
BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

A Variant on R(3) = 6

Exposition by William Gasarch

April 3, 2025

Credit Where Credit Is Due

The questions raised in these slides are due to Paul Erdös.

The Theorem in these slides are due to

Joel Spencer.

Credit Where Credit Is Due

The questions raised in these slides are due to Paul Erdös.

The Theorem in these slides are due to

Joel Spencer.

Credit Where Credit Is Due

The questions raised in these slides are due to Paul Erdös.

The Theorem in these slides are due to

Joel Spencer.

Credit Where Credit Is Due

The questions raised in these slides are due to Paul Erdös.

The Theorem in these slides are due to

Joel Spencer.

Graphs G such that RAM(G) Holds

Questions
Is there a graph G w/o a K6-subgraph such that RAM(G)?
We showed Yes. The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G)?

We showed Yes. The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G)?
Vote: YES or NO or UNKNOWN TO SCIENCE.

Graphs G such that RAM(G) Holds

Questions

Is there a graph G w/o a K6-subgraph such that RAM(G)?
We showed Yes. The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G)?

We showed Yes. The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G)?
Vote: YES or NO or UNKNOWN TO SCIENCE.

Graphs G such that RAM(G) Holds

Questions
Is there a graph G w/o a K6-subgraph such that RAM(G)?

We showed Yes. The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G)?

We showed Yes. The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G)?
Vote: YES or NO or UNKNOWN TO SCIENCE.

Graphs G such that RAM(G) Holds

Questions
Is there a graph G w/o a K6-subgraph such that RAM(G)?
We showed Yes.

The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G)?

We showed Yes. The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G)?
Vote: YES or NO or UNKNOWN TO SCIENCE.

Graphs G such that RAM(G) Holds

Questions
Is there a graph G w/o a K6-subgraph such that RAM(G)?
We showed Yes. The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G)?

We showed Yes. The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G)?
Vote: YES or NO or UNKNOWN TO SCIENCE.

Graphs G such that RAM(G) Holds

Questions
Is there a graph G w/o a K6-subgraph such that RAM(G)?
We showed Yes. The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G)?

We showed Yes. The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G)?
Vote: YES or NO or UNKNOWN TO SCIENCE.

Graphs G such that RAM(G) Holds

Questions
Is there a graph G w/o a K6-subgraph such that RAM(G)?
We showed Yes. The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G)?

We showed Yes.

The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G)?
Vote: YES or NO or UNKNOWN TO SCIENCE.

Graphs G such that RAM(G) Holds

Questions
Is there a graph G w/o a K6-subgraph such that RAM(G)?
We showed Yes. The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G)?

We showed Yes. The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G)?
Vote: YES or NO or UNKNOWN TO SCIENCE.

Graphs G such that RAM(G) Holds

Questions
Is there a graph G w/o a K6-subgraph such that RAM(G)?
We showed Yes. The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G)?

We showed Yes. The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G)?

Vote: YES or NO or UNKNOWN TO SCIENCE.

Graphs G such that RAM(G) Holds

Questions
Is there a graph G w/o a K6-subgraph such that RAM(G)?
We showed Yes. The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G)?

We showed Yes. The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G)?
Vote:

YES or NO or UNKNOWN TO SCIENCE.

Graphs G such that RAM(G) Holds

Questions
Is there a graph G w/o a K6-subgraph such that RAM(G)?
We showed Yes. The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G)?

We showed Yes. The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G)?
Vote: YES or NO or UNKNOWN TO SCIENCE.

Vote on Size of G

There IS a graph G such that RAM(G) holds and

K4 is NOT a subgraph of G , and

Vote on the Size of the Smallest Known G

≤ 100.

between 103 and 1010.

Over A(10, 10) vertices where A is Ackerman’s function.

Answer on next slide.

Vote on Size of G

There IS a graph G such that RAM(G) holds and
K4 is NOT a subgraph of G , and

Vote on the Size of the Smallest Known G

≤ 100.

between 103 and 1010.

Over A(10, 10) vertices where A is Ackerman’s function.

Answer on next slide.

Vote on Size of G

There IS a graph G such that RAM(G) holds and
K4 is NOT a subgraph of G , and

Vote on the Size of the Smallest Known G

≤ 100.

between 103 and 1010.

Over A(10, 10) vertices where A is Ackerman’s function.

Answer on next slide.

Vote on Size of G

There IS a graph G such that RAM(G) holds and
K4 is NOT a subgraph of G , and

Vote on the Size of the Smallest Known G

≤ 100.

between 103 and 1010.

Over A(10, 10) vertices where A is Ackerman’s function.

Answer on next slide.

Vote on Size of G

There IS a graph G such that RAM(G) holds and
K4 is NOT a subgraph of G , and

Vote on the Size of the Smallest Known G

≤ 100.

between 103 and 1010.

Over A(10, 10) vertices where A is Ackerman’s function.

Answer on next slide.

Vote on Size of G

There IS a graph G such that RAM(G) holds and
K4 is NOT a subgraph of G , and

Vote on the Size of the Smallest Known G

≤ 100.

between 103 and 1010.

Over A(10, 10) vertices where A is Ackerman’s function.

Answer on next slide.

Vote on Size of G

There IS a graph G such that RAM(G) holds and
K4 is NOT a subgraph of G , and

Vote on the Size of the Smallest Known G

≤ 100.

between 103 and 1010.

Over A(10, 10) vertices where A is Ackerman’s function.

Answer on next slide.

The Size of G : History

(Folkman) The number of vertices is not explicit but is said to be
quite large. I suspect ≥ A(10, 10).

(Nesetril & Rodl) Completely diff proof but graph is still LARGE.

Erdös offers a $100 reward for a a graph that is ≤ 1010 vertices.

Frankl and Rodl obtain a graph with 7× 1011 vertices. Darn!

Spencer obtains a graph with 3× 108 and gets fame and fortune.
Fame within the 10-person Ramsey Theory community, and $100.

We will sketch Spencer’s proof.

The Size of G : History

(Folkman) The number of vertices is not explicit but is said to be
quite large. I suspect ≥ A(10, 10).

(Nesetril & Rodl) Completely diff proof but graph is still LARGE.

Erdös offers a $100 reward for a a graph that is ≤ 1010 vertices.

Frankl and Rodl obtain a graph with 7× 1011 vertices. Darn!

Spencer obtains a graph with 3× 108 and gets fame and fortune.
Fame within the 10-person Ramsey Theory community, and $100.

We will sketch Spencer’s proof.

The Size of G : History

(Folkman) The number of vertices is not explicit but is said to be
quite large. I suspect ≥ A(10, 10).

