BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Euclidean Ramsey Theory: Triangles

Exposition by William Gasarch

May 3, 2025

Credit Where Credit is Due

The the main thm of these slides is due to Paul Erdös, Ronald Graham, Peter Montgomery, Bruce L. Rothchild, Joel Spencer, Ernst G. Straus.

Credit Where Credit is Due

The the main thm of these slides is due to Paul Erdös, Ronald Graham, Peter Montgomery, Bruce L. Rothchild, Joel Spencer, Ernst G. Straus.

Euclidean Ramsey Theorems I

Credit Where Credit is Due

The the main thm of these slides is due to Paul Erdös, Ronald Graham, Peter Montgomery, Bruce L. Rothchild, Joel Spencer, Ernst G. Straus.

Euclidean Ramsey Theorems I

Journal of Combinatorial Theory (A), Vol. 14, 341-363, 1973

Here is a link.

https://www.cs.umd.edu/~gasarch/TOPICS/eramsey/eramseyOne.pdf

Def A **mono eq-tri** is an **equilateral triangle** where all the vertices are the same color.

Def A **mono eq-tri** is an **equilateral triangle** where all the vertices are the same color.

Def A **mono eq-tri** is an **equilateral triangle** where all the vertices are the same color.

Vote

1) \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists$ a mono eq-tri.

Def A **mono eq-tri** is an **equilateral triangle** where all the vertices are the same color.

- 1) \forall COL: $\mathbb{R}^2 \rightarrow [2] \exists$ a mono eq-tri.
- 2) $\exists \ \mathrm{COL} \colon \mathbb{R}^2 \to [2]$ such that there are no mono eq-tri.

Def A **mono eq-tri** is an **equilateral triangle** where all the vertices are the same color.

- 1) \forall COL: $\mathbb{R}^2 \rightarrow$ [2] \exists a mono eq-tri.
- 2) $\exists \text{ COL} \colon \mathbb{R}^2 \to [2]$ such that there are no mono eq-tri.
- 3) Unknown to Science!

Def A **mono eq-tri** is an **equilateral triangle** where all the vertices are the same color.

- 1) \forall COL: $\mathbb{R}^2 \rightarrow$ [2] \exists a mono eq-tri.
- 2) $\exists \text{ COL} \colon \mathbb{R}^2 \to [2]$ such that there are no mono eq-tri.
- 3) Unknown to Science! Answer on next slide

$\exists COL \colon \mathbb{R}^2 \to [2]$ No Mono Eq-Tri

Thm \exists COL: $\mathbb{R}^2 \rightarrow [2]$ with no mono Eq-Tri.

$\exists \text{COL} \colon \mathbb{R}^2 \to [2] \text{ No Mono Eq-Tri}$

Thm \exists COL: $\mathbb{R}^2 \rightarrow$ [2] with no mono Eq-Tri. Leave as an exercise.

$\exists \text{COL} \colon \mathbb{R}^2 \to [2] \text{ No Mono Eq-Tri}$

Thm $\exists \ \mathrm{COL} \colon \mathbb{R}^2 \to [2]$ with no mono Eq-Tri.

Leave as an exercise.

So we can't always get a mono Eq-Tri. :-(

$\exists COL \colon \mathbb{R}^2 \to [2]$ No Mono Eq-Tri

Thm \exists COL: $\mathbb{R}^2 \to [2]$ with no mono Eq-Tri. Leave as an exercise. So we can't always get a mono Eq-Tri. :-(How about a 2-2-2 triangle? :-)

$\exists \mathrm{COL} \colon \mathbb{R}^2 \to [2]$ No Mono Eq-Tri

```
Thm \exists COL: \mathbb{R}^2 \to [2] with no mono Eq-Tri. Leave as an exercise. So we can't always get a mono Eq-Tri. :-( How about a 2-2-2 triangle? :-) Thats stupid! Just scale the coloring. :-(
```

$\exists COL \colon \mathbb{R}^2 \to [2]$ No Mono Eq-Tri

```
Thm \exists COL: \mathbb{R}^2 \to [2] with no mono Eq-Tri. Leave as an exercise. So we can't always get a mono Eq-Tri. :-( How about a 2-2-2 triangle? :-) Thats stupid! Just scale the coloring. :-( New Question either a mono 1-1-1 or mono 2-2-2 or \cdots.
```

Let T_{α} be the $\alpha - \alpha - \alpha$ Eq Triangle.

