There Is a 2-Coloring Of the Plane Without a mono Red 3-Stick or a mono Blue Big-Stick

Exposition by William Gasarch-U of MD

Credit Where Credit is Due

The main result in these slides is due to Conlon and Wu (2022).

Notation Let $a, b \geq 2$. $\mathbb{R}^2 \to (\ell_n, \ell_m)$ means

Notation Let $a, b \geq 2$. $\mathbb{R}^2 \to (\ell_n, \ell_m)$ means For all COL: $\mathbb{R}^2 \to [2]$ there exists Red ℓ_n or Blue ℓ_m .

Notation Let $a,b \geq 2$. $\mathbb{R}^2 \to (\ell_n,\ell_m)$ means For all $\mathrm{COL} \colon \mathbb{R}^2 \to [2]$ there exists $\mathrm{Red} \ \ell_n$ or $\mathrm{Blue} \ \ell_m$. Last lecture we proved $\mathbb{R}^2 \to (\ell_2,\ell_3)$.

Notation Let $a,b \geq 2$. $\mathbb{R}^2 \to (\ell_n,\ell_m)$ means For all COL: $\mathbb{R}^2 \to [2]$ there exists **Red** ℓ_n or **Blue** ℓ_m . Last lecture we proved $\mathbb{R}^2 \to (\ell_2,\ell_3)$. What about $\mathbb{R}^2 \to (\ell_3,\ell_b)$ with $b \geq 3$.

Notation Let $a, b \geq 2$. $\mathbb{R}^2 \to (\ell_n, \ell_m)$ means

For all COL: $\mathbb{R}^2 \to [2]$ there exists $\text{Red } \ell_n$ or $\text{Blue } \ell_m$.

Last lecture we proved $\mathbb{R}^2 \to (\ell_2, \ell_3)$.

What about $\mathbb{R}^2 \to (\ell_3, \ell_b)$ with $b \geq 3$.

The following are known:

Notation Let $a, b \geq 2$. $\mathbb{R}^2 \to (\ell_n, \ell_m)$ means

For all COL: $\mathbb{R}^2 \to [2]$ there exists $\operatorname{Red} \ell_n$ or $\operatorname{Blue} \ell_m$.

Last lecture we proved $\mathbb{R}^2 \to (\ell_2, \ell_3)$.

What about $\mathbb{R}^2 \to (\ell_3, \ell_b)$ with $b \geq 3$.

The following are known:

 $\mathbb{R}^2 \to (\ell_3, \ell_3)$ (Currier-Moore-Yip, 2024).

Notation Let $a, b \geq 2$. $\mathbb{R}^2 \to (\ell_n, \ell_m)$ means

For all COL: $\mathbb{R}^2 \to [2]$ there exists $\text{Red } \ell_n$ or $\text{Blue } \ell_m$.

Last lecture we proved $\mathbb{R}^2 \to (\ell_2, \ell_3)$.

What about $\mathbb{R}^2 \to (\ell_3, \ell_b)$ with $b \geq 3$.

The following are known:

 $\mathbb{R}^2 \to (\ell_3, \ell_3)$ (Currier-Moore-Yip, 2024). Won't do here.

Notation Let $a, b \geq 2$. $\mathbb{R}^2 \to (\ell_n, \ell_m)$ means

For all COL: $\mathbb{R}^2 \to [2]$ there exists $\text{Red } \ell_n$ or $\text{Blue } \ell_m$.

Last lecture we proved $\mathbb{R}^2 \to (\ell_2, \ell_3)$.

What about $\mathbb{R}^2 \to (\ell_3, \ell_b)$ with $b \geq 3$.

The following are known:

 $\mathbb{R}^2 \to (\ell_3,\ell_3)$ (Currier-Moore-Yip, 2024). Won't do here.

 $\mathbb{R}^2
ightharpoons (\ell_3, \ell_{10^{50}})$ (Conlon-Wu, 2022).

Notation Let $a, b \geq 2$. $\mathbb{R}^2 \to (\ell_n, \ell_m)$ means

For all COL: $\mathbb{R}^2 \to [2]$ there exists $\text{Red } \ell_n$ or $\text{Blue } \ell_m$.

Last lecture we proved $\mathbb{R}^2 \to (\ell_2, \ell_3)$.

What about $\mathbb{R}^2 \to (\ell_3, \ell_b)$ with $b \geq 3$.

The following are known:

 $\mathbb{R}^2 \to (\ell_3, \ell_3)$ (Currier-Moore-Yip, 2024). Won't do here.

 $\mathbb{R}^2
ot \rightarrow (\ell_3,\ell_{10^{50}})$ (Conlon-Wu, 2022). Will do here.

Main Theorem

Thm There exists COL: $\mathbb{R}^n \to [2]$ such that

Thm There exists COL: $\mathbb{R}^n \to [2]$ such that there is no a \mathbb{R} ℓ_3 , and

Thm There exists COL: $\mathbb{R}^n \to [2]$ such that there is no a \mathbb{R} ℓ_3 , and there is no \mathbb{B} ℓ_m where m will be determined later.

Thm There exists COL: $\mathbb{R}^n \to [2]$ such that there is no a $\mathbb{R} \ \ell_3$, and there is no $\mathbb{B} \ \ell_m$ where m will be determined later. m will be around 10^{50} .

Thm There exists $\operatorname{COL} \colon \mathbb{R}^n \to [2]$ such that there is no a $\mathbb{R} \ \ell_3$, and there is no B ℓ_m where m will be determined later. m will be around 10^{50} . The proof for \mathbb{R}^n and \mathbb{R}^2 are identical.

Thm There exists ${\rm COL}\colon \mathbb{R}^n \to [2]$ such that there is no a $\mathbb{R}\ \ell_3$, and there is no B ℓ_m where m will be determined later. m will be around 10^{50} . The proof for \mathbb{R}^n and \mathbb{R}^2 are identical. Open Find an easier proof of \mathbb{R}^2 case.

Let $\vec{0}$ be (0,0).

Let $\vec{0}$ be (0,0). Let $\vec{a_1}, \vec{a_2}, \vec{a_3}$ be an ℓ_3 .

```
Let \vec{0} be (0,0).

Let \vec{a}_1, \vec{a}_2, \vec{a}_3 be an \ell_3.

Let x_1 = d(\vec{0}, \vec{a}_1), x_2 = d(\vec{0}, \vec{a}_2), x_3 = d(\vec{0}, \vec{a}_3)
```

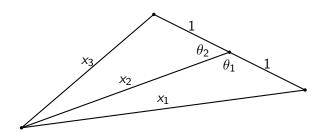
```
Let \vec{0} be (0,0).

Let \vec{a}_1, \vec{a}_2, \vec{a}_3 be an \ell_3.

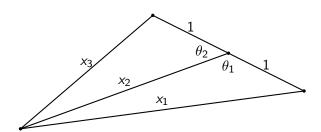
Let x_1 = d(\vec{0}, \vec{a}_1), x_2 = d(\vec{0}, \vec{a}_2), x_3 = d(\vec{0}, \vec{a}_3)

And we know 1 = d(\vec{a}_1, \vec{a}_2), 1 = d(\vec{a}_2, \vec{a}_3),
```



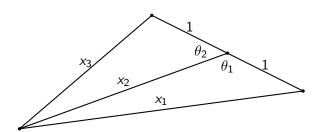


Bottom Triangle:



Bottom Triangle:

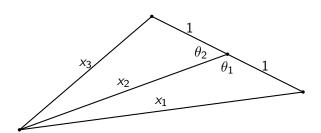
Law of cosines: $x_1^2 = x_2^2 + 1 - 2x_2 \cos(\theta_1)$.



Bottom Triangle:

Law of cosines: $x_1^2 = x_2^2 + 1 - 2x_2 \cos(\theta_1)$.

Top Triangle:



Bottom Triangle:

Law of cosines: $x_1^2 = x_2^2 + 1 - 2x_2 \cos(\theta_1)$.

Top Triangle:

Law of cosines: $x_3^2 = x_2^2 + 1 - 2x_2 \cos(\theta_2)$.

$$\theta_2 = \pi - \theta_2$$
. Hence $\cos(\theta_2) = -\cos(\theta_1)$.

$$\theta_2=\pi-\theta_2.$$
 Hence $\cos(\theta_2)=-\cos(\theta_1).$ Law of cosines: $x_1^2=x_2^2+1-2x_2\cos(\theta_1).$

$$\theta_2 = \pi - \theta_2$$
. Hence $\cos(\theta_2) = -\cos(\theta_1)$.
Law of cosines: $x_1^2 = x_2^2 + 1 - 2x_2\cos(\theta_1)$.
Law of cosines: $x_3^2 = x_2^2 + 1 - 2x_2\cos(\theta_2) = x_2^2 + 1 + 2x_2\cos(\theta_1)$.

$$heta_2=\pi- heta_2$$
. Hence $\cos(heta_2)=-\cos(heta_1)$. Law of cosines: $x_1^2=x_2^2+1-2x_2\cos(heta_1)$. Law of cosines: $x_3^2=x_2^2+1-2x_2\cos(heta_2)=x_2^2+1+2x_2\cos(heta_1)$. Add to get
$$x_1^2+x_2^2=2x_2^2+2.$$

First Plan On How to Avoid R ℓ_3

First Plan On How to Avoid R ℓ_3

First Plan

First Plan On How to Avoid R ℓ_3

First Plan

1) Find $\mathrm{COL}' \colon \mathbb{R} \to [2]$ such that there is no \mathbb{R} solution to

$$x_1^2 + x_3^2 = 2x_2^2 + 2.$$

First Plan

1) Find $\mathrm{COL}' \colon \mathbb{R} \to [2]$ such that there is no R solution to

$$x_1^2 + x_3^2 = 2x_2^2 + 2.$$

2) Define COL: $\mathbb{R}^2 \to [2]$ by COL(\vec{a}) = COL'($d(\vec{0}, \vec{a})$).

First Plan

1) Find $\mathrm{COL}' \colon \mathbb{R} \to [2]$ such that there is no R solution to

$$x_1^2 + x_3^2 = 2x_2^2 + 2.$$

2) Define COL: $\mathbb{R}^2 \to [2]$ by $COL(\vec{a}) = COL'(d(\vec{0}, \vec{a}))$.

Easy COL has \mathbb{R} $\ell_3 \implies \text{COL'}$ has \mathbb{R} sol to $x_1^2 + x_3^2 = 2x_2^2 + 2$.

First Plan

1) Find $\mathrm{COL}' \colon \mathbb{R} \to [2]$ such that there is no R solution to

$$x_1^2 + x_3^2 = 2x_2^2 + 2.$$

2) Define COL: $\mathbb{R}^2 \to [2]$ by COL(\vec{a}) = COL'($d(\vec{0}, \vec{a})$).

Easy COL has \mathbb{R} $\ell_3 \implies \mathrm{COL}'$ has \mathbb{R} sol to $x_1^2 + x_3^2 = 2x_2^2 + 2$. Hence COL does not have a \mathbb{R} ℓ_3 .

First Plan

1) Find $\mathrm{COL}' \colon \mathbb{R} \to [2]$ such that there is no R solution to

$$x_1^2 + x_3^2 = 2x_2^2 + 2.$$

2) Define COL: $\mathbb{R}^2 \to [2]$ by COL(\vec{a}) = COL'($d(\vec{0}, \vec{a})$).