(Nesetril & Rodl) Completely diff proof but graph is still LARGE.

Erdös offers a $100 reward for a a graph that is ≤ 1010 vertices.

Frankl and Rodl obtain a graph with 7× 1011 vertices. Darn!

Spencer obtains a graph with 3× 108 and gets fame and fortune.
Fame within the 10-person Ramsey Theory community, and $100.

We will sketch Spencer’s proof.

The Size of G : History

(Folkman) The number of vertices is not explicit but is said to be
quite large. I suspect ≥ A(10, 10).

(Nesetril & Rodl) Completely diff proof but graph is still LARGE.

Erdös offers a $100 reward for a a graph that is ≤ 1010 vertices.

Frankl and Rodl obtain a graph with 7× 1011 vertices. Darn!

Spencer obtains a graph with 3× 108 and gets fame and fortune.
Fame within the 10-person Ramsey Theory community, and $100.

We will sketch Spencer’s proof.

The Size of G : History

(Folkman) The number of vertices is not explicit but is said to be
quite large. I suspect ≥ A(10, 10).

(Nesetril & Rodl) Completely diff proof but graph is still LARGE.

Erdös offers a $100 reward for a a graph that is ≤ 1010 vertices.

Frankl and Rodl obtain a graph with 7× 1011 vertices. Darn!

Spencer obtains a graph with 3× 108 and gets fame and fortune.
Fame within the 10-person Ramsey Theory community, and $100.

We will sketch Spencer’s proof.

The Size of G : History

(Folkman) The number of vertices is not explicit but is said to be
quite large. I suspect ≥ A(10, 10).

(Nesetril & Rodl) Completely diff proof but graph is still LARGE.

Erdös offers a $100 reward for a a graph that is ≤ 1010 vertices.

Frankl and Rodl obtain a graph with 7× 1011 vertices. Darn!

Spencer obtains a graph with 3× 108 and gets fame and fortune.

Fame within the 10-person Ramsey Theory community, and $100.

We will sketch Spencer’s proof.

The Size of G : History

(Folkman) The number of vertices is not explicit but is said to be
quite large. I suspect ≥ A(10, 10).

(Nesetril & Rodl) Completely diff proof but graph is still LARGE.

Erdös offers a $100 reward for a a graph that is ≤ 1010 vertices.

Frankl and Rodl obtain a graph with 7× 1011 vertices. Darn!

Spencer obtains a graph with 3× 108 and gets fame and fortune.
Fame within the 10-person Ramsey Theory community, and $100.

We will sketch Spencer’s proof.

The Size of G : History

(Folkman) The number of vertices is not explicit but is said to be
quite large. I suspect ≥ A(10, 10).

(Nesetril & Rodl) Completely diff proof but graph is still LARGE.

Erdös offers a $100 reward for a a graph that is ≤ 1010 vertices.

Frankl and Rodl obtain a graph with 7× 1011 vertices. Darn!

Spencer obtains a graph with 3× 108 and gets fame and fortune.
Fame within the 10-person Ramsey Theory community, and $100.

We will sketch Spencer’s proof.

G Such That
RAM(G),

G Has No K4 Subgraph,

G Has 3× 108 Vertices

Two Part Plan

Part I We prove a theorem of the form
If G satisfies condition BLAH then RAM(G).
We will prove this in more detail than in Spencer’s paper.

Part II We prove that there exists a graph G with property BLAH.
We will prove this in less detail than in Spencer’s paper.

Two Part Plan

Part I We prove a theorem of the form

If G satisfies condition BLAH then RAM(G).
We will prove this in more detail than in Spencer’s paper.

Part II We prove that there exists a graph G with property BLAH.
We will prove this in less detail than in Spencer’s paper.

Two Part Plan

Part I We prove a theorem of the form
If G satisfies condition BLAH then RAM(G).

We will prove this in more detail than in Spencer’s paper.

Part II We prove that there exists a graph G with property BLAH.
We will prove this in less detail than in Spencer’s paper.

Two Part Plan

Part I We prove a theorem of the form
If G satisfies condition BLAH then RAM(G).
We will prove this in more detail than in Spencer’s paper.

Part II We prove that there exists a graph G with property BLAH.
We will prove this in less detail than in Spencer’s paper.

Two Part Plan

Part I We prove a theorem of the form
If G satisfies condition BLAH then RAM(G).
We will prove this in more detail than in Spencer’s paper.

Part II We prove that there exists a graph G with property BLAH.

We will prove this in less detail than in Spencer’s paper.

Two Part Plan

Part I We prove a theorem of the form
If G satisfies condition BLAH then RAM(G).
We will prove this in more detail than in Spencer’s paper.

Part II We prove that there exists a graph G with property BLAH.
We will prove this in less detail than in Spencer’s paper.

A Condition That
Implies RAM(G)

Boring Notation

Throughout this talk

1. G = (V ,E) is a graph.

2. COL : E → [2] has no mono 4s.

3. The colors will be R and B.

4. x , y , z will be vertices.

5. xy = {x , y}, xyz = {x , y , z}.

Boring Notation

Throughout this talk

1. G = (V ,E) is a graph.

2. COL : E → [2] has no mono 4s.

3. The colors will be R and B.

4. x , y , z will be vertices.

5. xy = {x , y}, xyz = {x , y , z}.

Boring Notation

Throughout this talk

1. G = (V ,E) is a graph.

2. COL : E → [2] has no mono 4s.

3. The colors will be R and B.

4. x , y , z will be vertices.

5. xy = {x , y}, xyz = {x , y , z}.

Boring Notation

Throughout this talk

1. G = (V ,E) is a graph.

2. COL : E → [2] has no mono 4s.

3. The colors will be R and B.

4. x , y , z will be vertices.

5. xy = {x , y}, xyz = {x , y , z}.

Boring Notation

Throughout this talk

1. G = (V ,E) is a graph.

2. COL : E → [2] has no mono 4s.

3. The colors will be R and B.

4. x , y , z will be vertices.

5. xy = {x , y}, xyz = {x , y , z}.

Boring Notation

Throughout this talk

1. G = (V ,E) is a graph.

2. COL : E → [2] has no mono 4s.

3. The colors will be R and B.

4. x , y , z will be vertices.

5. xy = {x , y}, xyz = {x , y , z}.

Interesting Notation: U

1. U =
⋃

x ,y ,z∈(V3){(x , xyz) : xyz is a triangle of G }.