Let T_{α} be the $\alpha - \alpha - \alpha$ Eq Triangle.

 T_{α} is **mono** if all of the vertices are the same color.

Let T_{α} be the $\alpha - \alpha - \alpha$ Eq Triangle.

 T_{α} is **mono** if all of the vertices are the same color.

Thm $\forall COL \colon \mathbb{R}^2 \to [2]$ either

Let T_{α} be the $\alpha - \alpha - \alpha$ Eq Triangle.

 T_{α} is **mono** if all of the vertices are the same color.

Thm $\forall \mathrm{COL} \colon \mathbb{R}^2 \to [2]$ either

 \exists a mono T_2 , or

Let T_{α} be the $\alpha - \alpha - \alpha$ Eq Triangle.

 T_{α} is **mono** if all of the vertices are the same color.

Thm $\forall COL \colon \mathbb{R}^2 \to [2]$ either

 \exists a mono T_2 , or

 \exists a mono $T_{2\sqrt{3}}$, or

Let T_{α} be the $\alpha - \alpha - \alpha$ Eq Triangle.

 T_{α} is **mono** if all of the vertices are the same color.

Thm $\forall COL \colon \mathbb{R}^2 \to [2]$ either

 \exists a mono T_2 , or

 \exists a mono $T_{2\sqrt{3}}$, or

 \exists a mono T_4 .

Let T_{α} be the $\alpha - \alpha - \alpha$ Eq Triangle.

 T_{α} is **mono** if all of the vertices are the same color.

Thm $\forall COL \colon \mathbb{R}^2 \to [2]$ either

 \exists a mono T_2 , or

 \exists a mono $T_{2\sqrt{3}}$, or

 \exists a mono T_4 .

We prove this rather than $T_1 - T_{\sqrt{3}} - T_2$ since this makes the figures easier to draw.

Thm $\forall COL \colon \mathbb{R}^2 \to [2]$ either

Thm $\forall COL \colon \mathbb{R}^2 \to [2]$ either \exists a mono T_2 , or

Thm $\forall COL \colon \mathbb{R}^2 \to [2]$ either

 \exists a mono T_2 , or

 \exists a mono $T_{2\sqrt{3}}$, or

Thm $\forall COL : \mathbb{R}^2 \rightarrow [2]$ either \exists a mono T_2 , or

 \exists a mono $T_{2\sqrt{3}}$, or

 \exists a mono T_4 .

Thm $\forall COL \colon \mathbb{R}^2 \to [2]$ either

 \exists a mono T_2 , or

 \exists a mono $T_{2\sqrt{3}}$, or

 \exists a mono T_4 .

Assume by way of contradiction that there is a $COL: \mathbb{R}^2 \to [2]$ with no mono T_2 , $T_{2\sqrt{3}}$ or T_4 .

There are Two R Points Two Apart

By Thm from last lecture \exists two points, an 2 inches apart, same color. We can assume that (0,0) and (2,0) are \mathbb{R} .

There are Two R Points Two Apart

By Thm from last lecture \exists two points, an 2 inches apart, same color. We can assume that (0,0) and (2,0) are \mathbb{R} .

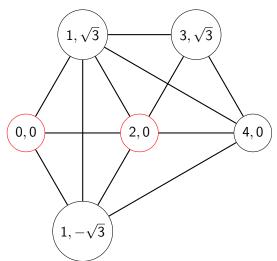
There are Two R Points Two Apart

By Thm from last lecture \exists two points, an 2 inches apart, same color. We can assume that (0,0) and (2,0) are \mathbb{R} .

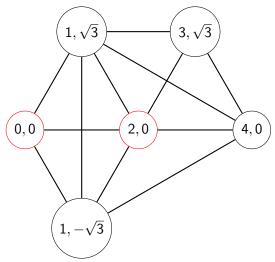
On the next slide we add four more points of interest.