Easy COL has \mathbb{R} $\ell_3 \implies \mathrm{COL}'$ has \mathbb{R} sol to $x_1^2 + x_3^2 = 2x_2^2 + 2$. Hence COL does not have a \mathbb{R} ℓ_3 .

This plan works but there is an even easier one.

First Plan

1) Find $\mathrm{COL}' \colon \mathbb{R} \to [2]$ such that there is no R solution to

$$x_1^2 + x_3^2 = 2x_2^2 + 2.$$

2) Define COL: $\mathbb{R}^2 \to [2]$ by COL(\vec{a}) = COL'($d(\vec{0}, \vec{a})$).

Easy COL has \mathbb{R} $\ell_3 \implies \text{COL}'$ has \mathbb{R} sol to $x_1^2 + x_3^2 = 2x_2^2 + 2$. Hence COL does not have a \mathbb{R} ℓ_3 .

This plan works but there is an even easier one.

The fact that x_1, x_2, x_3 are squared is not important.

First Plan

1) Find $\mathrm{COL}' \colon \mathbb{R} \to [2]$ such that there is no R solution to

$$x_1^2 + x_3^2 = 2x_2^2 + 2.$$

2) Define COL: $\mathbb{R}^2 \to [2]$ by COL(\vec{a}) = COL'($d(\vec{0}, \vec{a})$).

Easy COL has \mathbb{R} $\ell_3 \implies \mathrm{COL}'$ has \mathbb{R} sol to $x_1^2 + x_3^2 = 2x_2^2 + 2$. Hence COL does not have a \mathbb{R} ℓ_3 .

This plan works but there is an even easier one.

The fact that x_1, x_2, x_3 are squared is not important. Can get rid of squares.

Second Plan

Second Plan

1) Find $\mathrm{COL}' \colon \mathbb{R} \to [2]$ such that there is no R solution to

$$y_1 + y_3 = 2y_2 + 2$$
.

Second Plan

1) Find $\mathrm{COL}' \colon \mathbb{R} \to [2]$ such that there is no R solution to

$$y_1 + y_3 = 2y_2 + 2$$
.

2) Define COL: $\mathbb{R}^2 \to [2]$ by COL(\vec{a}) = COL'($d(\vec{0}, \vec{a})$).

Second Plan

1) Find $\mathrm{COL}' \colon \mathbb{R} \to [2]$ such that there is no R solution to

$$y_1 + y_3 = 2y_2 + 2$$
.

2) Define COL: $\mathbb{R}^2 \to [2]$ by COL(\vec{a}) = COL'($d(\vec{0}, \vec{a})$).

Easy COL has \mathbb{R} $\ell_3 \implies \text{COL}'$ has \mathbb{R} sol to $x_1^2 + x_3^2 = 2x_2^2 + 2$ $\implies \text{COL}'$ has \mathbb{R} sol to $y_1 + y_3 = 2y_2 + 2$.

Upshot on R ℓ_3

We will define $\mathrm{COL}'\colon\mathbb{R}\to[2]$ such that there is no R solution to

$$y_1 + y_3 = 2y_2 + 2.$$

Upshot on R ℓ_3

We will define $COL': \mathbb{R} \to [2]$ such that there is no \mathbb{R} solution to

$$y_1 + y_3 = 2y_2 + 2$$
.

Will then define $\mathrm{COL}(\vec{a}) = \mathrm{COL}'(d(\vec{0}, \vec{a}))$

Upshot on R ℓ_3

We will define $\mathrm{COL}' \colon \mathbb{R} \to [2]$ such that there is no R solution to

$$y_1 + y_3 = 2y_2 + 2$$
.

Will then define $COL(\vec{a}) = COL'(d(\vec{0}, \vec{a}))$

We will also have a condition on COL' that will make $\mathrm{COL}(\vec{a}) = \mathrm{COL}'(d(\vec{0},\vec{a}))$ not have any $\mathbf{B} \ \ell_m$

Let $\vec{0}$ be (0,0).

Let $\vec{0}$ be (0,0). Let $\vec{a_1}, \dots, \vec{a_m}$ be an ℓ_m .

```
Let \vec{0} be (0,0).
Let \vec{a}_1,\ldots,\vec{a}_m be an \ell_m.
For all 1\leq i\leq m let x_i=d(\vec{0},\vec{a}_i).
```

```
Let \vec{0} be (0,0).

Let \vec{a}_1,\ldots,\vec{a}_m be an \ell_m.

For all 1\leq i\leq m let x_i=d(\vec{0},\vec{a}_i).

For all 1\leq i\leq m-1 we know 1=d(\vec{a}_i,\vec{a}_{i+1}).
```

```
Let \vec{0} be (0,0).

Let \vec{a}_1,\ldots,\vec{a}_m be an \ell_m.

For all 1\leq i\leq m let x_i=d(\vec{0},\vec{a}_i).

For all 1\leq i\leq m-1 we know 1=d(\vec{a}_i,\vec{a}_{i+1}).

By using the prior reasoning about \ell_3, applied to all \ell_3's, we get
```

```
Let \vec{0} be (0,0).

Let \vec{a}_1,\ldots,\vec{a}_m be an \ell_m.

For all 1\leq i\leq m let x_i=d(\vec{0},\vec{a}_i).

For all 1\leq i\leq m-1 we know 1=d(\vec{a}_i,\vec{a}_{i+1}).

By using the prior reasoning about \ell_3, applied to all \ell_3's, we get For all 2\leq i\leq m-1,
```

Let $\vec{0}$ be (0,0).

Let $\vec{a}_1, \ldots, \vec{a}_m$ be an ℓ_m .

For all $1 \le i \le m$ let $x_i = d(\vec{0}, \vec{a_i})$.

For all $1 \le i \le m-1$ we know $1 = d(\vec{a_i}, \vec{a_{i+1}})$.

By using the prior reasoning about ℓ_3 , applied to all ℓ_3 's, we get For all 2 < i < m - 1.

$$x_{i-1}^2 + x_{i+1}^2 = 2x_i^2 + 2.$$

Real Plan

Real Plan

1) Find $COL': \mathbb{R} \to [2]$ such that there is no **B** solution to: For all $2 \le i \le m-1$,

$$y_1 + y_3 = 2y_2 + 2$$
.

Real Plan

1) Find $COL': \mathbb{R} \to [2]$ such that there is no **B** solution to: For all $2 \le i \le m-1$,

$$y_1 + y_3 = 2y_2 + 2$$
.

2) Define COL: $\mathbb{R}^2 \to [2]$ by COL(\vec{a}) = COL'($d(\vec{0}, \vec{a})$).

We need $\mathrm{COL}' \colon \mathbb{R} \to [2]$ such that

We need $\mathrm{COL}'\colon \mathbb{R} \to [2]$ such that

1) No R solution to

$$y_1 + y_3 = 2y_2 + 2$$
.

We need $\mathrm{COL}' \colon \mathbb{R} \to [2]$ such that

1) No R solution to

$$y_1 + y_3 = 2y_2 + 2.$$

2) No B solution to

We need $\mathrm{COL}' \colon \mathbb{R} \to [2]$ such that

1) No R solution to

$$y_1 + y_3 = 2y_2 + 2$$
.

2) No B solution to forall $2 \le i \le m-1$,

$$y_{i-1} + y_{i+1} = 2y_i + 2.$$

We have not determined m yet. We will later.

We have not determined m yet. We will later. However we will require that $m=q^3$ where q is prime.

We have not determined m yet. We will later. However we will require that $m=q^3$ where q is prime. We will define $\mathrm{COL}''\colon \mathbb{Z}_q \to [2]$.

We have not determined m yet. We will later. However we will require that $m=q^3$ where q is prime. We will define $\mathrm{COL}''\colon \mathbb{Z}_q \to [2]$. We will then define $\mathrm{COL}'\colon \mathbb{R} \to [2]$ by

We have not determined m yet. We will later.

However we will require that $m = q^3$ where q is prime.

We will define COL'': $\mathbb{Z}_q \to [2]$.

We will then define $COL' \colon \mathbb{R} \to [2]$ by

$$COL'(y) = COL''(\lfloor y \rfloor \pmod{q}).$$

An Example of A Coloring with q = 5

```
COL''(0) = R

COL''(1) = B

COL''(2) = B

COL''(3) = R

COL''(4) = R
```

An Example of A Coloring with q = 5

```
COL''(0) = R

COL''(1) = B

COL''(2) = B

COL''(3) = R

COL''(4) = R

COL''(y) = COL''(|y| \pmod{q})
```

An Example of A Coloring with q = 5

```
COL''(0) = \mathbf{R}
COL''(1) = B
COL''(2) = B
COL''(3) = \mathbb{R}
COL''(4) = \mathbb{R}
COL'(y) = COL''(|y| \pmod{q})
-5
```

We need $\mathrm{COL}''\colon \mathbb{Z}_q \to [2]$ such that

We need $\mathrm{COL}'' \colon \mathbb{Z}_q \to [2]$ such that

1) No R solution to

$$y_1 + y_3 = 2y_2 + 2.$$

We need $\mathrm{COL}'' \colon \mathbb{Z}_q \to [2]$ such that

1) No R solution to

$$y_1 + y_3 = 2y_2 + 2$$
.

2) No B solution to for all $2 \le i \le m-1$

$$y_{i-1} + y_{i+1} = 2y_i + 2.$$

We need $\mathrm{COL}'' \colon \mathbb{Z}_q \to [2]$ such that

1) No R solution to

$$y_1 + y_3 = 2y_2 + 2$$
.

2) No B solution to for all $2 \le i \le m-1$

$$y_{i-1} + y_{i+1} = 2y_i + 2.$$

The next slide recaps where we are and says why COL'' helps us.

Assume $\mathrm{COL}'' \colon \mathbb{Z}_q \to [2]$:

Assume $COL'': \mathbb{Z}_q \to [2]:$ 1) COL'' has no \mathbb{R} solution (in \mathbb{Z}_q) to $y_1 + y_3 = 2y_2 + 2$.

Assume $COL'' \colon \mathbb{Z}_q \to [2]$:

- 1) COL" has no \mathbb{R} solution (in \mathbb{Z}_q) to $y_1 + y_3 = 2y_2 + 2$.
- 2) COL'' has no ${\color{red}\mathbf{B}}$ solution (in \mathbb{Z}_q) to

For all
$$2 \le i \le m-1$$
, $y_{i-1} + y_{i+1} = 2y_i + 2$

Assume $\mathrm{COL}'' \colon \mathbb{Z}_q \to [2]$:

- 1) COL'' has no \mathbb{R} solution (in \mathbb{Z}_q) to $y_1 + y_3 = 2y_2 + 2$.
- 2) COL'' has no ${\color{red}\mathbf{B}}$ solution (in \mathbb{Z}_q) to

For all
$$2 \le i \le m-1$$
, $y_{i-1} + y_{i+1} = 2y_i + 2$

Let $COL': \mathbb{Z} \to [2]$ be $COL''(\lfloor y \rfloor \pmod{q})$. Can show

Assume COL": $\mathbb{Z}_q \to [2]$:

- 1) COL" has no \mathbb{R} solution (in \mathbb{Z}_q) to $y_1 + y_3 = 2y_2 + 2$.
- 2) COL" has no **B** solution (in \mathbb{Z}_q) to

For all
$$2 \le i \le m-1$$
, $y_{i-1} + y_{i+1} = 2y_i + 2$

Let $COL': \mathbb{Z} \to [2]$ be $COL''(\lfloor y \rfloor \pmod{q})$. Can show

1) COL' has no **R** solution (in \mathbb{Z}) to $y_1 + y_3 = 2y_2 + 2$.