2. If x ∈ V then
U(x) = {(x , xyz) : xyz is a triangle of G }.

3. If x ∈ V then
N(x) = {y : xy ∈ E}

Interesting Notation: U

1. U =
⋃

x ,y ,z∈(V3){(x , xyz) : xyz is a triangle of G }.

2. If x ∈ V then
U(x) = {(x , xyz) : xyz is a triangle of G }.

3. If x ∈ V then
N(x) = {y : xy ∈ E}

Interesting Notation: U

1. U =
⋃

x ,y ,z∈(V3){(x , xyz) : xyz is a triangle of G }.

2. If x ∈ V then

U(x) = {(x , xyz) : xyz is a triangle of G }.

3. If x ∈ V then
N(x) = {y : xy ∈ E}

Interesting Notation: U

1. U =
⋃

x ,y ,z∈(V3){(x , xyz) : xyz is a triangle of G }.

2. If x ∈ V then
U(x) = {(x , xyz) : xyz is a triangle of G }.

3. If x ∈ V then
N(x) = {y : xy ∈ E}

Interesting Notation: U

1. U =
⋃

x ,y ,z∈(V3){(x , xyz) : xyz is a triangle of G }.

2. If x ∈ V then
U(x) = {(x , xyz) : xyz is a triangle of G }.

3. If x ∈ V then

N(x) = {y : xy ∈ E}

Interesting Notation: U

1. U =
⋃

x ,y ,z∈(V3){(x , xyz) : xyz is a triangle of G }.

2. If x ∈ V then
U(x) = {(x , xyz) : xyz is a triangle of G }.

3. If x ∈ V then
N(x) = {y : xy ∈ E}

Example of U(1)

1
2

3

4

5

6

7

U(1) = {(1, 124), (1, 125), (1, 136), (1, 137), (1, 147), (1, 157)}

|U(1)| = 6.

Example of U(1)

1
2

3

4

5

6

7

U(1) = {(1, 124), (1, 125), (1, 136), (1, 137), (1, 147), (1, 157)}

|U(1)| = 6.

Example of U(1)

1
2

3

4

5

6

7

U(1) = {(1, 124), (1, 125), (1, 136), (1, 137), (1, 147), (1, 157)}

|U(1)| = 6.

Example of U(1)

1
2

3

4

5

6

7

U(1) = {(1, 124), (1, 125), (1, 136), (1, 137), (1, 147), (1, 157)}

|U(1)| = 6.

UCOL: An Interesting Subset of U

1. UCOL is the the union over x , y , z ∈
(V
3

)
(x , xyz) such that

xyz is a triangle of G , and
COL(xy) 6= COL(xz).

2. Let x ∈ V
UCOL(x) is the set of all (x , xyz) such that
xyz is a triangle of G , and
COL(xy) 6= COL(xz). (Similar to a ZAN.)

UCOL: An Interesting Subset of U

1. UCOL is the the union over x , y , z ∈
(V
3

)
(x , xyz) such that

xyz is a triangle of G , and
COL(xy) 6= COL(xz).

2. Let x ∈ V
UCOL(x) is the set of all (x , xyz) such that
xyz is a triangle of G , and
COL(xy) 6= COL(xz). (Similar to a ZAN.)

UCOL: An Interesting Subset of U

1. UCOL is the the union over x , y , z ∈
(V
3

)
(x , xyz) such that

xyz is a triangle of G , and

COL(xy) 6= COL(xz).

2. Let x ∈ V
UCOL(x) is the set of all (x , xyz) such that
xyz is a triangle of G , and
COL(xy) 6= COL(xz). (Similar to a ZAN.)

UCOL: An Interesting Subset of U

1. UCOL is the the union over x , y , z ∈
(V
3

)
(x , xyz) such that

xyz is a triangle of G , and
COL(xy) 6= COL(xz).

2. Let x ∈ V
UCOL(x) is the set of all (x , xyz) such that
xyz is a triangle of G , and
COL(xy) 6= COL(xz). (Similar to a ZAN.)

UCOL: An Interesting Subset of U

1. UCOL is the the union over x , y , z ∈
(V
3

)
(x , xyz) such that

xyz is a triangle of G , and
COL(xy) 6= COL(xz).

2. Let x ∈ V

UCOL(x) is the set of all (x , xyz) such that
xyz is a triangle of G , and
COL(xy) 6= COL(xz). (Similar to a ZAN.)

UCOL: An Interesting Subset of U

1. UCOL is the the union over x , y , z ∈
(V
3

)
(x , xyz) such that

xyz is a triangle of G , and
COL(xy) 6= COL(xz).

2. Let x ∈ V
UCOL(x) is the set of all (x , xyz) such that

xyz is a triangle of G , and
COL(xy) 6= COL(xz). (Similar to a ZAN.)

UCOL: An Interesting Subset of U

1. UCOL is the the union over x , y , z ∈
(V
3

)
(x , xyz) such that

xyz is a triangle of G , and
COL(xy) 6= COL(xz).

2. Let x ∈ V
UCOL(x) is the set of all (x , xyz) such that
xyz is a triangle of G , and

COL(xy) 6= COL(xz). (Similar to a ZAN.)

UCOL: An Interesting Subset of U

1. UCOL is the the union over x , y , z ∈
(V
3

)
(x , xyz) such that

xyz is a triangle of G , and
COL(xy) 6= COL(xz).

2. Let x ∈ V
UCOL(x) is the set of all (x , xyz) such that
xyz is a triangle of G , and
COL(xy) 6= COL(xz). (Similar to a ZAN.)

Example of UCOL(1)

1
2

3

4

5

6

7

UCOL(1) = {(1, 124), (1, 137), (1, 157)}.

Example of UCOL(1)

1
2

3

4

5

6

7

UCOL(1) = {(1, 124), (1, 137), (1, 157)}.

Example of UCOL(1)

1
2

3

4

5

6

7

UCOL(1) = {(1, 124), (1, 137), (1, 157)}.

Relating |U| and |UCOL|

Thm |UCOL| = 2
3 |U|.

Let T be the number of triangles in G .

∀xyz ∈ T ∃ 3 elts of U: {(x , xyz), (y , xyz), (z , xyz)}

∀xyz ∈ T ∃ 2 elts of UCOL: {(x , xyz), (y , xyz))}
if z is the one vertex in xyz with COL(xz) = COL(yz).

Hence |U| = 3|T | and |UCOL| = 2|T |, so UCOL = 2
3 |U|.

Note |UCOL| = 2
3 |U| relates

|UCOL| which depends on COL, and

|U| which does not depend on COL, only on G .

Relating |U| and |UCOL|

Thm |UCOL| = 2
3 |U|.

Let T be the number of triangles in G .

