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The Erdös-Turan Conjecture

Def Let N ∈ N. Let A ⊆ [N]. The density of A is |A|/N.

Szemerédi’s Thm For all δ > 0, for all k , there exists
N = N(δ, k) such that the following holds:

If A ⊆ [N] and A has density ≥ δ then A has a k-AP.

We won’t do the (hard) proof. We will do:

1) Some easy cases, and

2) The k = 3 case which involves the Discrete Fourier Transform.
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An Easy Case

Thm Let N ≥ 3. Let A ⊆ [N] of density ≥ 0.67. Then A contains
a 3-AP.

We can assume N ≡ 0 (mod 3).
Look at

{1, 2, 3}, {4, 5, 6}, . . . , {N − 2,N − 1,N}.

Case 1 ∃x ≡ 1 (mod 3), {x , x + 1, x + 2} ∈ A. A has a 3-AP.

Case 2 ∀x ≡ 1 (mod 3), |{x , x + 1, x + 2} ∩ A| ≤ 2. Then

|A| ≤ 2× N
3 ≤ 0.667N < 0.67N

This contradicts A having density ≥ 0.67.

There may be a HW where you are asked to prove theorems like
the 0.67-Theorem.
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Roth’s Theorem

Roth’s Theorem For all δ > 0 there exists N = N(δ) such that
the following holds

For all A ⊆ [N] of density ≥ δ, A has a 3-AP.

The Intuition behind the proof will be short and clear.

The formal proof will be long and use interesting math.
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Intuition Behind Roth’s Theorem

Given A ⊆ [N] of density δ we show one of the following happens.

1) A looks random. Then A will have a 3-AP.

2) There is a very large AP N ′ ⊆ [N]

N ′ = {a, a + d , . . . , a + kd}

such that
A ∩ N ′ has density δ′ > δ in N ′.

Can view A ∩ N ′ as a denser-than-δ subset of N ′.

Repeat this procedure until either you get the Random case or
the density is ≥ 0.67.

Much of what I said here isn’t quite right, but thats the intuition.



Intuition Behind Roth’s Theorem

Given A ⊆ [N] of density δ we show one of the following happens.

1) A looks random. Then A will have a 3-AP.

2) There is a very large AP N ′ ⊆ [N]

N ′ = {a, a + d , . . . , a + kd}

such that
A ∩ N ′ has density δ′ > δ in N ′.

Can view A ∩ N ′ as a denser-than-δ subset of N ′.

Repeat this procedure until either you get the Random case or
the density is ≥ 0.67.

Much of what I said here isn’t quite right, but thats the intuition.



Intuition Behind Roth’s Theorem

Given A ⊆ [N] of density δ we show one of the following happens.

1) A looks random. Then A will have a 3-AP.

2) There is a very large AP N ′ ⊆ [N]

N ′ = {a, a + d , . . . , a + kd}

such that
A ∩ N ′ has density δ′ > δ in N ′.

Can view A ∩ N ′ as a denser-than-δ subset of N ′.

Repeat this procedure until either you get the Random case or
the density is ≥ 0.67.

Much of what I said here isn’t quite right, but thats the intuition.



Intuition Behind Roth’s Theorem

Given A ⊆ [N] of density δ we show one of the following happens.

1) A looks random. Then A will have a 3-AP.

2) There is a very large AP N ′ ⊆ [N]

N ′ = {a, a + d , . . . , a + kd}

such that
A ∩ N ′ has density δ′ > δ in N ′.

Can view A ∩ N ′ as a denser-than-δ subset of N ′.

Repeat this procedure until either you get the Random case or
the density is ≥ 0.67.

Much of what I said here isn’t quite right, but thats the intuition.



Intuition Behind Roth’s Theorem

Given A ⊆ [N] of density δ we show one of the following happens.

1) A looks random. Then A will have a 3-AP.

2) There is a very large AP N ′ ⊆ [N]

N ′ = {a, a + d , . . . , a + kd}

such that
A ∩ N ′ has density δ′ > δ in N ′.