Six Point of Interest

Six Point of Interest

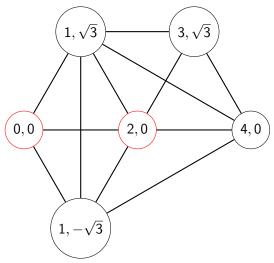


Six Point of Interest



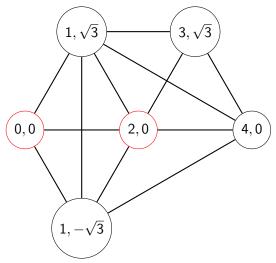
 $(0,0)-(1,\sqrt{3})-(2,0)$ is a T_2 so $\mathrm{COL}(1,\sqrt{3})=\mathbf{B}.$

Six Point of Interest



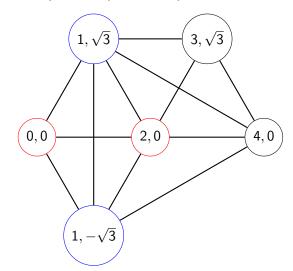
$$(0,0)-(1,\sqrt{3})-(2,0)$$
 is a T_2 so $\mathrm{COL}(1,\sqrt{3})=\mathbf{B}$. $(0,0)-(1,-\sqrt{3})-(2,0)$ is a T_2 so $\mathrm{COL}(1,-\sqrt{3})=\mathbf{B}$.

Six Point of Interest

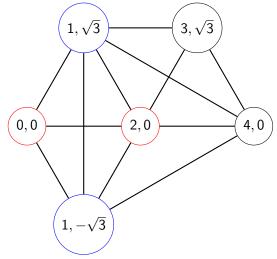


$$(0,0)-(1,\sqrt{3})-(2,0)$$
 is a T_2 so ${\rm COL}(1,\sqrt{3})={\bf B}$. $(0,0)-(1,-\sqrt{3})-(2,0)$ is a T_2 so ${\rm COL}(1,-\sqrt{3})={\bf B}$. Next picture has this information.

$(1,\sqrt{3})$ and $(1,-\sqrt{3})$ are ${\color{red} \mathbf{B}}$

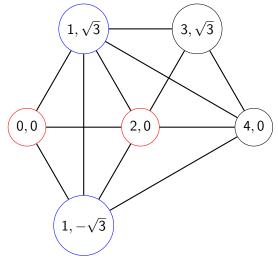


$(1,\sqrt{3})$ and $(1,-\sqrt{3})$ are B



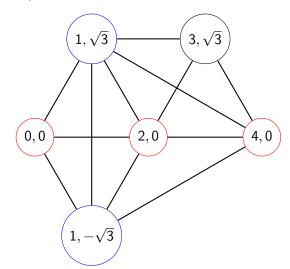
 $(1,\sqrt{3})-(1,-\sqrt{3})-(4,0)$ is a $T_{2\sqrt{3}}$ so ${\rm COL}(4,0)={\bf R}.$

$(1,\sqrt{3})$ and $(1,-\sqrt{3})$ are B

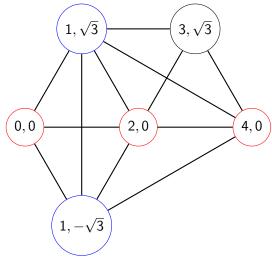


 $(1,\sqrt{3})-(1,-\sqrt{3})-(4,0)$ is a $T_{2\sqrt{3}}$ so $\mathrm{COL}(4,0)=\mathbf{R}.$ Next picture has this information.

(4,0) is R

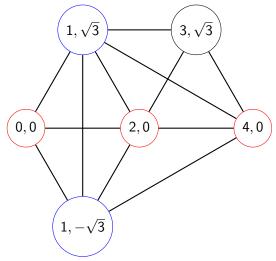


(4,0) is R



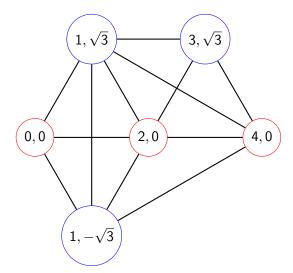
 $(2,0)-(4,0)-(3,\sqrt{3})$ is a T_2 so $COL(3,\sqrt{3})=B$.

(4,0) is R

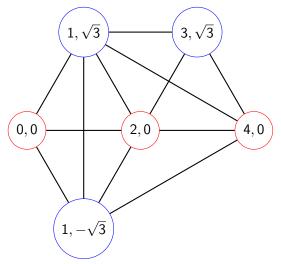


 $(2,0) - (4,0) - (3,\sqrt{3})$ is a T_2 so $COL(3,\sqrt{3}) = B$. Next picture has this info.