Assume $COL'' : \mathbb{Z}_q \to [2]$:

- 1) COL" has no \mathbb{R} solution (in \mathbb{Z}_q) to $y_1 + y_3 = 2y_2 + 2$.
- 2) COL'' has no ${\color{red}\mathbf{B}}$ solution (in \mathbb{Z}_q) to

For all
$$2 \le i \le m-1$$
, $y_{i-1} + y_{i+1} = 2y_i + 2$

Let $COL': \mathbb{Z} \to [2]$ be $COL''(\lfloor y \rfloor \pmod{q})$. Can show

- 1) COL' has no **R** solution (in \mathbb{Z}) to $y_1 + y_3 = 2y_2 + 2$.
- 2) Has no ${\color{red} {\bf B}}$ solution (in ${\color{gray} {\mathbb Z}}$) to

For all
$$2 \le i \le m-1$$
, $y_{i-1} + y_{i+1} = 2y_i + 2$

Assume COL": $\mathbb{Z}_q \to [2]$:

- 1) COL" has no \mathbb{R} solution (in \mathbb{Z}_q) to $y_1 + y_3 = 2y_2 + 2$.
- 2) COL'' has no ${\color{red}\mathbf{B}}$ solution (in \mathbb{Z}_q) to

For all
$$2 \le i \le m-1$$
, $y_{i-1} + y_{i+1} = 2y_i + 2$

Let $COL' \colon \mathbb{Z} \to [2]$ be $COL''(\lfloor y \rfloor \pmod{q})$. Can show

- 1) COL' has no \mathbb{R} solution (in \mathbb{Z}) to $y_1 + y_3 = 2y_2 + 2$.
- 2) Has no ${\bf B}$ solution (in ${\mathbb Z}$) to

For all
$$2 \le i \le m-1$$
, $y_{i-1} + y_{i+1} = 2y_i + 2$

Let $COL \colon \mathbb{R}^2 \to [2]$ be $COL(\vec{a}) = COL'(d(0, \vec{a}))$. Did show

Assume COL": $\mathbb{Z}_q \to [2]$:

- 1) COL" has no \mathbb{R} solution (in \mathbb{Z}_q) to $y_1 + y_3 = 2y_2 + 2$.
- 2) COL'' has no ${\color{red}\mathbf{B}}$ solution (in \mathbb{Z}_q) to

For all
$$2 \le i \le m-1$$
, $y_{i-1} + y_{i+1} = 2y_i + 2$

Let $COL': \mathbb{Z} \to [2]$ be $COL''(\lfloor y \rfloor \pmod{q})$. Can show

- 1) COL' has no \mathbb{R} solution (in \mathbb{Z}) to $y_1 + y_3 = 2y_2 + 2$.
- 2) Has no ${\color{red} {\bf B}}$ solution (in ${\color{gray} {\mathbb Z}}$) to

For all
$$2 \le i \le m-1$$
, $y_{i-1} + y_{i+1} = 2y_i + 2$

Let COL: $\mathbb{R}^2 \to [2]$ be $\mathrm{COL}(\vec{a}) = \mathrm{COL}'(d(0, \vec{a}))$. Did show 1) COL has no \mathbb{R} ℓ_3 (in \mathbb{R}^2).

Assume COL": $\mathbb{Z}_q \to [2]$:

- 1) COL" has no \mathbb{R} solution (in \mathbb{Z}_q) to $y_1 + y_3 = 2y_2 + 2$.
- 2) COL'' has no ${\color{red}\mathsf{B}}$ solution (in \mathbb{Z}_q) to

For all
$$2 \le i \le m-1$$
, $y_{i-1} + y_{i+1} = 2y_i + 2$

Let $COL' \colon \mathbb{Z} \to [2]$ be $COL''(\lfloor y \rfloor \pmod{q})$. Can show

- 1) COL' has no \mathbb{R} solution (in \mathbb{Z}) to $y_1 + y_3 = 2y_2 + 2$.
- 2) Has no ${\bf B}$ solution (in ${\mathbb Z}$) to

For all
$$2 \le i \le m-1$$
, $y_{i-1} + y_{i+1} = 2y_i + 2$

Let COL: $\mathbb{R}^2 \to [2]$ be $COL(\vec{a}) = COL'(d(0, \vec{a}))$. Did show

- 1) COL has no $\mathbb{R} \ell_3$ (in \mathbb{R}^2).
- 2) COL has no $\mathbf{B} \ell_m$ (in \mathbb{R}^2).

We Define COL"

TO define $\mathrm{COL}^{\prime\prime}$ we'll need some hard math. Or will we?

We Define COL"

TO define COL'' we'll need some hard math. Or will we? See next slide.

Bill is playing a slightly dumber version of Bill.

Bill is playing a slightly dumber version of Bill. Erin is playing Erin.

Bill is playing a slightly dumber version of Bill. Erin is playing Erin.

BILL: We need to find a coloring. This requires hard math.

Bill is playing a slightly dumber version of Bill.

Erin is playing Erin.

BILL: We need to find a coloring. This requires hard math.

ERIN: That's bullshit man!

Bill is playing a slightly dumber version of Bill.

Erin is playing Erin.

BILL: We need to find a coloring. This requires hard math.

ERIN: That's bullshit man!

BILL: (ignoring Erin) We need topological algebraic topology.

Bill is playing a slightly dumber version of Bill.

Erin is playing Erin.

BILL: We need to find a coloring. This requires hard math.

ERIN: That's bullshit man!

BILL: (ignoring Erin) We need topological algebraic topology.

ERIN: That's bullshit man!

Bill is playing a slightly dumber version of Bill.

Erin is playing Erin.

BILL: We need to find a coloring. This requires hard math.

ERIN: That's bullshit man!

BILL: (ignoring Erin) We need topological algebraic topology.

ERIN: That's bullshit man! Pick the colors randomly moron!

Bill is playing a slightly dumber version of Bill.

Erin is playing Erin.

BILL: We need to find a coloring. This requires hard math.

ERIN: That's bullshit man!

BILL: (ignoring Erin) We need topological algebraic topology.

ERIN: That's bullshit man! Pick the colors randomly moron!

BILL: Well pierce my ears and call me drafty!

Bill is playing a slightly dumber version of Bill.

Erin is playing Erin.

BILL: We need to find a coloring. This requires hard math.

ERIN: That's bullshit man!

BILL: (ignoring Erin) We need topological algebraic topology.

ERIN: That's bullshit man! Pick the colors randomly moron!

BILL: Well pierce my ears and call me drafty! She's right!

Bill is playing a slightly dumber version of Bill.

Erin is playing Erin.

BILL: We need to find a coloring. This requires hard math.

ERIN: That's bullshit man!

BILL: (ignoring Erin) We need topological algebraic topology.

ERIN: That's bullshit man! Pick the colors randomly moron!

BILL: Well pierce my ears and call me drafty! She's right!

ERIN: About picking randomly or about you being a moron?

Bill is playing a slightly dumber version of Bill.

Erin is playing Erin.

BILL: We need to find a coloring. This requires hard math.

ERIN: That's bullshit man!

BILL: (ignoring Erin) We need topological algebraic topology.

ERIN: That's bullshit man! Pick the colors randomly moron!

BILL: Well pierce my ears and call me drafty! She's right!

ERIN: About picking randomly or about you being a moron?

BILL: Both.

Bill is playing a slightly dumber version of Bill.

Erin is playing Erin.

BILL: We need to find a coloring. This requires hard math.

ERIN: That's bullshit man!

BILL: (ignoring Erin) We need topological algebraic topology.

ERIN: That's bullshit man! Pick the colors randomly moron!

BILL: Well pierce my ears and call me drafty! She's right!

ERIN: About picking randomly or about you being a moron?

BILL: Both. Now back to Math.

Bill is playing a slightly dumber version of Bill.

Erin is playing Erin.

BILL: We need to find a coloring. This requires hard math.

ERIN: That's bullshit man!

BILL: (ignoring Erin) We need topological algebraic topology.

ERIN: That's bullshit man! Pick the colors randomly moron!

BILL: Well pierce my ears and call me drafty! She's right!

ERIN: About picking randomly or about you being a moron?

BILL: Both. Now back to Math.

ERIN: Math is bullshit man!

Bill is playing a slightly dumber version of Bill.

Erin is playing Erin.

BILL: We need to find a coloring. This requires hard math.

ERIN: That's bullshit man!

BILL: (ignoring Erin) We need topological algebraic topology.

ERIN: That's bullshit man! Pick the colors randomly moron!

BILL: Well pierce my ears and call me drafty! She's right!

ERIN: About picking randomly or about you being a moron?

BILL: Both. Now back to Math.

ERIN: Math is bullshit man!

BILL: A catchphrase should be used exactly twice.

Bill is playing a slightly dumber version of Bill.

Erin is playing Erin.

BILL: We need to find a coloring. This requires hard math.

ERIN: That's bullshit man!

BILL: (ignoring Erin) We need topological algebraic topology.

ERIN: That's bullshit man! Pick the colors randomly moron!

BILL: Well pierce my ears and call me drafty! She's right!

ERIN: About picking randomly or about you being a moron?

BILL: Both. Now back to Math.

ERIN: Math is bullshit man!

BILL: A catchphrase should be used exactly twice.

ERIN: That's bullshit man!

Bill is playing a slightly dumber version of Bill.

Erin is playing Erin.

BILL: We need to find a coloring. This requires hard math.

ERIN: That's bullshit man!

BILL: (ignoring Erin) We need topological algebraic topology.

ERIN: That's bullshit man! Pick the colors randomly moron!

BILL: Well pierce my ears and call me drafty! She's right!

ERIN: About picking randomly or about you being a moron?

BILL: Both. Now back to Math.

ERIN: Math is bullshit man!

BILL: A catchphrase should be used exactly twice.

ERIN: That's bullshit man!

The End

Pick a Coloring Randomly

We will pick $\mathrm{COL} \colon \mathbb{Z}_q \to [2]$ randomly.

Pick a Coloring Randomly

We will pick COL: $\mathbb{Z}_q \to [2]$ randomly.

We will **not** color each element **R** or **B** with equal probability.

We will pick COL: $\mathbb{Z}_q \to [2]$ randomly.

We will **not** color each element **R** or **B** with equal probability.

We want R to be far rarer than B.

We will pick COL: $\mathbb{Z}_q \to [2]$ randomly.

We will **not** color each element **R** or **B** with equal probability.

We want R to be far rarer than B.

We pick

We will pick COL: $\mathbb{Z}_q \to [2]$ randomly.

We will **not** color each element **R** or **B** with equal probability.

We want R to be far rarer than B.