Can view A ∩ N ′ as a denser-than-δ subset of N ′.

Repeat this procedure until either you get the Random case or
the density is ≥ 0.67.

Much of what I said here isn’t quite right, but thats the intuition.



Intuition Behind Roth’s Theorem

Given A ⊆ [N] of density δ we show one of the following happens.

1) A looks random. Then A will have a 3-AP.

2) There is a very large AP N ′ ⊆ [N]

N ′ = {a, a + d , . . . , a + kd}

such that
A ∩ N ′ has density δ′ > δ in N ′.

Can view A ∩ N ′ as a denser-than-δ subset of N ′.

Repeat this procedure until either you get the Random case or
the density is ≥ 0.67.

Much of what I said here isn’t quite right, but thats the intuition.



Intuition Behind Roth’s Theorem

Given A ⊆ [N] of density δ we show one of the following happens.

1) A looks random. Then A will have a 3-AP.

2) There is a very large AP N ′ ⊆ [N]

N ′ = {a, a + d , . . . , a + kd}

such that
A ∩ N ′ has density δ′ > δ in N ′.

Can view A ∩ N ′ as a denser-than-δ subset of N ′.

Repeat this procedure until either you get the Random case or
the density is ≥ 0.67.

Much of what I said here isn’t quite right, but thats the intuition.



Intuition Behind Roth’s Theorem

Given A ⊆ [N] of density δ we show one of the following happens.

1) A looks random. Then A will have a 3-AP.

2) There is a very large AP N ′ ⊆ [N]

N ′ = {a, a + d , . . . , a + kd}

such that
A ∩ N ′ has density δ′ > δ in N ′.

Can view A ∩ N ′ as a denser-than-δ subset of N ′.

Repeat this procedure until either you get the Random case or
the density is ≥ 0.67.

Much of what I said here isn’t quite right, but thats the intuition.



How Will δ′ and δ Relate

What if the δ increase as follows;
δ,

δ + δ100

2 ,

δ + δ100

2 + δ100

22
.

δ + δ2

2 + δ100

22
+ δ100

23
.

...
Then density is always
< δ + δ100

∑∞
i=1

1
2i

= δ + δ100.

If δ = 1
10 then density is always < 1

10 + 1
10100

.
Much less than 0.67.
We increase δ enough so that the density goes to ∞.
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How Will δ′ and δ Relate?

We will later get δ′ ≥ δ + δ2

80 .

Let

δ0 = δ.

δn = δn−1 +
δ2n−1

80
Clearly δn is increasing.

Hence
δn ≥ δn−1 +

δ20
80 .

One can show by induction that

δn ≥ δ0 + n
δ20
80 .

Take n =
⌈
80
δ20

⌉
to get

δn ≥ δ0 + 1.

Hence limn→∞ δn =∞.
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We Will Operate in ZN , not [N]

We will prove the following:
Roth’s Theorem For all δ > 0 there exists N = N(δ) such that
the following holds

For all A ⊆ ZN of density ≥ δ, A has a 3-AP.

Objection! What if the 3-AP is N − 2,N − 1, 0? Then we don’t
have a 3-AP in [N] like we want to.

Next slide will deal with this.
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For all A ⊆ ZN of density ≥ δ, A has a 3-AP.
We assume 3 divides N.

View A as
A ∩ {0, . . . ,N/3} ∪ {N/3 + 1, . . . , 2N/3} ∪ {2N/3, . . . ,N − 1}.
Case 1 The density of A ∩ {N/3 + 1, . . . , 2N/3} is ≥ δ/5. Then
do the proof on A ∩ {N/3 + 1, . . . , 2N/3} is ≥ δ/5. Will get a
legit 3-AP

Case 2 The density of A ∩ {N/3 + 1, . . . , 2N/3} is < δ/5. One
can show that either A∩ {0, . . . ,N/3} or A∩ {N/3 + 1, . . . , 2N/3}
is > δ (by enough so that if we keep doing this get > 0.67).
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Detour:
Discrete Fourier Transform



Discrete Fourier Transform

Discrete Fourier Transform (DFT) Let N ∈ N. Let

χ(z) = e
−2πiz

N . Then, the DFT of a function f : ZN → C, denoted
as f̂ , is defined as:

f̂ (m) =
N−1∑
x=0

f (x)χ(−mx)

We will use usually use this with f being the indicator function of a
set A ⊆ ZN .