∀xyz ∈ T ∃ 3 elts of U: {(x , xyz), (y , xyz), (z , xyz)}

∀xyz ∈ T ∃ 2 elts of UCOL: {(x , xyz), (y , xyz))}
if z is the one vertex in xyz with COL(xz) = COL(yz).

Hence |U| = 3|T | and |UCOL| = 2|T |, so UCOL = 2
3 |U|.

Note |UCOL| = 2
3 |U| relates

|UCOL| which depends on COL, and

|U| which does not depend on COL, only on G .

Relating |U| and |UCOL|

Thm |UCOL| = 2
3 |U|.

Let T be the number of triangles in G .

∀xyz ∈ T ∃ 3 elts of U: {(x , xyz), (y , xyz), (z , xyz)}

∀xyz ∈ T ∃ 2 elts of UCOL: {(x , xyz), (y , xyz))}
if z is the one vertex in xyz with COL(xz) = COL(yz).

Hence |U| = 3|T | and |UCOL| = 2|T |, so UCOL = 2
3 |U|.

Note |UCOL| = 2
3 |U| relates

|UCOL| which depends on COL, and

|U| which does not depend on COL, only on G .

Relating |U| and |UCOL|

Thm |UCOL| = 2
3 |U|.

Let T be the number of triangles in G .

∀xyz ∈ T ∃ 3 elts of U: {(x , xyz), (y , xyz), (z , xyz)}

∀xyz ∈ T ∃ 2 elts of UCOL: {(x , xyz), (y , xyz))}
if z is the one vertex in xyz with COL(xz) = COL(yz).

Hence |U| = 3|T | and |UCOL| = 2|T |, so UCOL = 2
3 |U|.

Note |UCOL| = 2
3 |U| relates

|UCOL| which depends on COL, and

|U| which does not depend on COL, only on G .

Relating |U| and |UCOL|

Thm |UCOL| = 2
3 |U|.

Let T be the number of triangles in G .

∀xyz ∈ T ∃ 3 elts of U: {(x , xyz), (y , xyz), (z , xyz)}

∀xyz ∈ T ∃ 2 elts of UCOL: {(x , xyz), (y , xyz))}
if z is the one vertex in xyz with COL(xz) = COL(yz).

Hence |U| = 3|T | and |UCOL| = 2|T |, so UCOL = 2
3 |U|.

Note |UCOL| = 2
3 |U| relates

|UCOL| which depends on COL, and

|U| which does not depend on COL, only on G .

Relating |U| and |UCOL|

Thm |UCOL| = 2
3 |U|.

Let T be the number of triangles in G .

∀xyz ∈ T ∃ 3 elts of U: {(x , xyz), (y , xyz), (z , xyz)}

∀xyz ∈ T ∃ 2 elts of UCOL: {(x , xyz), (y , xyz))}
if z is the one vertex in xyz with COL(xz) = COL(yz).

Hence |U| = 3|T | and |UCOL| = 2|T |, so UCOL = 2
3 |U|.

Note |UCOL| = 2
3 |U| relates

|UCOL| which depends on COL, and

|U| which does not depend on COL, only on G .

Relating |U| and |UCOL|

Thm |UCOL| = 2
3 |U|.

Let T be the number of triangles in G .

∀xyz ∈ T ∃ 3 elts of U: {(x , xyz), (y , xyz), (z , xyz)}

∀xyz ∈ T ∃ 2 elts of UCOL: {(x , xyz), (y , xyz))}
if z is the one vertex in xyz with COL(xz) = COL(yz).

Hence |U| = 3|T | and |UCOL| = 2|T |, so UCOL = 2
3 |U|.

Note |UCOL| = 2
3 |U| relates

|UCOL| which depends on COL, and

|U| which does not depend on COL, only on G .

Relating |U| and |UCOL|

Thm |UCOL| = 2
3 |U|.

Let T be the number of triangles in G .

∀xyz ∈ T ∃ 3 elts of U: {(x , xyz), (y , xyz), (z , xyz)}

∀xyz ∈ T ∃ 2 elts of UCOL: {(x , xyz), (y , xyz))}
if z is the one vertex in xyz with COL(xz) = COL(yz).

Hence |U| = 3|T | and |UCOL| = 2|T |, so UCOL = 2
3 |U|.

Note |UCOL| = 2
3 |U| relates

|UCOL| which depends on COL, and

|U| which does not depend on COL, only on G .

Revisiting Our Example of UCOL(1)

1
2

3

4

5

6

7

UCOL(1) = {(1, 124), (1, 137), (1, 157)}.
Let R = {4, 7}, B = {2, 3, 5, 6}.
|UCOL(1)| = |{(x , y) : x ∈ R ∧ y ∈ B ∧ 1xy ∈ T}|.

Revisiting Our Example of UCOL(1)

1
2

3

4

5

6

7

UCOL(1) = {(1, 124), (1, 137), (1, 157)}.
Let R = {4, 7}, B = {2, 3, 5, 6}.
|UCOL(1)| = |{(x , y) : x ∈ R ∧ y ∈ B ∧ 1xy ∈ T}|.

Revisiting Our Example of UCOL(1)

1
2

3

4

5

6

7

UCOL(1) = {(1, 124), (1, 137), (1, 157)}.

Let R = {4, 7}, B = {2, 3, 5, 6}.
|UCOL(1)| = |{(x , y) : x ∈ R ∧ y ∈ B ∧ 1xy ∈ T}|.

Revisiting Our Example of UCOL(1)

1
2

3

4

5

6

7

UCOL(1) = {(1, 124), (1, 137), (1, 157)}.
Let R = {4, 7}, B = {2, 3, 5, 6}.

|UCOL(1)| = |{(x , y) : x ∈ R ∧ y ∈ B ∧ 1xy ∈ T}|.

Revisiting Our Example of UCOL(1)

1
2

3

4

5

6

7

UCOL(1) = {(1, 124), (1, 137), (1, 157)}.
Let R = {4, 7}, B = {2, 3, 5, 6}.
|UCOL(1)| = |{(x , y) : x ∈ R ∧ y ∈ B ∧ 1xy ∈ T}|.

COLs and UCOLs and Partitions, Oh My!

Thm Let x ∈ V . Let

R(x) = {y : COL(xy) = R} B(x) = {x : COL(xz) = B}.

1) |UCOL(x)| = |{(y , z) ∈ E : y ∈ R(x) ∧ z ∈ B(x)}|.

2) |UCOL(x)| ≤ maxN(x)=Y∪Z |{(y , z) ∈ E : y ∈ Y ∧ z ∈ Z}|.