We pick Prob of a **R** to be $p = q^{-1/2}$

We will pick COL: $\mathbb{Z}_q \to [2]$ randomly.

We will **not** color each element **R** or **B** with equal probability.

We want R to be far rarer than B.

We pick

Prob of a \mathbb{R} to be $p = q^{-1/2}$

One can show prob of Rsol to $y_1 + y_3 = 2y_2 + 2$ is $< \frac{1}{2}$.

We will pick COL: $\mathbb{Z}_q \to [2]$ randomly.

We will **not** color each element **R** or **B** with equal probability.

We want R to be far rarer than B.

We pick Prob of a $\bf R$ to be $p=q^{-1/2}$ One can show prob of $\bf R$ sol to $y_1+y_3=2y_2+2$ is $<\frac{1}{2}$. Prob of a $\bf B$ to be 1-p

Lemmas and a Theorem of Independent Interest

What does $p(x) = x^2 + \pi x + e \pmod{13}$ mean?

What does
$$p(x) = x^2 + \pi x + e \pmod{13}$$
 mean?

What is
$$p(10) = 100 + 10\pi + e \pmod{13}$$
?

What does $p(x) = x^2 + \pi x + e \pmod{13}$ mean?

What is $p(10) = 100 + 10\pi + e \pmod{13}$? subtract multiples of 13 until this is in [0, 13).

What does $p(x) = x^2 + \pi x + e \pmod{13}$ mean?

What is $p(10) = 100 + 10\pi + e \pmod{13}$? subtract multiples of 13 until this is in [0, 13).

Lets say p(10) = 134.1325 (thats not true but its a good approx).

What does $p(x) = x^2 + \pi x + e \pmod{13}$ mean?

What is $p(10) = 100 + 10\pi + e \pmod{13}$? subtract multiples of 13 until this is in [0, 13).

Lets say p(10) = 134.1325 (thats not true but its a good approx). 134.1324 (mod 13) = 4.1324.

What does
$$p(x) = x^2 + \pi x + e \pmod{13}$$
 mean?

What is $p(10) = 100 + 10\pi + e \pmod{13}$? subtract multiples of 13 until this is in [0, 13).

Lets say p(10) = 134.1325 (thats not true but its a good approx). 134.1324 (mod 13) = 4.1324.

So it makes sense to consider $p(x) \pmod{q}$ where $p(x) \in \mathbb{R}[x]$.

Set Up Let $p(x) \in \mathbb{R}[x]$. Let q be a prime. Let $m \ge q$.

Set Up Let $p(x) \in \mathbb{R}[x]$. Let q be a prime. Let $m \ge q$. Let $f(x) = p(x) \pmod{q}$. Each element of

Set Up Let $p(x) \in \mathbb{R}[x]$. Let q be a prime. Let $m \ge q$. Let $f(x) = p(x) \pmod q$. Each element of $\{f(1), f(2), \dots, f(m)\}$

Set Up Let $p(x) \in \mathbb{R}[x]$. Let q be a prime. Let $m \ge q$. Let $f(x) = p(x) \pmod{q}$. Each element of

$$\{f(1), f(2), \ldots, f(m)\}\$$

is in one of [0,1), [1,2), ..., [q-1,q).

Set Up Let $p(x) \in \mathbb{R}[x]$. Let q be a prime. Let $m \ge q$. Let $f(x) = p(x) \pmod{q}$. Each element of

$$\{f(1), f(2), \ldots, f(m)\}$$

is in one of [0,1), [1,2), ..., [q-1,q).

Informal Question How many interval are hit?

Set Up Let $p(x) \in \mathbb{R}[x]$. Let q be a prime. Let $m \ge q$. Let $f(x) = p(x) \pmod{q}$. Each element of

$$\{f(1), f(2), \ldots, f(m)\}$$

is in one of [0,1), [1,2), ..., [q-1,q).

Informal Question How many interval are hit?

Formal Question Given p(x), q, m, give a lower bound on how many intervals are hit.

Set Up Let $p(x) \in \mathbb{R}[x]$. Let q be a prime. Let $m \ge q$. Let $f(x) = p(x) \pmod{q}$. Each element of

$$\{f(1), f(2), \ldots, f(m)\}$$

is in one of [0,1), [1,2), ..., [q-1,q).

Informal Question How many interval are hit?

Formal Question Given p(x), q, m, give a lower bound on how many intervals are hit.

Meta Question We consider this question for the (ℓ_3, ℓ_b) result. Is it interesting in its own right?

Set Up Let $p(x) \in \mathbb{R}[x]$. Let q be a prime. Let $m \ge q$. Let $f(x) = p(x) \pmod{q}$. Each element of

$$\{f(1), f(2), \ldots, f(m)\}$$

is in one of [0,1), [1,2), ..., [q-1,q).

Informal Question How many interval are hit?

Formal Question Given p(x), q, m, give a lower bound on how many intervals are hit.

Meta Question We consider this question for the (ℓ_3, ℓ_b) result. Is it interesting in its own right? I leave that to the reader.

Lemma Let $p(x) = x^2 + \alpha x + \beta$ where $\alpha, \beta \in \mathbb{R}$.

Lemma Let $p(x) = x^2 + \alpha x + \beta$ where $\alpha, \beta \in \mathbb{R}$. Let q be a prime.

Lemma Let $p(x) = x^2 + \alpha x + \beta$ where $\alpha, \beta \in \mathbb{R}$.

Let q be a prime.

Let $f(x) = p(x) \pmod{q}$.

Lemma Let $p(x) = x^2 + \alpha x + \beta$ where $\alpha, \beta \in \mathbb{R}$.

Let q be a prime.

Let $f(x) = p(x) \pmod{q}$.

Let $m \ge q^3$.

Lemma Let $p(x) = x^2 + \alpha x + \beta$ where $\alpha, \beta \in \mathbb{R}$.

Let q be a prime.

Let $f(x) = p(x) \pmod{q}$.

Let $m \ge q^3$.

Let
$$X = \{f(1), f(2), \dots, f(m)\}.$$

Lemma Let $p(x) = x^2 + \alpha x + \beta$ where $\alpha, \beta \in \mathbb{R}$.

Let q be a prime.

Let $f(x) = p(x) \pmod{q}$.

Let $m \ge q^3$.

Let
$$X = \{f(1), f(2), \dots, f(m)\}.$$

Then

Lemma Let $p(x) = x^2 + \alpha x + \beta$ where $\alpha, \beta \in \mathbb{R}$.

Let q be a prime.

Let $f(x) = p(x) \pmod{q}$.

Let $m \ge q^3$.

Let
$$X = \{f(1), f(2), \dots, f(m)\}.$$

Then

X hits at least q/6 of the intervals [0,1), [1,2), ..., [q-1,q).

Consider $\alpha \pmod{q}$, $2\alpha \pmod{q}$, ..., $q^2\alpha \pmod{q}$.

Consider $\alpha \pmod{q}$, $2\alpha \pmod{q}$, ..., $q^2\alpha \pmod{q}$. Map each one to which interval [0,1), ..., [q-1,q) that it is in.

Consider $\alpha\pmod q$, $2\alpha\pmod q$, ..., $q^2\alpha\pmod q$. Map each one to which interval $[0,1),\ldots,[q-1,q)$ that it is in. Some intervals has $\geq q$ of these values.

Consider $\alpha \pmod{q}$, $2\alpha \pmod{q}$, ..., $q^2\alpha \pmod{q}$.

Map each one to which interval $[0,1), \ldots, [q-1,q)$ that it is in.

Some intervals has $\geq q$ of these values.

Two of those values are $\leq 1/q$ apart.

Consider $\alpha \pmod{q}$, $2\alpha \pmod{q}$, ..., $q^2\alpha \pmod{q}$.

Map each one to which interval [0,1), ..., [q-1,q) that it is in.

Some intervals has $\geq q$ of these values.

Two of those values are $\leq 1/q$ apart.

So there exists i,j such that $|i\alpha \pmod q - j\alpha \pmod q| \le \frac1q$.

Consider $\alpha \pmod{q}$, $2\alpha \pmod{q}$, ..., $q^2\alpha \pmod{q}$.

Map each one to which interval $[0,1), \ldots, [q-1,q)$ that it is in.

Some intervals has $\geq q$ of these values.

Two of those values are $\leq 1/q$ apart.

So there exists i, j such that $|i\alpha \pmod{q} - j\alpha \pmod{q}| \leq \frac{1}{q}$.

Upshot There exists $k \leq q^2$ such that $|k\alpha \pmod q| \leq \frac{1}{q}$.

Consider $\alpha \pmod{q}$, $2\alpha \pmod{q}$, ..., $q^2\alpha \pmod{q}$.

Map each one to which interval $[0,1), \ldots, [q-1,q)$ that it is in.

Some intervals has $\geq q$ of these values.

Two of those values are $\leq 1/q$ apart.

So there exists i, j such that $|i\alpha \pmod{q} - j\alpha \pmod{q}| \leq \frac{1}{q}$.

Upshot There exists $k \leq q^2$ such that $|k\alpha \pmod q| \leq \frac{1}{q}$.

We will consider two cases:

Consider $\alpha \pmod{q}$, $2\alpha \pmod{q}$, ..., $q^2\alpha \pmod{q}$.

Map each one to which interval $[0,1), \ldots, [q-1,q)$ that it is in.

Some intervals has $\geq q$ of these values.

Two of those values are $\leq 1/q$ apart.

So there exists i, j such that $|i\alpha \pmod{q} - j\alpha \pmod{q}| \leq \frac{1}{q}$.

Upshot There exists $k \leq q^2$ such that $|k\alpha \pmod q| \leq \frac{1}{q}$.

We will consider two cases:

Case 1 $k \not\equiv 0 \pmod{q}$.

Consider $\alpha \pmod{q}$, $2\alpha \pmod{q}$, ..., $q^2\alpha \pmod{q}$.

Map each one to which interval [0,1), ..., [q-1,q) that it is in.

Some intervals has $\geq q$ of these values.

Two of those values are $\leq 1/q$ apart.

So there exists i, j such that $|i\alpha \pmod q - j\alpha \pmod q| \le \frac1q$.

Upshot There exists $k \leq q^2$ such that $|k\alpha \pmod q| \leq \frac1q$.

We will consider two cases:

Case 1 $k \not\equiv 0 \pmod{q}$.

Case 2 $k \equiv 0 \pmod{q}$.

Recap There is a $k \not\equiv 0 \pmod{q}$ such that $|k\alpha \mod q| \leq \frac{1}{q}$.

Recap There is a $k \not\equiv 0 \pmod{q}$ such that $|k\alpha| \mod{q}| \leq \frac{1}{q}$.

Recap There is a $k \not\equiv 0 \pmod q$ such that $|k\alpha \mod q| \leq \frac{1}{q}$.

1) Show $x^2 + \beta \pmod{q}$ hits $\geq (q+1)/2$ intervals.

Recap There is a $k \not\equiv 0 \pmod{q}$ such that $|k\alpha \mod q| \leq \frac{1}{q}$.

Plan

- 1) Show $x^2 + \beta \pmod{q}$ hits $\geq (q+1)/2$ intervals.
- 2) Show that adding αx has a small effect since $|k\alpha \pmod{q}| \leq \frac{1}{a}$.