$(3,\sqrt{3})$ is B

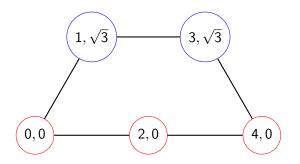


$(3,\sqrt{3})$ is B

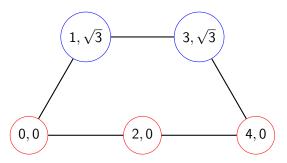


Next picture removes stuff we don't need anymore.

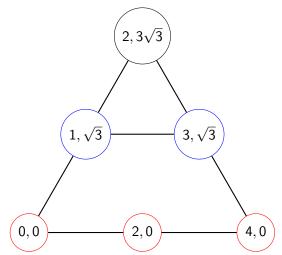
Where We Are Now

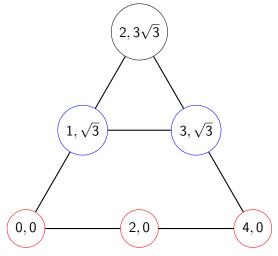


Where We Are Now

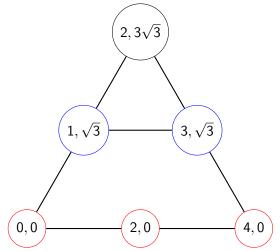


We add the point $(2,2\sqrt{3})$ on the next slide.

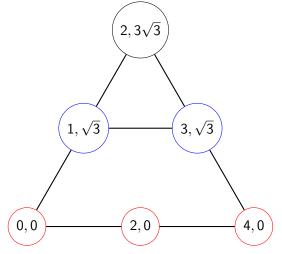




 $(2,3\sqrt{3})-(1,\sqrt{3})-(3,\sqrt{3})$ is a T_2 so $COL(2,3\sqrt{3})\neq \mathbf{B}$.



 $(2,3\sqrt{3})-(1,\sqrt{3})-(3,\sqrt{3})$ is a T_2 so $COL(2,3\sqrt{3})\neq \mathbf{B}$. $(0,0)-(4.0)-(2,3\sqrt{3})$ is a T_4 so $COL(2,3\sqrt{3})\neq \mathbf{R}$.



 $(2,3\sqrt{3})-(1,\sqrt{3})-(3,\sqrt{3})$ is a T_2 so $COL(2,3\sqrt{3})\neq B$.

 $(0,0)-(4.0)-(2,3\sqrt{3})$ is a T_4 so $COL(2,3\sqrt{3})\neq \mathbb{R}$.

 $COL(2,3\sqrt{3}) \notin \{R,B\}$. Contradiction!

We want an algorithm for the following:

We want an algorithm for the following: Given $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}^+$

We want an algorithm for the following:

Given $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}^+$

determine if the following is true:

For all 2-colorings of \mathbb{R}^2 there exists either a mono T_{α_1} , a mono T_{α_2} or a mono T_{α_3} .

We want an algorithm for the following:

Given $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}^+$

determine if the following is true:

For all 2-colorings of \mathbb{R}^2 there exists either a mono T_{α_1} , a mono T_{α_2} or a mono T_{α_3} .

1) I am not sure what is known for just α_1, α_2 .

We want an algorithm for the following:

Given $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}^+$

determine if the following is true:

For all 2-colorings of \mathbb{R}^2 there exists either a mono T_{α_1} , a mono T_{α_2} or a mono T_{α_3} .

- 1) I am not sure what is known for just α_1, α_2 .
- 2) Could generalize to any $c \in \mathbb{N}$ and any finite set of \mathbb{R}^+

We want an algorithm for the following:

Given $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}^+$

determine if the following is true:

For all 2-colorings of \mathbb{R}^2 there exists either a mono T_{α_1} , a mono T_{α_2} or a mono T_{α_3} .

- 1) I am not sure what is known for just α_1, α_2 .
- 2) Could generalize to any $c \in \mathbb{N}$ and any finite set of \mathbb{R}^+
- 3) Since its a lot of case work, maybe programming would help.