The above statements are obvious.

COLs and UCOLs and Partitions, Oh My!

Thm Let x ∈ V . Let
R(x) = {y : COL(xy) = R}

B(x) = {x : COL(xz) = B}.

1) |UCOL(x)| = |{(y , z) ∈ E : y ∈ R(x) ∧ z ∈ B(x)}|.

2) |UCOL(x)| ≤ maxN(x)=Y∪Z |{(y , z) ∈ E : y ∈ Y ∧ z ∈ Z}|.

The above statements are obvious.

COLs and UCOLs and Partitions, Oh My!

Thm Let x ∈ V . Let
R(x) = {y : COL(xy) = R} B(x) = {x : COL(xz) = B}.

1) |UCOL(x)| = |{(y , z) ∈ E : y ∈ R(x) ∧ z ∈ B(x)}|.

2) |UCOL(x)| ≤ maxN(x)=Y∪Z |{(y , z) ∈ E : y ∈ Y ∧ z ∈ Z}|.

The above statements are obvious.

COLs and UCOLs and Partitions, Oh My!

Thm Let x ∈ V . Let
R(x) = {y : COL(xy) = R} B(x) = {x : COL(xz) = B}.

1) |UCOL(x)| = |{(y , z) ∈ E : y ∈ R(x) ∧ z ∈ B(x)}|.

2) |UCOL(x)| ≤ maxN(x)=Y∪Z |{(y , z) ∈ E : y ∈ Y ∧ z ∈ Z}|.

The above statements are obvious.

COLs and UCOLs and Partitions, Oh My!

Thm Let x ∈ V . Let
R(x) = {y : COL(xy) = R} B(x) = {x : COL(xz) = B}.

1) |UCOL(x)| = |{(y , z) ∈ E : y ∈ R(x) ∧ z ∈ B(x)}|.

2) |UCOL(x)| ≤ maxN(x)=Y∪Z |{(y , z) ∈ E : y ∈ Y ∧ z ∈ Z}|.

The above statements are obvious.

COLs and UCOLs and Partitions, Oh My!

Thm Let x ∈ V . Let
R(x) = {y : COL(xy) = R} B(x) = {x : COL(xz) = B}.

1) |UCOL(x)| = |{(y , z) ∈ E : y ∈ R(x) ∧ z ∈ B(x)}|.

2) |UCOL(x)| ≤ maxN(x)=Y∪Z |{(y , z) ∈ E : y ∈ Y ∧ z ∈ Z}|.

The above statements are obvious.

Motivated Def About Max Over Partitions

Recall from last slide:

|UCOL(x)| ≤ maxN(x)=R∪B |{(y , z) ∈ E : y ∈ R ∧ z ∈ B}|.

This inequality motivates the following definition.

Apologies to the Math Majors who are not used to motivations.

Def A(x) = maxN(x)=R∪B{(y , z) ∈ E : y ∈ R ∧ z ∈ B}|.

Thm |UCOL(x)| ≤ A(x). Trivial.

Note |UCOL(x)| ≤ A(x) relates

|UCOL(x)| which depends on COL, and

A(x) which does not depend on COL, only on G .

Motivated Def About Max Over Partitions

Recall from last slide:

|UCOL(x)| ≤ maxN(x)=R∪B |{(y , z) ∈ E : y ∈ R ∧ z ∈ B}|.

This inequality motivates the following definition.

Apologies to the Math Majors who are not used to motivations.

Def A(x) = maxN(x)=R∪B{(y , z) ∈ E : y ∈ R ∧ z ∈ B}|.

Thm |UCOL(x)| ≤ A(x). Trivial.

Note |UCOL(x)| ≤ A(x) relates

|UCOL(x)| which depends on COL, and

A(x) which does not depend on COL, only on G .

Motivated Def About Max Over Partitions

Recall from last slide:

|UCOL(x)| ≤ maxN(x)=R∪B |{(y , z) ∈ E : y ∈ R ∧ z ∈ B}|.

This inequality motivates the following definition.

Apologies to the Math Majors who are not used to motivations.

Def A(x) = maxN(x)=R∪B{(y , z) ∈ E : y ∈ R ∧ z ∈ B}|.

Thm |UCOL(x)| ≤ A(x). Trivial.

Note |UCOL(x)| ≤ A(x) relates

|UCOL(x)| which depends on COL, and

A(x) which does not depend on COL, only on G .

Motivated Def About Max Over Partitions

Recall from last slide:

|UCOL(x)| ≤ maxN(x)=R∪B |{(y , z) ∈ E : y ∈ R ∧ z ∈ B}|.

This inequality motivates the following definition.

Apologies to the Math Majors who are not used to motivations.

Def A(x) = maxN(x)=R∪B{(y , z) ∈ E : y ∈ R ∧ z ∈ B}|.

Thm |UCOL(x)| ≤ A(x). Trivial.

Note |UCOL(x)| ≤ A(x) relates

|UCOL(x)| which depends on COL, and

A(x) which does not depend on COL, only on G .

Motivated Def About Max Over Partitions

Recall from last slide:

|UCOL(x)| ≤ maxN(x)=R∪B |{(y , z) ∈ E : y ∈ R ∧ z ∈ B}|.

This inequality motivates the following definition.

Apologies to the Math Majors who are not used to motivations.

Def A(x) = maxN(x)=R∪B{(y , z) ∈ E : y ∈ R ∧ z ∈ B}|.

Thm |UCOL(x)| ≤ A(x). Trivial.

Note |UCOL(x)| ≤ A(x) relates

|UCOL(x)| which depends on COL, and

A(x) which does not depend on COL, only on G .

Motivated Def About Max Over Partitions

Recall from last slide:

|UCOL(x)| ≤ maxN(x)=R∪B |{(y , z) ∈ E : y ∈ R ∧ z ∈ B}|.

This inequality motivates the following definition.

Apologies to the Math Majors who are not used to motivations.

Def A(x) = maxN(x)=R∪B{(y , z) ∈ E : y ∈ R ∧ z ∈ B}|.

Thm |UCOL(x)| ≤ A(x). Trivial.

Note |UCOL(x)| ≤ A(x) relates

|UCOL(x)| which depends on COL, and

A(x) which does not depend on COL, only on G .

Motivated Def About Max Over Partitions

Recall from last slide:

|UCOL(x)| ≤ maxN(x)=R∪B |{(y , z) ∈ E : y ∈ R ∧ z ∈ B}|.

This inequality motivates the following definition.

Apologies to the Math Majors who are not used to motivations.