Recap There is a $k \not\equiv 0 \pmod{q}$ such that $|k\alpha \mod q| \leq \frac{1}{q}$.

Plan

- 1) Show $x^2 + \beta \pmod{q}$ hits $\geq (q+1)/2$ intervals.
- 2) Show that adding αx has a small effect since $|k\alpha \pmod{q}| \leq \frac{1}{q}$.

We consider several sets and see how many intervals they hit.

Recap There is a $k \not\equiv 0 \pmod{q}$ such that $|k\alpha \mod q| \leq \frac{1}{q}$.

- 1) Show $x^2 + \beta \pmod{q}$ hits $\geq (q+1)/2$ intervals.
- 2) Show that adding αx has a small effect since $|k\alpha \pmod q| \le \frac{1}{q}$.

We consider several sets and see how many intervals they hit.

$$SQ_q = \{1^2 \pmod{q}, 2^2 \pmod{q}, \dots, q^2 \pmod{q}\}.$$

Recap There is a $k \not\equiv 0 \pmod{q}$ such that $|k\alpha| \mod{q}| \leq \frac{1}{q}$.

- 1) Show $x^2 + \beta \pmod{q}$ hits $\geq (q+1)/2$ intervals.
- 2) Show that adding αx has a small effect since $|k\alpha \pmod q| \le \frac{1}{q}$.

We consider several sets and see how many intervals they hit.

$$\begin{split} &\mathrm{SQ}_q = \{1^2 \pmod q, 2^2 \pmod q, \ldots, q^2 \pmod q\}\}. \\ &q \text{ is a prime so squaring is 2-to-1}. \ \ \mathsf{Hence} \ |\mathrm{SQ}_q| = (q+1)/2. \end{split}$$

Recap There is a $k \not\equiv 0 \pmod{q}$ such that $|k\alpha| \mod{q}| \leq \frac{1}{q}$.

- 1) Show $x^2 + \beta \pmod{q}$ hits $\geq (q+1)/2$ intervals.
- 2) Show that adding αx has a small effect since $|k\alpha \pmod q| \le \frac{1}{q}$.

We consider several sets and see how many intervals they hit.

 $\mathrm{SQ}_q=\{1^2\pmod q,2^2\pmod q,\ldots,q^2\pmod q\}.$ q is a prime so squaring is 2-to-1. Hence $|\mathrm{SQ}_q|=(q+1)/2.$ Since every element in SQ_q is an integer, hits (q+1)/2 intervals.

We consider $f_1(x) = x^2 + \beta \pmod{q}$.

We consider $f_1(x) = x^2 + \beta \pmod{q}$.

$$X = \{f_1(1), f_1(2), \dots, f_1(q)\} = \{1^2 + \beta, 2^2 + \beta, \dots, q^2 + \beta\}$$

We consider $f_1(x) = x^2 + \beta \pmod{q}$.

$$X = \{f_1(1), f_1(2), \dots, f_1(q)\} = \{1^2 + \beta, 2^2 + \beta, \dots, q^2 + \beta\}$$

Since X is the squares all shifted by β , $|X_1| = (q+1)/2$.

We consider $f_1(x) = x^2 + \beta \pmod{q}$.

$$X = \{f_1(1), f_1(2), \dots, f_1(q)\} = \{1^2 + \beta, 2^2 + \beta, \dots, q^2 + \beta\}$$

Since X is the squares all shifted by β , $|X_1| = (q+1)/2$.

$$Y = \{f_1(k), f_1(2k), \dots, f_1(qk)\} = \{k^2 + \beta, (2k)^2 + \beta, \dots, (qk)^2 + \beta\}$$

We consider $f_1(x) = x^2 + \beta \pmod{q}$.

$$X = \{f_1(1), f_1(2), \dots, f_1(q)\} = \{1^2 + \beta, 2^2 + \beta, \dots, q^2 + \beta\}$$

Since X is the squares all shifted by β , $|X_1| = (q+1)/2$.

$$Y = \{f_1(k), f_1(2k), \dots, f_1(qk)\} = \{k^2 + \beta, (2k)^2 + \beta, \dots, (qk)^2 + \beta\}$$

Since $k \not\equiv 0 \pmod{q}, \{k, 2k, \dots, qk\} = \{1, 2, \dots, q\}$. Hence

Since $k \neq 0 \pmod{q}$, $\{k, 2k, \ldots, qk\} = \{1, 2, \ldots, q\}$. Hence X = Y.

Why
$$m = q^3$$
?

We have shown that

$$\{f_1(k), f_1(2k), \ldots, f_1(qk)\}.$$

hits (q+1)/2 intervals. Note that $qk \le q^3 = m$. This is why we needed $m = q^3$ in the hypothesis.

Why $m = q^3$?

We have shown that

$$\{f_1(k), f_1(2k), \ldots, f_1(qk)\}.$$

hits (q+1)/2 intervals. Note that $qk \le q^3 = m$. This is why we needed $m = q^3$ in the hypothesis.

We need to show that $Z = \{f(1), f(2), \dots, f(q^3)\}$ hits $\geq q/6$ intervals.

Why $m = q^3$?

We have shown that

$$\{f_1(k), f_1(2k), \ldots, f_1(qk)\}.$$

hits (q+1)/2 intervals. Note that $qk \le q^3 = m$. This is why we needed $m = q^3$ in the hypothesis.

We need to show that $Z = \{f(1), f(2), \dots, f(q^3)\}$ hits $\geq q/6$ intervals.

We will do this on the next slide.

 $\{f_1(k), f_1(2k), \dots, f_1(qk)\}$ hits (q+1)/2 intervals.

```
\{f_1(k), f_1(2k), \ldots, f_1(qk)\} hits (q+1)/2 intervals. We show that \{f(1), \ldots, f(q^3)\} hits \geq q/6 intervals by just looking at the subset \{f(k), f(2k), \ldots, f(qk)\}.
```

```
\{f_1(k),f_1(2k),\ldots,f_1(qk)\} hits (q+1)/2 intervals. We show that \{f(1),\ldots,f(q^3)\} hits \geq q/6 intervals by just looking at the subset \{f(k),f(2k),\ldots,f(qk)\}. \{f(k),f(2k),\ldots,f(qk)\}: f(k)=f_1(k)+k\alpha. Key Recall k\alpha\pmod q|\leq \frac1q\leq 1. f(2k)=f_1(2k)+2k\alpha. Key Recall 2k\alpha\pmod q|\leq \frac2q\leq 1. \vdots \vdots f(qk)=f_1(2k)+qk\alpha. Key Recall qk\alpha\pmod q|\leq \frac qq\leq 1.
```

```
 \{f_1(k), f_1(2k), \ldots, f_1(qk)\} \text{ hits } (q+1)/2 \text{ intervals.}  We show that \{f(1), \ldots, f(q^3)\} hits \geq q/6 intervals by just looking at the subset \{f(k), f(2k), \ldots, f(qk)\}.  \{f(k), f(2k), \ldots, f(qk)\}:  f(k) = f_1(k) + k\alpha. Key Recall k\alpha \pmod q | \leq \frac1q \leq 1.  f(2k) = f_1(2k) + 2k\alpha. Key Recall 2k\alpha \pmod q | \leq \frac2q \leq 1.  \vdots   f(qk) = f_1(2k) + qk\alpha. Key Recall qk\alpha \pmod q | \leq \frac q \leq 1.
```

Recap The set $Y = \{f_1(k), \dots, f_1(qk)\}$ hits (q+1)/2 intervals of length 1.

 $Z = \{f(k), \dots, f(qk)\}$ can be viewed as taking every element in Y and adding or subtracting ≤ 1 to it. It is easy to show that Z hits $\geq q/6$ intervals.

Case 2: $k \equiv 0 \pmod{q}$

OMITTED FOR NOW.

Another Lemma Of Independent Interest

The Sign Function and Other Notation

Def if $a \in \mathbb{R}$ then

The Sign Function and Other Notation

Def if $a \in \mathbb{R}$ then

$$sign(a) = \begin{cases} -1 & \text{if } a < 0 \\ 0 & \text{if } a = 0 \\ 1 & \text{if } a > 0 \end{cases}$$
 (1)

The Sign Function and Other Notation

Def if $a \in \mathbb{R}$ then

$$sign(a) = \begin{cases} -1 & \text{if } a < 0 \\ 0 & \text{if } a = 0 \\ 1 & \text{if } a > 0 \end{cases}$$
 (1)

Notation If $\eta \in \{-1,0,1\}^*$ then $\eta(i)$ is the *i*th character in η .

$$p_1(x, y) = x + 2y - 3$$
 $p_2(x, y) = -2x + 3y - 7$
 $p_3(x, y) = 4x - y$

$$p_1(x,y) = x + 2y - 3$$
 $p_2(x,y) = -2x + 3y - 7$
 $p_3(x,y) = 4x - y$
We care about $(sign(p_1(x,y)), sign(p_2(x,y)), sign(p_3(x,y)))$.

$$p_1(x,y) = x + 2y - 3$$
 $p_2(x,y) = -2x + 3y - 7$
 $p_3(x,y) = 4x - y$
We care about $(sign(p_1(x,y)), sign(p_2(x,y)), sign(p_3(x,y)))$.

(x,y)	$(p_1(x,y), p_2(x,y), p_3(x,y))$	sign pattern
(0,0)	(-3, -7, 0)	(-, -, 0)
(10,0)	(7, -27, 40)	(+,-,+)
(0, 10)	(17, 23, -10)	(+,+,-)
(1,1)	(0, -6, 3)	(0, -, +)
(5, 10)	(22, 13, 30)	(+,+,+)

There are $3^3 = 27$ sign patterns. (p_1, p_2, p_3) has at least 5.

$$p_1(x,y) = x + 2y - 3$$
 $p_2(x,y) = -2x + 3y - 7$
 $p_3(x,y) = 4x - y$
We care about $(sign(p_1(x,y)), sign(p_2(x,y)), sign(p_3(x,y)))$.

(x,y)	$(p_1(x,y), p_2(x,y), p_3(x,y))$	sign pattern
(0,0)	(-3, -7, 0)	(-, -, 0)
(10,0)	(7, -27, 40)	(+, -, +)
(0, 10)	(17, 23, -10)	(+, +, -)
(1,1)	(0, -6, 3)	(0, -, +)
(5, 10)	(22, 13, 30)	(+, +, +)

There are $3^3 = 27$ sign patterns. (p_1, p_2, p_3) has at least 5. I doubt it has anywhere near 27.