QUESTIONS FOR KELIN ON DFT-CAN WAIT

1) How does the DFT compare to the usual FT?

2) In the usual FT is some coefficient being small significant?

3) What is the intuition behind Plancherel equation? Is the proof
easy- just pushing symbols around, or not? I think there is a
similar equation for FT. Is the proof similar? Identical?

4) You have Convolution (unconventional) What is this
unconventional? What is the intuition behind convolution? Is the
proof easy- just pushing symbols around, or not? I think there is a
similar equation for FT. Is the proof similar? Identical?



KELIN- Possible CHANGES FOR THE
SLIDES-CAN WAIT

1) We might want to NOT use χ(z) and just use
−2πiz

N .

2) In Math (though perhaps not in the papers you’ve been
reading) z usually goes through the complex numbers. Hence we
might want to define use x instead of z .

3) These are all LATER changes that we MIGHT NOT MAKE and
are NOT THAT IMPORTANT. But I note them here to remind us.



Large and Small Fourier Coefficients

Let A ⊆ ZN . We view A as a 0-1 valued function in the obvious
way.

Â(m) =
∑N−1

x=0 A(x)χ(−mx)

Note that Â(0) =
∑N−1

x=0 A(x)χ(0) =
∑N−1

x=0 A(x) = |A|.
Informal Fact
1) If maxx 6=0 Â(x) is small then A looks random.

1) If maxx 6=0 Â(x) is large then A looks non-random.
See next few slide for examples.
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1) If maxx 6=0 Â(x) is small then A looks random.
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1) If maxx 6=0 Â(x) is small then A looks random.
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Small Fourier Coefficients
Let A be the set of quadratic Residues mod 199. This is a
random-looking set.

Figure: Left: Summands of Â(1). Right: Summands of Â(3)

Left Â(1) =
∑198

x=0 A(x)χ(−x). The blue dots on the circle are the

summands. Note that they mostly cancel out, so Â(1) is small.

Right Â(3) =
∑198

x=0 A(x)χ(−3x). The blue dots on the circle are

the summands. Note that they mostly cancel out, so Â(3) is small.

All of the Â(m) for m 6= 0 are small.
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Large Fourier Coefficients

We look at a non-random set A and two of its Fourier Coefficients.

The set A is: formed as follows.

Take the union of the following sets.
{10, 20, . . . , 190} (an AP- not random)

{16, 26, 36, . . . , 186} (an AP- not random)

{17, 18, 59} (Some noise tossed in)
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Large Fourier Coefficients
Let A be the AP from the prior slide.

Figure: Left: Summands of Â(1). Right: Summands of Â(40)
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x=0 A(x)χ(−x). The blue dots on the circle are the

summands. Note that they mostly cancel out, so Â(1) is small.

Right Â(40) =
∑198

x=0 A(x)χ(−40x). The blue dots on the circle
are the summands. Note that they mostly do not cancel out, so
Â(40) is large.

Non-Rand Since A is non-random, ∃m 6= 0, Â(m) large.
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PROJECT-Write Programs For The Following

Random Sets Given N, Form A = QRN , the set of quad residues
mod N. Then find, ∀m ∈ A− {0}, Â(m). Find the max M Should
have M � |A|.

Non-Rand Sets Given N and a, d , L ∈ ZN (d , L 6= 0), first form

A = {a, a + d , . . . , a + Ld} The arithmetic is mod N .

Then find, ∀m ∈ A− {0}, Â(m). Find the max M. Should have M
large, perhaps close to |A|.