Def A(x) = maxN(x)=R∪B{(y , z) ∈ E : y ∈ R ∧ z ∈ B}|.

Thm |UCOL(x)| ≤ A(x). Trivial.

Note |UCOL(x)| ≤ A(x) relates

|UCOL(x)| which depends on COL, and

A(x) which does not depend on COL, only on G .

Motivated Def About Max Over Partitions

Recall from last slide:

|UCOL(x)| ≤ maxN(x)=R∪B |{(y , z) ∈ E : y ∈ R ∧ z ∈ B}|.

This inequality motivates the following definition.

Apologies to the Math Majors who are not used to motivations.

Def A(x) = maxN(x)=R∪B{(y , z) ∈ E : y ∈ R ∧ z ∈ B}|.

Thm |UCOL(x)| ≤ A(x). Trivial.

Note |UCOL(x)| ≤ A(x) relates

|UCOL(x)| which depends on COL, and

A(x) which does not depend on COL, only on G .

Motivated Def About Max Over Partitions

Recall from last slide:

|UCOL(x)| ≤ maxN(x)=R∪B |{(y , z) ∈ E : y ∈ R ∧ z ∈ B}|.

This inequality motivates the following definition.

Apologies to the Math Majors who are not used to motivations.

Def A(x) = maxN(x)=R∪B{(y , z) ∈ E : y ∈ R ∧ z ∈ B}|.

Thm |UCOL(x)| ≤ A(x). Trivial.

Note |UCOL(x)| ≤ A(x) relates

|UCOL(x)| which depends on COL, and

A(x) which does not depend on COL, only on G .

Example of A(x)

1
2

3

4

5

6

7

We want to know A(1).
All that matters are the neighbors of 1, not 1 itself.
The next slide is just the neighbors of 1.

Example of A(x)

1
2

3

4

5

6

7

We want to know A(1).
All that matters are the neighbors of 1, not 1 itself.
The next slide is just the neighbors of 1.

Example of A(x)

1
2

3

4

5

6

7

We want to know A(1).

All that matters are the neighbors of 1, not 1 itself.
The next slide is just the neighbors of 1.

Example of A(x)

1
2

3

4

5

6

7

We want to know A(1).
All that matters are the neighbors of 1, not 1 itself.

The next slide is just the neighbors of 1.

Example of A(x)

1
2

3

4

5

6

7

We want to know A(1).
All that matters are the neighbors of 1, not 1 itself.
The next slide is just the neighbors of 1.

Example of A(1)

2

3

4

5

6

7

{2, 3} ∪ {4, 5, 6, 7}: Edges (2, 4), (2, 5), (3, 6), (3, 7) A(1) ≥ 4

{2, 6, 7} ∪ {3, 4, 5}: Edges (2, 4), (2, 5), (6, 3), (7, 3) A(1) ≥ 4.
Didn’t do any better.

One can easily show A(1) ≤ 4, so A(1) = 4.

Example of A(1)

2

3

4

5

6

7

{2, 3} ∪ {4, 5, 6, 7}: Edges (2, 4), (2, 5), (3, 6), (3, 7) A(1) ≥ 4

{2, 6, 7} ∪ {3, 4, 5}: Edges (2, 4), (2, 5), (6, 3), (7, 3) A(1) ≥ 4.
Didn’t do any better.

One can easily show A(1) ≤ 4, so A(1) = 4.

Example of A(1)

2

3

4

5

6

7

{2, 3} ∪ {4, 5, 6, 7}: Edges (2, 4), (2, 5), (3, 6), (3, 7)

A(1) ≥ 4

{2, 6, 7} ∪ {3, 4, 5}: Edges (2, 4), (2, 5), (6, 3), (7, 3) A(1) ≥ 4.
Didn’t do any better.

One can easily show A(1) ≤ 4, so A(1) = 4.

Example of A(1)

2

3

4

5

6

7

{2, 3} ∪ {4, 5, 6, 7}: Edges (2, 4), (2, 5), (3, 6), (3, 7) A(1) ≥ 4

{2, 6, 7} ∪ {3, 4, 5}: Edges (2, 4), (2, 5), (6, 3), (7, 3) A(1) ≥ 4.
Didn’t do any better.

One can easily show A(1) ≤ 4, so A(1) = 4.

Example of A(1)

2

3

4

5

6

7

{2, 3} ∪ {4, 5, 6, 7}: Edges (2, 4), (2, 5), (3, 6), (3, 7) A(1) ≥ 4

{2, 6, 7} ∪ {3, 4, 5}: Edges (2, 4), (2, 5), (6, 3), (7, 3)

A(1) ≥ 4.
Didn’t do any better.

One can easily show A(1) ≤ 4, so A(1) = 4.

Example of A(1)

2

3

4

5

6

7

{2, 3} ∪ {4, 5, 6, 7}: Edges (2, 4), (2, 5), (3, 6), (3, 7) A(1) ≥ 4

{2, 6, 7} ∪ {3, 4, 5}: Edges (2, 4), (2, 5), (6, 3), (7, 3) A(1) ≥ 4.

Didn’t do any better.

One can easily show A(1) ≤ 4, so A(1) = 4.

Example of A(1)

2

3

4

5

6

7

{2, 3} ∪ {4, 5, 6, 7}: Edges (2, 4), (2, 5), (3, 6), (3, 7) A(1) ≥ 4

{2, 6, 7} ∪ {3, 4, 5}: Edges (2, 4), (2, 5), (6, 3), (7, 3) A(1) ≥ 4.
Didn’t do any better.

One can easily show A(1) ≤ 4, so A(1) = 4.

Example of A(1)

2

3

4

5

6

7

{2, 3} ∪ {4, 5, 6, 7}: Edges (2, 4), (2, 5), (3, 6), (3, 7) A(1) ≥ 4

{2, 6, 7} ∪ {3, 4, 5}: Edges (2, 4), (2, 5), (6, 3), (7, 3) A(1) ≥ 4.
Didn’t do any better.

One can easily show A(1) ≤ 4, so A(1) = 4.

Putting It All Together

Thm Let G = (V ,E). Let COL : E → [2] with no mono 4s. Then
2
3 |U| ≤

∑
x∈V A(x)

|UCOL(x)| ≤ A(x).∑
x∈V |UCOL(x)| ≤

∑
x∈V A(x).

|UCOL| ≤
∑

x∈V A(x).

|23U| ≤
∑

x∈V A(x).

Putting It All Together

Thm Let G = (V ,E). Let COL : E → [2] with no mono 4s. Then
2
3 |U| ≤

∑
x∈V A(x)

|UCOL(x)| ≤ A(x).