Def Let $p_1, \ldots, p_M \in \mathbb{R}[x, y]$.

```
Def Let p_1, \ldots, p_M \in \mathbb{R}[x, y]. Let X = (p_1, \ldots, p_M).
```

```
Def Let p_1, \ldots, p_M \in \mathbb{R}[x, y].
Let X = (p_1, \ldots, p_M).
\eta \in \{-, 0, +\}^M is a sign pattern for X if
```

```
Def Let p_1, \ldots, p_M \in \mathbb{R}[x, y].
Let X = (p_1, \ldots, p_M).
\eta \in \{-, 0, +\}^M is a sign pattern for X if there exists a_1, a_2 \in \mathbb{R} such that for all 1 \le i \le M
```

```
Def Let p_1, \ldots, p_M \in \mathbb{R}[x, y].

Let X = (p_1, \ldots, p_M).

\eta \in \{-, 0, +\}^M is a sign pattern for X if

there exists a_1, a_2 \in \mathbb{R} such that for all 1 \le i \le M

\operatorname{sign}(p_i(a_1, a_2)) = \eta(i).
```

Def Let $p_1, \ldots, p_M \in \mathbb{R}[x, y]$. Let $X = (p_1, \ldots, p_M)$. $\eta \in \{-, 0, +\}^M$ is a **sign pattern for** X if there exists $a_1, a_2 \in \mathbb{R}$ such that for all $1 \le i \le M$

$$sign(p_i(a_1, a_2)) = \eta(i).$$

Note Obvious bound on number of sign patterns: 3^M

Def Let $p_1, \ldots, p_M \in \mathbb{R}[x, y]$. Let $X = (p_1, \ldots, p_M)$. $\eta \in \{-, 0, +\}^M$ is a **sign pattern for** X if there exists $a_1, a_2 \in \mathbb{R}$ such that for all $1 \le i \le M$

$$\operatorname{sign}(p_i(a_1,a_2)) = \eta(i).$$

Note Obvious bound on number of sign patterns: 3^M Question Is there a better bound?

Def Let $p_1, \ldots, p_M \in \mathbb{R}[x, y]$. Let $X = (p_1, \ldots, p_M)$. $\eta \in \{-, 0, +\}^M$ is a **sign pattern for** X if there exists $a_1, a_2 \in \mathbb{R}$ such that for all $1 \le i \le M$

$$sign(p_i(a_1, a_2)) = \eta(i).$$

Note Obvious bound on number of sign patterns: 3^M **Question** Is there a better bound? Yes!

Lemma Let $M \in \mathbb{N}$. Let $p_1, \ldots, p_M \in \mathbb{Z}[x, y]$.

Lemma Let $M \in \mathbb{N}$. Let $p_1, \ldots, p_M \in \mathbb{Z}[x, y]$. The number of sign patterns is $\leq 25M^2$.

Lemma Let $M \in \mathbb{N}$. Let $p_1, \ldots, p_M \in \mathbb{Z}[x, y]$. The number of sign patterns is $\leq 25M^2$. Proof Omitted thought it is not hard.

Lemma Let $M \in \mathbb{N}$. Let $p_1, \ldots, p_M \in \mathbb{Z}[x, y]$. The number of sign patterns is $\leq 25M^2$. Proof Omitted thought it is not hard.

Lemma also a corollary of a theorem by Olenik-Petrovsky-Thom-Milnor.

Let $p_1(z_1, z_2)$, ..., $p_m(z_1.z_2) \in \mathbb{Z}[z_1, z_2]$. We denote this set of polynomials by F.

Let $p_1(z_1, z_2)$, ..., $p_m(z_1.z_2) \in \mathbb{Z}[z_1, z_2]$. We denote this set of polynomials by F.

1) An image-solution of F is just $(a, d; y_1, ..., y_m)$ where $(\forall 1 \le i \le m)[y_i = p_i(a, d)]$.

Let $p_1(z_1, z_2)$, ..., $p_m(z_1.z_2) \in \mathbb{Z}[z_1, z_2]$. We denote this set of polynomials by F.

- 1) An image-solution of F is just $(a, d; y_1, ..., y_m)$ where $(\forall 1 \le i \le m)[y_i = p_i(a, d)]$.
- 2) Assume the reals are 2-colored. Then a **mono image-solution** of F is an image-solution $(a, d; y_1, \ldots, y_m)$ where y_1, \ldots, y_m are all the same color. Note that a, d need not be that color.

Let $p_1(z_1, z_2)$, ..., $p_m(z_1.z_2) \in \mathbb{Z}[z_1, z_2]$. We denote this set of polynomials by F.

- 1) An image-solution of F is just $(a, d; y_1, ..., y_m)$ where $(\forall 1 \le i \le m)[y_i = p_i(a, d)]$.
- 2) Assume the reals are 2-colored. Then a **mono image-solution** of F is an image-solution $(a, d; y_1, \ldots, y_m)$ where y_1, \ldots, y_m are all the same color. Note that a, d need not be that color.
- 3) A Red image-solution of F and a Blue image-solution of F obvious.

We show that if prob of Bis $1 - q^{-1/2}$ then an no BLUE solution to a set of m equations.

We show that if prob of Bis $1 - q^{-1/2}$ then an no BLUE solution to a set of m equations.

We skip a lot of steps.

We show that if prob of Bis $1 - q^{-1/2}$ then an no BLUE solution to a set of m equations.

We skip a lot of steps.

We find a bound on a prob so that there is no **blue image-solution** to a set of polys.

We show that if prob of Bis $1-q^{-1/2}$ then an no BLUE solution to a set of m equations.

We skip a lot of steps.

We find a bound on a prob so that there is no **blue image-solution** to a set of polys.

This turns out to be equivalent.

We show that if prob of Bis $1 - q^{-1/2}$ then an no BLUE solution to a set of m equations.

We skip a lot of steps.

We find a bound on a prob so that there is no **blue image-solution** to a set of polys.

This turns out to be equivalent.

I am skipping some stuff of interest to get to some stuff that is of more interest.

Let q be a prime and let $m = q^3$.

Let q be a prime and let $m=q^3$. Let $p_1(z_1,z_2),\ldots,p_m(z_1,z_2)\in\mathbb{Z}[z_1,z_2]$ be such that:

Let q be a prime and let $m = q^3$.

Let $p_1(z_1, z_2), \dots, p_m(z_1, z_2) \in \mathbb{Z}[z_1, z_2]$ be such that:

1) For all i, $p_i(z_1, z_2)$ is linear in z_1, z_2 .

Let q be a prime and let $m = q^3$.

Let $p_1(z_1, z_2), \dots, p_m(z_1, z_2) \in \mathbb{Z}[z_1, z_2]$ be such that:

- 1) For all i, $p_i(z_1, z_2)$ is linear in z_1, z_2 .
- 2) Coefficients of $p_i(z_1, z_2)$ are quadratic polynomials in i over \mathbb{Z} .

Let q be a prime and let $m = q^3$.

Let $p_1(z_1, z_2), \dots, p_m(z_1, z_2) \in \mathbb{Z}[z_1, z_2]$ be such that:

- 1) For all i, $p_i(z_1, z_2)$ is linear in z_1, z_2 .
- 2) Coefficients of $p_i(z_1, z_2)$ are quadratic polynomials in i over \mathbb{Z} .
- 3) If $a, d \in [0, q]$ then, for all $i, 0 \le p_i(a, d) \le 2m^2$

Let q be a prime and let $m = q^3$.

Let $p_1(z_1, z_2), \dots, p_m(z_1, z_2) \in \mathbb{Z}[z_1, z_2]$ be such that:

- 1) For all i, $p_i(z_1, z_2)$ is linear in z_1, z_2 .
- 2) Coefficients of $p_i(z_1, z_2)$ are quadratic polynomials in i over \mathbb{Z} .
- 3) If $a, d \in [0, q]$ then, for all $i, 0 \le p_i(a, d) \le 2m^2$

Let b, r be such that $0 \le b, r \le 1$ and b + r = 1.

Let q be a prime and let $m = q^3$.

Let $p_1(z_1, z_2), \dots, p_m(z_1, z_2) \in \mathbb{Z}[z_1, z_2]$ be such that:

- 1) For all i, $p_i(z_1, z_2)$ is linear in z_1, z_2 .
- 2) Coefficients of $p_i(z_1, z_2)$ are quadratic polynomials in i over \mathbb{Z} .
- 3) If $a, d \in [0, q]$ then, for all $i, 0 \le p_i(a, d) \le 2m^2$

Let b, r be such that $0 \le b, r \le 1$ and b + r = 1.

Let COL' be a rand 2-col of \mathbb{Z}_q : prob(BLUE)=b, prob(RED)=r.

Let q be a prime and let $m = q^3$.

Let $p_1(z_1, z_2), \dots, p_m(z_1, z_2) \in \mathbb{Z}[z_1, z_2]$ be such that:

- 1) For all i, $p_i(z_1, z_2)$ is linear in z_1, z_2 .
- 2) Coefficients of $p_i(z_1, z_2)$ are quadratic polynomials in i over \mathbb{Z} .
- 3) If $a, d \in [0, q]$ then, for all $i, 0 \le p_i(a, d) \le 2m^2$

Let b, r be such that $0 \le b, r \le 1$ and b + r = 1.

Let COL' be a rand 2-col of \mathbb{Z}_q : prob(BLUE)=b, prob(RED)=r.

Let $COL(z) = COL'(z \mod q)$.

Let q be a prime and let $m = q^3$.

Let $p_1(z_1, z_2), \dots, p_m(z_1, z_2) \in \mathbb{Z}[z_1, z_2]$ be such that:

- 1) For all i, $p_i(z_1, z_2)$ is linear in z_1, z_2 .
- 2) Coefficients of $p_i(z_1, z_2)$ are quadratic polynomials in i over \mathbb{Z} .
- 3) If $a, d \in [0, q]$ then, for all $i, 0 \le p_i(a, d) \le 2m^2$

Let b, r be such that $0 \le b, r \le 1$ and b + r = 1.

Let COL' be a rand 2-col of \mathbb{Z}_q : prob(BLUE)=b, prob(RED)=r.

Let $COL(z) = COL'(z \mod q)$.

THEN

Let q be a prime and let $m = q^3$.

Let $p_1(z_1, z_2), \dots, p_m(z_1, z_2) \in \mathbb{Z}[z_1, z_2]$ be such that:

- 1) For all i, $p_i(z_1, z_2)$ is linear in z_1, z_2 .
- 2) Coefficients of $p_i(z_1, z_2)$ are quadratic polynomials in i over \mathbb{Z} .
- 3) If $a, d \in [0, q]$ then, for all $i, 0 \le p_i(a, d) \le 2m^2$

Let b, r be such that $0 \le b, r \le 1$ and b + r = 1.

Let COL' be a rand 2-col of \mathbb{Z}_q : prob(BLUE)=b, prob(RED)=r.

Let $COL(z) = COL'(z \mod q)$.

THEN

prob there is a **blue image-solution** to p_1, \ldots, p_m is $< 2500 m^6 b^{m/6}$.