Non-Rand Sets? Given N and x , y , L ∈ ZN (d , L 6= 0), first form
A a random union of x AP’s of length y . Then find, ∀m ∈ A−{0},
Â(m). Find the max M. For which x , y is M small? large?



Plan For The Proof

Let Q be the number of 3-AP’s in A.

We will obtain

Q =
1

N
|B|2|A|+ E

where |E | ≤ maxm 6=0 |Â(m)||B|.
Case 1 A ∩ [N/3, 2N/3] has low density. Then one of
A ∩ [0,N/3− 1] or ∩[2N/3 + 1,N] has density > δ.

Case 2 A ∩ [N/3, 2N/3] has high density > δ. has density > δ.

Case 3 A ∩ [N/3, 2N/3] has medium density and maxm 6=0 |Â(m)|
is “small”. Then |Q| ≥ 1, so A has a 3-AP.

Case 4 maxm 6=0 |Â(m)| is “large” (possibly negative so Q could be
0) then there is a long AP P such that A has density > δ in P.
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Case 1 A ∩ [N/3, 2N/3] has low density. Then one of
A ∩ [0,N/3− 1] or ∩[2N/3 + 1,N] has density > δ.

Case 2 A ∩ [N/3, 2N/3] has high density > δ. has density > δ.

Case 3 A ∩ [N/3, 2N/3] has medium density and maxm 6=0 |Â(m)|
is “small”. Then |Q| ≥ 1, so A has a 3-AP.
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Initial Setup

1) We assume that N is odd so that 2 is invertible in ZN . If N is
even, we may replace N with N + 1 leading to a negligible change
in density.

2) Let B = A ∩ [N3 ,
2N
3 ).

3) If x , y , z is a 3-AP in ZN such that x + z ≡ 2y (mod N), with
x , y ∈ B and z ∈ A, then it is also a 3-AP in N.

4) Q be the number of 3-APs in A where x , y ∈ B.

5) We will express Q as a summation involving A and B.

6) We will express Q as a summation involving Â and B̂.
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Initial Setup

1) We assume that N is odd so that 2 is invertible in ZN . If N is
even, we may replace N with N + 1 leading to a negligible change
in density.

2) Let B = A ∩ [N3 ,
2N
3 ).

3) If x , y , z is a 3-AP in ZN such that x + z ≡ 2y (mod N), with
x , y ∈ B and z ∈ A, then it is also a 3-AP in N.

4) Q be the number of 3-APs in A where x , y ∈ B.

5) We will express Q as a summation involving A and B.

6) We will express Q as a summation involving Â and B̂.
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Q As a Summation Involving A and B

All summations are from 0 to N − 1 with some conditions added.

Q =
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x ,y ,z,x+z≡2y B(x)B(y)A(z)

We want to have a summation without conditions. Consider∑
m

∑
x ,y ,z B(x)B(y)A(z)χ(−m(x + z − 2y))

When x + z = 2y , χ(−m(x + z − 2y) = 1 so we get NQ as a
subsum.
We claim that all of the other terms cancel out.
KELIN: WHY DO THE OTHER TERMS CANCEL OUT?

Hence∑
m

∑
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So
Q = 1
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Q As a Summation Involving Â and B̂

Q = 1
N

∑
x ,y ,z,m B(x)B(y)A(z)χ(−m(x + z − 2y))

KELIN: FILL IN HOW DO YOU GET FROM THE LINE
ABOVE TO THE LINE BELOW

Q = 1
N

∑
m B̂(m)B̂(−2m)Â(m)



Split the Sum Into a Big Part and an Error Term

Q = 1
N

∑
m B̂(m)B̂(−2m)Â(m)

Split the sum into two parts:

m = 0 We get 1
N

∑
m B̂(0)B̂(0)Â(0) = 1

N |B|
2|A|.

m 6= 0 We get 1
N

∑
m 6=0 B̂(m)B̂(−2m)Â(m)

We denote this sum by E for error.