∑
x∈V |UCOL(x)| ≤

∑
x∈V A(x).

|UCOL| ≤
∑

x∈V A(x).

|23U| ≤
∑

x∈V A(x).

Putting It All Together

Thm Let G = (V ,E). Let COL : E → [2] with no mono 4s. Then
2
3 |U| ≤

∑
x∈V A(x)

|UCOL(x)| ≤ A(x).∑
x∈V |UCOL(x)| ≤

∑
x∈V A(x).

|UCOL| ≤
∑

x∈V A(x).

|23U| ≤
∑

x∈V A(x).

Putting It All Together

Thm Let G = (V ,E). Let COL : E → [2] with no mono 4s. Then
2
3 |U| ≤

∑
x∈V A(x)

|UCOL(x)| ≤ A(x).∑
x∈V |UCOL(x)| ≤

∑
x∈V A(x).

|UCOL| ≤
∑

x∈V A(x).

|23U| ≤
∑

x∈V A(x).

Putting It All Together

Thm Let G = (V ,E). Let COL : E → [2] with no mono 4s. Then
2
3 |U| ≤

∑
x∈V A(x)

|UCOL(x)| ≤ A(x).∑
x∈V |UCOL(x)| ≤

∑
x∈V A(x).

|UCOL| ≤
∑

x∈V A(x).

|23U| ≤
∑

x∈V A(x).

The Useful Contrapositive

Thm Let G = (V ,E). If

∑
x∈V

A(x) <
2

3
|U|

then RAM(G).

So we have a way to test if RAM(G) that is much faster than
looking at every 2-coloring of E .

The Useful Contrapositive

Thm Let G = (V ,E). If∑
x∈V

A(x) <
2

3
|U|

then RAM(G).

So we have a way to test if RAM(G) that is much faster than
looking at every 2-coloring of E .

The Useful Contrapositive

Thm Let G = (V ,E). If∑
x∈V

A(x) <
2

3
|U|

then RAM(G).

So we have a way to test if RAM(G) that is much faster than
looking at every 2-coloring of E .

The Useful Contrapositive

Thm Let G = (V ,E). If∑
x∈V

A(x) <
2

3
|U|

then RAM(G).

So we have a way to test if RAM(G) that is much faster than
looking at every 2-coloring of E .

∃G Such That∑∑∑
x∈V A(x) < 2

3|U|

The Random Graph

Parameters 0 < p < 1 and n ∈ N.

Def The Random Graph G (n, p) is the graph on n vertices
formed by, for each xy ∈

([n]
2

)
, put in an edge with probability p.

G (n, p) is not a graph. Its a way to generate graphs.

We show that for appropriate p, n the prob that G (n, p) has the
properties we want is nonzero.

The Random Graph

Parameters 0 < p < 1 and n ∈ N.

Def The Random Graph G (n, p) is the graph on n vertices
formed by, for each xy ∈

([n]
2

)
, put in an edge with probability p.

G (n, p) is not a graph. Its a way to generate graphs.

We show that for appropriate p, n the prob that G (n, p) has the
properties we want is nonzero.

The Random Graph

Parameters 0 < p < 1 and n ∈ N.

Def The Random Graph G (n, p) is the graph on n vertices
formed by, for each xy ∈

([n]
2

)
, put in an edge with probability p.

G (n, p) is not a graph. Its a way to generate graphs.

We show that for appropriate p, n the prob that G (n, p) has the
properties we want is nonzero.

The Random Graph

Parameters 0 < p < 1 and n ∈ N.

Def The Random Graph G (n, p) is the graph on n vertices
formed by, for each xy ∈

([n]
2

)
, put in an edge with probability p.

G (n, p) is not a graph. Its a way to generate graphs.

We show that for appropriate p, n the prob that G (n, p) has the
properties we want is nonzero.

The Construction of the Graph

Parameters 0 < p < 1 and n ∈ N will be determined later.

1) n will end up needing to be large (3× 108).
2) p = cn1/2 where we determine c later (c will be 6).

Step 1 Generate G ′ = G (n, p) = (V ′,E ′).

Step 2 For every K4 in G ′, randomly select and delete an edge.

Step 3 The new graph is called G = (V ,E).

1) G obviously has no K4 subgraph.

2) We pick p, n so Prob(
∑

x∈V A(x)) < 2
3 |U|) > 0.

The Construction of the Graph

Parameters 0 < p < 1 and n ∈ N will be determined later.
1) n will end up needing to be large (3× 108).

2) p = cn1/2 where we determine c later (c will be 6).

Step 1 Generate G ′ = G (n, p) = (V ′,E ′).

Step 2 For every K4 in G ′, randomly select and delete an edge.

Step 3 The new graph is called G = (V ,E).

1) G obviously has no K4 subgraph.

2) We pick p, n so Prob(
∑

x∈V A(x)) < 2
3 |U|) > 0.

The Construction of the Graph

Parameters 0 < p < 1 and n ∈ N will be determined later.
1) n will end up needing to be large (3× 108).
2) p = cn1/2 where we determine c later (c will be 6).

Step 1 Generate G ′ = G (n, p) = (V ′,E ′).

Step 2 For every K4 in G ′, randomly select and delete an edge.

Step 3 The new graph is called G = (V ,E).

1) G obviously has no K4 subgraph.

2) We pick p, n so Prob(
∑

x∈V A(x)) < 2
3 |U|) > 0.

The Construction of the Graph

Parameters 0 < p < 1 and n ∈ N will be determined later.
1) n will end up needing to be large (3× 108).
2) p = cn1/2 where we determine c later (c will be 6).

Step 1 Generate G ′ = G (n, p) = (V ′,E ′).

Step 2 For every K4 in G ′, randomly select and delete an edge.

Step 3 The new graph is called G = (V ,E).

1) G obviously has no K4 subgraph.

2) We pick p, n so Prob(
∑

x∈V A(x)) < 2
3 |U|) > 0.

The Construction of the Graph

Parameters 0 < p < 1 and n ∈ N will be determined later.
1) n will end up needing to be large (3× 108).
2) p = cn1/2 where we determine c later (c will be 6).

Step 1 Generate G ′ = G (n, p) = (V ′,E ′).

Step 2 For every K4 in G ′, randomly select and delete an edge.

Step 3 The new graph is called G = (V ,E).

1) G obviously has no K4 subgraph.

2) We pick p, n so Prob(
∑

x∈V A(x)) < 2
3 |U|) > 0.

The Construction of the Graph

Parameters 0 < p < 1 and n ∈ N will be determined later.
1) n will end up needing to be large (3× 108).
2) p = cn1/2 where we determine c later (c will be 6).