We want to bound $Pr(COL(p_1(a, d)) = \cdots = COL(p_m(a, d)) = B).$

We want to bound $\Pr(\operatorname{COL}(p_1(a,d)) = \cdots = \operatorname{COL}(p_m(a,d)) = \mathbf{B}).$ If $\operatorname{COL}(p_1(a,d)) = \cdots = \operatorname{COL}(p_m(a,d)) = \mathbf{B})$ then:

```
We want to bound Pr(COL(p_1(a,d)) = \cdots = COL(p_m(a,d)) = B). If COL(p_1(a,d)) = \cdots = COL(p_m(a,d)) = B then:

1) p_1(a,d) \mod q is in int that COL' colors B. Prob b.

\vdots \vdots \vdots
```

```
We want to bound Pr(COL(p_1(a,d)) = \cdots = COL(p_m(a,d)) = B). If COL(p_1(a,d)) = \cdots = COL(p_m(a,d)) = B then:

1) p_1(a,d) \mod q is in int that COL' colors B. Prob b.

\vdots

m) p_m(a,d) \mod q is in an int that COL' colors B. Prob b.
```

```
We want to bound  \Pr(\operatorname{COL}(p_1(a,d)) = \cdots = \operatorname{COL}(p_m(a,d)) = \mathbf{B}).  If \operatorname{COL}(p_1(a,d)) = \cdots = \operatorname{COL}(p_m(a,d)) = \mathbf{B}) then:  1) \ p_1(a,d) \ \mathsf{mod} \ q \ \mathsf{is} \ \mathsf{in} \ \mathsf{int} \ \mathsf{that} \ \operatorname{COL}' \ \mathsf{colors} \ \mathbf{B}. \ \mathsf{Prob} \ b.   \vdots \qquad \vdots \qquad \vdots \\ m) \ p_m(a,d) \ \mathsf{mod} \ q \ \mathsf{is} \ \mathsf{in} \ \mathsf{an} \ \mathsf{int} \ \mathsf{that} \ \operatorname{COL}' \ \mathsf{colors} \ \mathbf{B}. \ \mathsf{Prob} \ b.  Might think prob is b^m.
```

```
We want to bound  \Pr(\operatorname{COL}(p_1(a,d)) = \cdots = \operatorname{COL}(p_m(a,d)) = \mathbf{B}).  If \operatorname{COL}(p_1(a,d)) = \cdots = \operatorname{COL}(p_m(a,d)) = \mathbf{B}) then:  1) \ p_1(a,d) \ \operatorname{mod} \ q \ \text{is in int that COL' colors } \mathbf{B}. \ \operatorname{Prob} \ b.   \vdots \qquad \vdots \qquad \vdots   m) \ p_m(a,d) \ \operatorname{mod} \ q \ \text{is in an int that COL' colors } \mathbf{B}. \ \operatorname{Prob} \ b.  Might think prob is b^m. Small!
```

```
We want to bound  \Pr(\operatorname{COL}(p_1(a,d)) = \cdots = \operatorname{COL}(p_m(a,d)) = \mathbf{B}).  If \operatorname{COL}(p_1(a,d)) = \cdots = \operatorname{COL}(p_m(a,d)) = \mathbf{B}) then:  1) \ p_1(a,d) \ \mathsf{mod} \ q \ \mathsf{is} \ \mathsf{in} \ \mathsf{int} \ \mathsf{that} \ \operatorname{COL}' \ \mathsf{colors} \ \mathbf{B}. \ \mathsf{Prob} \ b.   \vdots \qquad \vdots \qquad \vdots \\ m) \ p_m(a,d) \ \mathsf{mod} \ q \ \mathsf{is} \ \mathsf{in} \ \mathsf{an} \ \mathsf{int} \ \mathsf{that} \ \operatorname{COL}' \ \mathsf{colors} \ \mathbf{B}. \ \mathsf{Prob} \ b.  Might think prob is b^m. Small! Good!
```

```
We want to bound  \Pr(\operatorname{COL}(p_1(a,d)) = \cdots = \operatorname{COL}(p_m(a,d)) = \mathbf{B}).  If \operatorname{COL}(p_1(a,d)) = \cdots = \operatorname{COL}(p_m(a,d)) = \mathbf{B}) then:  1) \ p_1(a,d) \ \mathsf{mod} \ q \ \mathsf{is} \ \mathsf{in} \ \mathsf{int} \ \mathsf{that} \ \operatorname{COL}' \ \mathsf{colors} \ \mathbf{B}. \ \mathsf{Prob} \ b.   \vdots \qquad \vdots \qquad \vdots \\ m) \ p_m(a,d) \ \mathsf{mod} \ q \ \mathsf{is} \ \mathsf{in} \ \mathsf{an} \ \mathsf{int} \ \mathsf{that} \ \operatorname{COL}' \ \mathsf{colors} \ \mathbf{B}. \ \mathsf{Prob} \ b.  Might think prob is b^m. Small! Good! Alas No.
```

```
We want to bound  \Pr(\operatorname{COL}(p_1(a,d)) = \cdots = \operatorname{COL}(p_m(a,d)) = \mathbf{B}).  If \operatorname{COL}(p_1(a,d)) = \cdots = \operatorname{COL}(p_m(a,d)) = \mathbf{B}) then:  1) \ p_1(a,d) \ \mathsf{mod} \ q \ \mathsf{is} \ \mathsf{in} \ \mathsf{int} \ \mathsf{that} \ \mathsf{COL}' \ \mathsf{colors} \ \mathbf{B}. \ \mathsf{Prob} \ b.   \vdots \qquad \vdots \qquad \vdots \\ m) \ p_m(a,d) \ \mathsf{mod} \ q \ \mathsf{is} \ \mathsf{in} \ \mathsf{an} \ \mathsf{int} \ \mathsf{that} \ \mathsf{COL}' \ \mathsf{colors} \ \mathbf{B}. \ \mathsf{Prob} \ b.  Might think prob is b^m. Small! Good! Alas No. If all of the p_i(a,d) \ \mathsf{mod} \ q \ \mathsf{in} \ \mathsf{same} \ \mathsf{int} \ \mathsf{then} \ \mathsf{Prob} \ \mathsf{just} \ b.
```

```
We want to bound
Pr(COL(p_1(a,d)) = \cdots = COL(p_m(a,d)) = B).
If COL(p_1(a,d)) = \cdots = COL(p_m(a,d)) = B) then:
1) p_1(a, d) \mod q is in int that COL' colors B. Prob b.
m) p_m(a, d) \mod q is in an int that COL' colors B. Prob b.
Might think prob is b^m. Small! Good! Alas No.
If all of the p_i(a, d) mod q in same int then Prob just b.
How many distinct intervals do we get?
```

```
We want to bound
Pr(COL(p_1(a,d)) = \cdots = COL(p_m(a,d)) = B).
If COL(p_1(a,d)) = \cdots = COL(p_m(a,d)) = B) then:
1) p_1(a, d) \mod q is in int that COL' colors B. Prob b.
m) p_m(a, d) \mod q is in an int that COL' colors B. Prob b.
Might think prob is b^m. Small! Good! Alas No.
If all of the p_i(a, d) mod q in same int then Prob just b.
How many distinct intervals do we get?
By earlier Int theorem intersect \geq q/6 ints.
```

```
We want to bound
Pr(COL(p_1(a,d)) = \cdots = COL(p_m(a,d)) = B).
If COL(p_1(a,d)) = \cdots = COL(p_m(a,d)) = B) then:
1) p_1(a, d) \mod q is in int that COL' colors B. Prob b.
m) p_m(a, d) \mod q is in an int that COL' colors B. Prob b.
Might think prob is b^m. Small! Good! Alas No.
If all of the p_i(a, d) mod q in same int then Prob just b.
How many distinct intervals do we get?
By earlier Int theorem intersect \geq q/6 ints.
\{p_1(a,d) \bmod q, \ldots, p_m(a,d) \bmod q\} will int \geq q/6 intervals.
```

```
We want to bound
Pr(COL(p_1(a, d)) = \cdots = COL(p_m(a, d)) = B).
If COL(p_1(a,d)) = \cdots = COL(p_m(a,d)) = B then:
1) p_1(a, d) \mod q is in int that COL' colors B. Prob b.
m) p_m(a, d) \mod q is in an int that COL' colors B. Prob b.
Might think prob is b^m. Small! Good! Alas No.
If all of the p_i(a, d) mod q in same int then Prob just b.
How many distinct intervals do we get?
By earlier Int theorem intersect \geq q/6 ints.
\{p_1(a,d) \bmod q, \ldots, p_m(a,d) \bmod q\} will int \geq q/6 intervals.
Pr(COL(p_1(a,d)) = \cdots = COL(p_m(a,d)) = \mathbf{B}) \le b^{q/6}.
```

$$\Pr(\operatorname{COL}(p_1(a,d)) = \cdots = \operatorname{COL}(p_m(a,d)) = \mathbf{B}) \leq b^{q/6}.$$

is not about a, d: its about interval patterns.

$$\Pr(\operatorname{COL}(p_1(a,d)) = \cdots = \operatorname{COL}(p_m(a,d)) = \mathbf{B}) \leq b^{q/6}.$$

is not about a, d: its about interval patterns.

We map a, d to the set of intervals mod q that

$$\Pr(\operatorname{COL}(p_1(a,d)) = \cdots = \operatorname{COL}(p_m(a,d)) = \mathbf{B}) \leq b^{q/6}.$$
 is not about a,d : its about interval patterns. We map a,d to the set of intervals mod q that $p_1(a,d) \mod q, \ldots, p_m(a,d) \mod q$ are in.

$$\Pr(\operatorname{COL}(p_1(a,d)) = \dots = \operatorname{COL}(p_m(a,d)) = \mathbf{B}) \leq b^{q/6}$$
. is not about a,d : its about interval patterns. We map a,d to the set of intervals mod q that $p_1(a,d) \mod q,\dots,p_m(a,d) \mod q$ are in. Prob that ANY of those sets of ints are BLUE is $\leq (\operatorname{Number of sets of intervals}) \times b^{q/6}$

$$Pr(COL(p_1(a,d)) = \cdots = COL(p_m(a,d)) = \mathbf{B}) \le b^{q/6}.$$

is not about a, d: its about interval patterns.

We map a, d to the set of intervals mod q that

 $p_1(a, d) \mod q, \dots, p_m(a, d) \mod q$ are in.

Prob that ANY of those sets of ints are BLUE is

 \leq (Number of sets of intervals) $\times b^{q/6}$

Need number of intervals

Since the coloring is mod q we can assume $a, d \in [0, q)$.

Since the coloring is mod q we can assume $a, d \in [0, q)$.

By premise, $0 \le p_i(a, d) \le 2m^2$.

Since the coloring is mod q we can assume $a, d \in [0, q)$.

By premise, $0 \le p_i(a, d) \le 2m^2$.

We now ask about the intervals (not mod q).

Since the coloring is mod q we can assume $a, d \in [0, q)$.

By premise, $0 \le p_i(a, d) \le 2m^2$.

We now ask about the intervals (not mod q).

1) Of the ints [0,1), [1,2), ..., $[2m^2-1,2m^2)$ which one has $p_1(a,d)$? There are $2m^2$ possibilities.

Since the coloring is mod q we can assume $a, d \in [0, q)$.

By premise, $0 \le p_i(a, d) \le 2m^2$.

We now ask about the intervals (not mod q).

1) Of the ints [0,1), [1,2), ..., $[2m^2-1,2m^2)$ which one has $p_1(a,d)$? There are $2m^2$ possibilities.

Which ints can be determined from the sign changes of:

$$p_1(a,d)-1, p_1(a,d)-2,\ldots, p_1(a,d)-2m^2.$$

Since the coloring is mod q we can assume $a, d \in [0, q)$.

By premise, $0 \le p_i(a, d) \le 2m^2$.

We now ask about the intervals (not mod q).

1) Of the ints [0,1), [1,2), ..., $[2m^2-1,2m^2)$ which one has $p_1(a,d)$? There are $2m^2$ possibilities.