Despite the name, it might be large.
If |E | is large and negative then you may get |Q| ≤ 0.

We will analyze E very carefully.
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Bounding |E | Using Elementary Math
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N maxm 6=0 |Â(m)|

∑
m 6=0 |B̂(m)B̂(−2m)|

When m = 0, B̂(m)B̂(2m) = |B|2 ≥ 0. Since the last line is an
inequality we can add the m = 0 back into it.

|E | ≤ 1
N maxm 6=0 |Â(m)|

∑
m |B̂(m)B̂(−2m)|
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∑
m |B̂(m)B̂(−2m)|



Bounding |E | Using Elementary Math

E = 1
N

∑
m 6=0 B̂(m)B̂(−2m)Â(m)
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∑
m 6=0 |B̂(m)B̂(−2m)|

When m = 0, B̂(m)B̂(2m) = |B|2 ≥ 0. Since the last line is an
inequality we can add the m = 0 back into it.

|E | ≤ 1
N maxm 6=0 |Â(m)|
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Bounding |E | Using The Cauchy-Schwarts Inequality

|E | ≤ 1
N maxm 6=0 |Â(m)|

∑
m |B̂(m)B̂(−2m)|

Recall that Cauchy-Schwartz inequality
If x , y ∈ Cn, |

∑n
i=1 xiyi | ≤ (

∑n
i=1 |x2i |)1/2(

∑n
i=1 |y2i |)1/2.

Apply this to
∑

m B̂(m)B̂(−2m)| to get

|E | ≤ 1
N maxm 6=0 |Â(m)|(

∑
m |B̂(m)2|)1/2(

∑
m |B̂(−2m)|2)1/2.
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∑
m |B̂(m)B̂(−2m)|

Recall that Cauchy-Schwartz inequality
If x , y ∈ Cn, |

∑n
i=1 xiyi | ≤ (

∑n
i=1 |x2i |)1/2(

∑n
i=1 |y2i |)1/2.

Apply this to
∑

m B̂(m)B̂(−2m)| to get

|E | ≤ 1
N maxm 6=0 |Â(m)|(
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Bounding |E | Using that 2 is Invertible Mod N

|E | ≤ 1
N maxm 6=0 |Â(m)|(

∑
m |B̂(m)2|)1/2(

∑
m |B̂(−2m)|2)1/2.

Since 2 is invertible mod N we have

∑
m

|B̂(−2m)| =
∑
m

|B̂(m)|

Hence

|E | ≤ 1
N maxm 6=0 |Â(m)|

∑
m |B̂(m)2|

We want to bound |
∑

m |B̂(m)2| in terms of B.
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Bounding |E | Using Plancherel Theorem

|E | ≤ 1
N maxm 6=0 |Â(m)|

∑
m |B̂(m)2|

“Recall” Plancherel Theorem∑
x∈ZN

|f (x)|2 = 1
N

∑
m∈ZN

|f̂ (m)|2

In the case where f is an indicator function for a set we get∑
x∈ZN

f (x) = 1
N

∑
m∈ZN

|f̂ (m)|2

Apply this to 1
N

∑
m∈ZN

|f̂ (m)|2 to get

|E | ≤ maxm 6=0 |Â(m)|
∑

m B(m) ≤ maxm 6=0 |Â(m)||B|
We are done bounding |E |.
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Four Cases

The proof now goes into four cases:

Case 1 |B| < |A|
5 . We show A ∩ [0, N3 − 1] or A ∩ [2N3 ,N] has

density ≥ 6δ
5 .

Case 2 |B| > 11|A|
30 . We show B has density 11δ

10 .

Case 3 |A|5 ≤ |B| ≤
11|A|
30 and maxm 6=0 |Â(m)| ≤ δ2N

10 . We show
that, if N is large enough, Q ≥ 1. This is not quite enough to get
a 3-AP in A but we will deal with that later.

Case 4 maxm 6=0 |Â(m)| > δ2N
10 . (We do not need info on |B|.).

