{R}^n \to [2]$.

There exists d, $c(n) > 2^{dn}$. Let $m = 2^{dn}$.

$$\mathbb{R}^n o (\ell_2, \ell_{2^{dn}})$$

Theorem There exists d such that $\mathbb{R}^n \to (\ell_2, \ell_{2^{dn}})$.

Let COL: $\mathbb{R}^n \to [2]$.

There exists d, $c(n) > 2^{dn}$. Let $m = 2^{dn}$.

 $\vec{1}$ is the vector $(1,0,\ldots,0)$ in \mathbb{R}^n .

$$\mathbb{R}^n o (\ell_2,\ell_{2^{dn}})$$

Theorem There exists d such that $\mathbb{R}^n \to (\ell_2, \ell_{2^{dn}})$. Let $\mathrm{COL} \colon \mathbb{R}^n \to [2]$. There exists d, $c(n) > 2^{dn}$. Let $m = 2^{dn}$. $\vec{1}$ is the vector $(1, 0, \dots, 0)$ in \mathbb{R}^n . Case 1 There is a **BLUE** ℓ_m . Done

$$\mathbb{R}^n o (\ell_2,\ell_{2^{dn}})$$

Theorem There exists d such that $\mathbb{R}^n \to (\ell_2, \ell_{2^{dn}})$. Let $\mathrm{COL} \colon \mathbb{R}^n \to [2]$. There exists d, $c(n) > 2^{dn}$. Let $m = 2^{dn}$. $\vec{1}$ is the vector $(1,0,\ldots,0)$ in \mathbb{R}^n . Case 1 There is a **BLUE** ℓ_m . Done Case 2 There is no **BLUE** ℓ_m . See next slide.

 $\mathbb{R}^n o (\ell_2, \ell_{2^{dn}})$ Case 2

$$\mathbb{R}^n o (\ell_2, \ell_{2^{dn}})$$
 Case 2

Case 2 There is no **BLUE** ℓ_m . We form a coloring COL: $\mathbb{R}^n \to [m]$ as follows:

$$\mathbb{R}^n o (\ell_2, \ell_{2^{dn}})$$
 Case 2

$$p+\vec{1}, p+2\vec{1}, \ldots, p+m\vec{1}.$$

$$\mathbb{R}^n o (\ell_2, \ell_{2^{dn}})$$
 Case 2

$$p+\vec{1}, p+2\vec{1}, \ldots, p+m\vec{1}.$$

Since there is no **BLUE** ℓ_m , there exists i such that $COL(p + i\vec{1})$ is **RED**.

$$\mathbb{R}^n o (\ell_2, \ell_{2^{dn}})$$
 Case 2

$$p+\vec{1}, p+2\vec{1}, \ldots, p+m\vec{1}.$$

Since there is no **BLUE** ℓ_m , there exists i such that $COL(p + i\vec{1})$ is **RED**.

Color p with the least such i.

$$\mathbb{R}^n o (\ell_2,\ell_{2^{dn}})$$
 Case 2

$$p+\vec{1}, p+2\vec{1}, \ldots, p+m\vec{1}.$$

Since there is no **BLUE** ℓ_m , there exists i such that $COL(p + i\vec{1})$ is **RED**.

Color p with the least such i.

Since $c(n) > 2^{dn}$, $\exists u, v \in \mathbb{R}^n$ and $1 \le i \le m$ such that

$$\mathbb{R}^n o (\ell_2, \ell_{2^{dn}})$$
 Case 2

$$p+\vec{1}, p+2\vec{1}, \ldots, p+m\vec{1}.$$

Since there is no **BLUE** ℓ_m , there exists i such that $COL(p + i\vec{1})$ is **RED**.

Color p with the least such i.

Since $c(n) > 2^{dn}$, $\exists u, v \in \mathbb{R}^n$ and $1 \le i \le m$ such that d(u, v) = 1, and

$$\mathbb{R}^n o (\ell_2, \ell_{2^{dn}})$$
 Case 2

$$p+\vec{1}, p+2\vec{1}, \ldots, p+m\vec{1}.$$

Since there is no **BLUE** ℓ_m , there exists i such that $COL(p + i\vec{1})$ is **RED**.

Color p with the least such i.

Since $c(n) > 2^{dn}$, $\exists u, v \in \mathbb{R}^n$ and $1 \le i \le m$ such that d(u, v) = 1, and u, v are the same color.

$$\mathbb{R}^n o (\ell_2, \ell_{2^{dn}})$$
 Case 2

$$p+\vec{1}, p+2\vec{1}, \ldots, p+m\vec{1}.$$

Since there is no **BLUE** ℓ_m , there exists i such that $COL(p + i\vec{1})$ is **RED**.

Color p with the least such i.

Since $c(n) > 2^{dn}$, $\exists u, v \in \mathbb{R}^n$ and $1 \le i \le m$ such that d(u, v) = 1, and

u, v are the same color.

Hence $u + i\vec{1}$ and $v + i\vec{1}$ are both **RED**. They form a **RED** ℓ_2 .