Which ints can be determined from the sign changes of:

$$p_1(a,d)-1, p_1(a,d)-2, \ldots, p_1(a,d)-2m^2.$$

m) Of the ints [0,1), [1,2), ..., $[2m^2-1,2m^2)$ which one has $p_m(a,d)$? There are $2m^2$ possibilities.

Which ints can be determined from the sign changes of:

$$p_m(a,d)-1, p_m(a,d)-2, \ldots, p_m(a,d)-2m^2.$$

Since the coloring is mod q we can assume $a, d \in [0, q)$.

By premise, $0 \le p_i(a, d) \le 2m^2$.

We now ask about the intervals (not mod q).

1) Of the ints [0,1), [1,2), ..., $[2m^2-1,2m^2)$ which one has $p_1(a,d)$? There are $2m^2$ possibilities.

Which ints can be determined from the sign changes of:

$$p_1(a,d)-1, p_1(a,d)-2, \ldots, p_1(a,d)-2m^2.$$

: : :

m) Of the ints [0,1), [1,2), ..., $[2m^2-1,2m^2)$ which one has $p_m(a,d)$? There are $2m^2$ possibilities.

Which ints can be determined from the sign changes of:

$$p_m(a,d)-1, p_m(a,d)-2, \ldots, p_m(a,d)-2m^2.$$

Seems like there are $(2m^2)^m$ possibilities.

Since the coloring is mod q we can assume $a, d \in [0, q)$.

By premise, $0 \le p_i(a, d) \le 2m^2$.

We now ask about the intervals (not mod q).

1) Of the ints [0,1), [1,2), ..., $[2m^2-1,2m^2)$ which one has $p_1(a,d)$? There are $2m^2$ possibilities.

Which ints can be determined from the sign changes of:

$$p_1(a,d)-1, p_1(a,d)-2, \ldots, p_1(a,d)-2m^2.$$

: : :

m) Of the ints [0,1), [1,2), ..., $[2m^2-1,2m^2)$ which one has $p_m(a,d)$? There are $2m^2$ possibilities.

Which ints can be determined from the sign changes of:

$$p_m(a,d)-1, p_m(a,d)-2, \ldots, p_m(a,d)-2m^2.$$

Seems like there are $(2m^2)^m$ possibilities. Big.

Since the coloring is mod q we can assume $a, d \in [0, q)$.

By premise, $0 \le p_i(a, d) \le 2m^2$.

We now ask about the intervals (not mod q).

1) Of the ints [0,1), [1,2), ..., $[2m^2-1,2m^2)$ which one has $p_1(a,d)$? There are $2m^2$ possibilities.

Which ints can be determined from the sign changes of:

$$p_1(a,d)-1, p_1(a,d)-2, \ldots, p_1(a,d)-2m^2.$$

: : :

m) Of the ints [0,1), [1,2), ..., $[2m^2-1,2m^2)$ which one has $p_m(a,d)$? There are $2m^2$ possibilities.

Which ints can be determined from the sign changes of:

$$p_m(a,d)-1, p_m(a,d)-2, \ldots, p_m(a,d)-2m^2.$$

Seems like there are $(2m^2)^m$ possibilities. Big. Bad for us.

Since the coloring is mod q we can assume $a, d \in [0, q)$.

By premise, $0 \le p_i(a, d) \le 2m^2$.

We now ask about the intervals (not mod q).

1) Of the ints [0,1), [1,2), ..., $[2m^2-1,2m^2)$ which one has $p_1(a,d)$? There are $2m^2$ possibilities.

Which ints can be determined from the sign changes of:

$$p_1(a,d)-1, p_1(a,d)-2, \ldots, p_1(a,d)-2m^2.$$

: : :

m) Of the ints [0,1), [1,2), ..., $[2m^2-1,2m^2)$ which one has $p_m(a,d)$? There are $2m^2$ possibilities.

Which ints can be determined from the sign changes of:

$$p_m(a,d)-1, p_m(a,d)-2, \ldots, p_m(a,d)-2m^2.$$

Seems like there are $(2m^2)^m$ possibilities. Big. Bad for us. Boo!

Consider the sequence of polynomials

Consider the sequence of polynomials

$$p_1(z_1,z_2)-1,\ldots,p_1(z_1,z_2)-2m^2,$$

Consider the sequence of polynomials

$$p_1(z_1,z_2)-1,\ldots,p_1(z_1,z_2)-2m^2,$$

$$p_m(z_1,z_2)-1,\ldots,p_m(z_1,z_2)-2m^2.$$

Consider the sequence of polynomials

$$p_1(z_1, z_2) - 1, \dots, p_1(z_1, z_2) - 2m^2,$$

 $\vdots \quad \vdots \quad \vdots \quad \vdots$
 $p_m(z_1, z_2) - 1, \dots, p_m(z_1, z_2) - 2m^2.$

Max numb of sign changes in this sequence is upper bound on numb of ways $p_1(a, d), \ldots, p_m(a, d)$ can be in the intervals.

Consider the sequence of polynomials

$$p_1(z_1, z_2) - 1, \dots, p_1(z_1, z_2) - 2m^2,$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$p_m(z_1,z_2)-1,\ldots,p_m(z_1,z_2)-2m^2.$$

Max numb of sign changes in this sequence is upper bound on numb of ways $p_1(a, d)$, ..., $p_m(a, d)$ can be in the intervals. By Sign Pattern Lemma, this is $\leq 625(2m^3)^2 = 2500m^6$.

Consider the sequence of polynomials

$$p_1(z_1, z_2) - 1, \dots, p_1(z_1, z_2) - 2m^2,$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$p_m(z_1,z_2)-1,\ldots,p_m(z_1,z_2)-2m^2.$$

Max numb of sign changes in this sequence is upper bound on numb of ways $p_1(a, d), \ldots, p_m(a, d)$ can be in the intervals.

By Sign Pattern Lemma, this is $\leq 625(2m^3)^2 = 2500m^6$.

Number of ways $p_1(a, d), \dots, p_m(a, d)$ are in the ints is $\leq 2500 m^6$.

Prob there is a **blue image-sol** is $\leq 2500m^6b^{q/6}$.

Prob there is a **blue image-sol** is $\leq 2500 m^6 b^{q/6}$. Take $m = q^3$ and $b = 1 - q^{-1/2} \sim e^{q^{-1/2}}$. $b^{q/6} \sim (e^{q^{-1/2}})^{q/6} = e^{q^{-3q}}$.

Prob there is a **blue image-sol** is $\leq 2500 m^6 b^{q/6}$.

Take
$$m = q^3$$
 and $b = 1 - q^{-1/2} \sim e^{q^{-1/2}}$. $b^{q/6} \sim (e^{q^{-1/2}})^{q/6} = e^{q^{-3q}}$.

Prob is
$$\leq 2500 m^6 b^{q/6} = 2500 (q^3)^6 e^{q^{-3q}} \sim 2500 \frac{q^{18}}{e^{q^{3q}}}$$
.

Prob there is a **blue image-sol** is $\leq 2500 m^6 b^{q/6}$.

Take
$$m = q^3$$
 and $b = 1 - q^{-1/2} \sim e^{q^{-1/2}}$. $b^{q/6} \sim (e^{q^{-1/2}})^{q/6} = e^{q^{-3q}}$.

Prob is $\leq 2500 m^6 b^{q/6} = 2500 (q^3)^6 e^{q^{-3q}} \sim 2500 \frac{q^{18}}{e^{q^{3q}}}$.

For q large enough this Prob is $< \frac{1}{2}$.

Prob there is a **blue image-sol** is $\leq 2500m^6b^{q/6}$.

Take
$$m = q^3$$
 and $b = 1 - q^{-1/2} \sim e^{q^{-1/2}}$. $b^{q/6} \sim (e^{q^{-1/2}})^{q/6} = e^{q^{-3q}}$.

Prob is
$$\leq 2500 m^6 b^{q/6} = 2500 (q^3)^6 e^{q^{-3q}} \sim 2500 \frac{q^{18}}{e^{q^{3q}}}$$
.

For q large enough this Prob is $<\frac{1}{2}$.

Prob of Ris $q^{-1/2}$. Implies Prob of Rsol to $y_1+y_3=2y_2+2$ is $<\frac{1}{2}$.

Prob there is a **blue image-sol** is $\leq 2500 m^6 b^{q/6}$.

Take $m = q^3$ and $b = 1 - q^{-1/2} \sim e^{q^{-1/2}}$. $b^{q/6} \sim (e^{q^{-1/2}})^{q/6} = e^{q^{-3q}}$.

Prob is $\leq 2500 m^6 b^{q/6} = 2500 (q^3)^6 e^{q^{-3q}} \sim 2500 \frac{q^{18}}{e^{q^{3q}}}$.

For q large enough this Prob is $<\frac{1}{2}$.

Prob of Ris $q^{-1/2}$. Implies Prob of Rsol to $y_1+y_3=2y_2+2$ is $<\frac{1}{2}$.

Prob of Bis $1 - q^{1/2}$. Implies Prob of Bimage-Sol is $< \frac{1}{2}$.

Prob there is a **blue image-sol** is $\leq 2500 m^6 b^{q/6}$.

Take
$$m = q^3$$
 and $b = 1 - q^{-1/2} \sim e^{q^{-1/2}}$. $b^{q/6} \sim (e^{q^{-1/2}})^{q/6} = e^{q^{-3q}}$.

Prob is
$$\leq 2500 m^6 b^{q/6} = 2500 (q^3)^6 e^{q^{-3q}} \sim 2500 \frac{q^{18}}{e^{q^{3q}}}$$
.

For q large enough this Prob is $<\frac{1}{2}$.

Prob of Ris $q^{-1/2}$. Implies Prob of Rsol to $y_1+y_3=2y_2+2$ is $<\frac{1}{2}$.

Prob of Bis $1 - q^{1/2}$. Implies Prob of Bimage-Sol is $< \frac{1}{2}$.

Last line implies Prob of B solution to

$$(\forall 2 \le lem - 2)[y_{i-1} + y_{i+2} = 2y_i + 2]$$
 is $\le \frac{1}{2}$ for large enough m .

Prob there is a **blue image-sol** is $\leq 2500 m^6 b^{q/6}$.

Take $m = q^3$ and $b = 1 - q^{-1/2} \sim e^{q^{-1/2}}$. $b^{q/6} \sim (e^{q^{-1/2}})^{q/6} = e^{q^{-3q}}$.

Prob is $\leq 2500 m^6 b^{q/6} = 2500 (q^3)^6 e^{q^{-3q}} \sim 2500 \frac{q^{18}}{e^{q^{3q}}}$.

For q large enough this Prob is $< \frac{1}{2}$.

Prob of Ris $q^{-1/2}$. Implies Prob of Rsol to $y_1+y_3=2y_2+2$ is $<\frac{1}{2}$.

Prob of Bis $1 - q^{1/2}$. Implies Prob of Bimage-Sol is $< \frac{1}{2}$.

Last line implies Prob of B solution to

 $(\forall 2 \le lem - 2)[y_{i-1} + y_{i+2} = 2y_i + 2]$ is $\le \frac{1}{2}$ for large enough m.

Hence there exists a 2-coloring with no $\mathbb{R}\ell_3$ or $\mathbb{B}\ell_m$ for large enough m.