There is a long AP P such that the density of A in P is ≥ δ + δ2

40 .

After the 4 cases we recap and see why we have the theorem.
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Case 1: |B| < |A|
5

Case 1 |B| < |A|
5 . Recall that B = A ∩ [N3 ,

2N
3 − 1].

A = (A ∩ [0, N3 − 1]) ∪ B ∪ (A ∩ [2N3 ,N]), and |B| < |A|
5 so(

A ∩
[

0,
N

3
− 1

])
∪
(
A ∩

[
2N

3
,N

])
≥ 4|A|

5
.

We can assume A ∩ [0, N3 − 1] ≥ 2|A|
5 .

Since|A| ≥ δN we have 2|A|
5 ≥

2δN
5 .

A ∩
[

0,
N

3
− 1

]
≥ 2|A|

5
≥ 2δN

5
= (6δ/5)N/3.

Hence A ∩ [0, N3 − 1] has density 6δ/5.

That is all we need.
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Case 3: |A|
5
≤ |B| ≤ 11|A|

30
& maxm 6=0 |Â(m)| ≤ δ2N

10

|Q| = 1
N |B|

2|A|+ E . Always True.

|E | ≤ maxm 6=0 |Â(m)||B|. Always True.

Plan

We want to show Q ≥ 1 (This is not quite enough, but we deal
with it later.)

1) We use |B| ≥ |A|5 to show that 1
N |B|

2|A| is large.

2) We use |B| ≤ 11|A|
30 and maxm 6=0 Â(m)| ≤ δ2N

10 to show |E | is
small.
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1) Using |B| ≥ |A|
5

Since |B| ≥ |A|5 we have

1

N
|B|2|A| ≥ |A|

3

25N
.

Since |A| ≥ δN we have

|A|3

25N
≥ δ3N2

25
.

Ushot

1

N
|B|2|A| ≥ δ3N2

25
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|E | ≤ max
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≤ δ2N
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× 11δN
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Lower Bound on |Q|

|Q| = |B|2|A|+ E ≥ δ3N2

25
− 11δ3N2

300

Want N such that |Q| ≥ 1.

Here is the subtle point we alluded to earlier. Q is the set of all
3-AP’s in A. This includes 3-APs of the form x , x , x . So we really
want Q − |A| ≥ 1. Since |A| ∼ δN we really need Q − δN ≥ 1.
δ3N2

25 −
11δ3N2

300 − δN ≥ 1

( δ
3

25 −
11δ3

300 )N2 − δN ≥ 1

δ3

300N
2 − δN ≥ 1.

We leave it to the reader to determine N large enough so that this
inequality holds.
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1) Let r be such that |Â(r)| is maximized.
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3) Note that x > δ2N
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We will use these later.

We want a large AP P st A has density > δ in it.
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The Difference d For The AP P We Seek

Let r be as on the last slide.

Divide ZN into roughly
√
N intervals of size roughly

√
N.

Map x ∈ ZN to the interval that rx (mod N) is in.

Pigeonhole Principle: ∃p < q that map to same interval.

Hence r(p − q) ≤
√
N (mod N). Let d = p − q.

We can assume
√
N
6 ∈ N.

Let P be the AP

{
−d
√
N

6
,
−d
√
N

6
+ d ,

−d
√
N

6
+ 2d , · · · , 0, d , 2d , · · · , d

√
N

6
.
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We need information on χ(−rx) as x ∈ P.
χ(−rx) = e2πirx/N

χ(−rx) depends on rx (mod N)

We know that rd ≤
√
N (mod N).

We know that |x | ≤ d
√
N

6 .

KELIN: FINISH THIS FOR ME TO GET |P̂(r) ≥ |P|/2.
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Small Detour: Convolution

Def If f , g : ZN → C then the convolution of f and g , denoted
f ∗ g , is a function from : ZN → C defined

(f ∗ g)(x) =
∑
y

f (y)g(x − y).

Thm For all m, f̂ ∗ g(m) = f̂ (m)ĝ(m).
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