Step 1 Generate G ′ = G (n, p) = (V ′,E ′).

Step 2 For every K4 in G ′, randomly select and delete an edge.

Step 3 The new graph is called G = (V ,E).

1) G obviously has no K4 subgraph.

2) We pick p, n so Prob(
∑

x∈V A(x)) < 2
3 |U|) > 0.

The Construction of the Graph

Parameters 0 < p < 1 and n ∈ N will be determined later.
1) n will end up needing to be large (3× 108).
2) p = cn1/2 where we determine c later (c will be 6).

Step 1 Generate G ′ = G (n, p) = (V ′,E ′).

Step 2 For every K4 in G ′, randomly select and delete an edge.

Step 3 The new graph is called G = (V ,E).

1) G obviously has no K4 subgraph.

2) We pick p, n so Prob(
∑

x∈V A(x)) < 2
3 |U|) > 0.

The Construction of the Graph

Parameters 0 < p < 1 and n ∈ N will be determined later.
1) n will end up needing to be large (3× 108).
2) p = cn1/2 where we determine c later (c will be 6).

Step 1 Generate G ′ = G (n, p) = (V ′,E ′).

Step 2 For every K4 in G ′, randomly select and delete an edge.

Step 3 The new graph is called G = (V ,E).

1) G obviously has no K4 subgraph.

2) We pick p, n so Prob(
∑

x∈V A(x)) < 2
3 |U|) > 0.

Messy Calculations That We Skip Reveal

p = cn1/2 with c , n to be picked later.

E (U) > 1
2c

3n3/2 − (c6/12 + c8/24)n∑
x∈V A(x) < 1

4c
3n3/2 + c4

2 (ln 2)1/2n5/4.

Need to look at Variance and make n large, but do indeed get that
if c = 6 and n = 3× 108 then there exists G with∑

x∈V
A(x)) <

2

3
|U|.

That is the desired G .

Messy Calculations That We Skip Reveal

p = cn1/2 with c , n to be picked later.

E (U) > 1
2c

3n3/2 − (c6/12 + c8/24)n

∑
x∈V A(x) < 1

4c
3n3/2 + c4

2 (ln 2)1/2n5/4.

Need to look at Variance and make n large, but do indeed get that
if c = 6 and n = 3× 108 then there exists G with∑

x∈V
A(x)) <

2

3
|U|.

That is the desired G .

Messy Calculations That We Skip Reveal

p = cn1/2 with c , n to be picked later.

E (U) > 1
2c

3n3/2 − (c6/12 + c8/24)n∑
x∈V A(x) < 1

4c
3n3/2 + c4

2 (ln 2)1/2n5/4.

Need to look at Variance and make n large, but do indeed get that
if c = 6 and n = 3× 108 then there exists G with∑

x∈V
A(x)) <

2

3
|U|.

That is the desired G .

Messy Calculations That We Skip Reveal

p = cn1/2 with c , n to be picked later.

E (U) > 1
2c

3n3/2 − (c6/12 + c8/24)n∑
x∈V A(x) < 1

4c
3n3/2 + c4

2 (ln 2)1/2n5/4.

Need to look at Variance and make n large, but do indeed get that
if c = 6 and n = 3× 108 then there exists G with∑

x∈V
A(x)) <

2

3
|U|.

That is the desired G .

Messy Calculations That We Skip Reveal

p = cn1/2 with c , n to be picked later.

E (U) > 1
2c

3n3/2 − (c6/12 + c8/24)n∑
x∈V A(x) < 1

4c
3n3/2 + c4

2 (ln 2)1/2n5/4.

Need to look at Variance and make n large, but do indeed get that
if c = 6 and n = 3× 108 then there exists G with∑

x∈V
A(x)) <

2

3
|U|.

That is the desired G .

Project Idea

Taking Probability Seriously

We Have The Criteria. Lets Use It

Spencer obtained a graph on 3× 108 vertices.

It is an open problem to find graphs of more reasonable size.

Looking at the proof we seek a graph G such that

1)
∑

x∈V A(x)) < 2
3 |U|.

2) G has no K4 as a subgraph.

Looking at the proof we are inspired to try probability.

We Have The Criteria. Lets Use It

Spencer obtained a graph on 3× 108 vertices.

It is an open problem to find graphs of more reasonable size.

Looking at the proof we seek a graph G such that

1)
∑

x∈V A(x)) < 2
3 |U|.

2) G has no K4 as a subgraph.

Looking at the proof we are inspired to try probability.

We Have The Criteria. Lets Use It

Spencer obtained a graph on 3× 108 vertices.

It is an open problem to find graphs of more reasonable size.

Looking at the proof we seek a graph G such that

1)
∑

x∈V A(x)) < 2
3 |U|.

2) G has no K4 as a subgraph.

Looking at the proof we are inspired to try probability.

We Have The Criteria. Lets Use It

Spencer obtained a graph on 3× 108 vertices.

It is an open problem to find graphs of more reasonable size.

Looking at the proof we seek a graph G such that

1)
∑

x∈V A(x)) < 2
3 |U|.

2) G has no K4 as a subgraph.

Looking at the proof we are inspired to try probability.

We Have The Criteria. Lets Use It

Spencer obtained a graph on 3× 108 vertices.

It is an open problem to find graphs of more reasonable size.

Looking at the proof we seek a graph G such that

1)
∑

x∈V A(x)) < 2
3 |U|.

2) G has no K4 as a subgraph.

Looking at the proof we are inspired to try probability.

We Have The Criteria. Lets Use It

Spencer obtained a graph on 3× 108 vertices.

It is an open problem to find graphs of more reasonable size.

Looking at the proof we seek a graph G such that

1)
∑

x∈V A(x)) < 2
3 |U|.

2) G has no K4 as a subgraph.

Looking at the proof we are inspired to try probability.

A Program To Write

1) Input n ∈ N, 0 < p < 1, and I . (Example: n = 100, p = 1/10,
I = 1000) Do the following until you either find the graph you
want, or you’ve done it I times.

2) Form a graph on n vertices by, for each e ∈
([n]
2

)
, flip a coin

with prob p of IN, prob 1− p of OUT. Call the graph G ′.

3) List all of the K4’s in G ′.

4) For each K4 on the list check if it is still a K4. If so then delete
an edge randomly. (This might make later elements on the list no
longer K4.)

5) Call the new graph G . Compute
∑

x∈V A(x) and 2
3 |U|. If∑

x∈V A(x) < 2
3 |U| then YEAH!

A Program To Write

1) Input n ∈ N, 0 < p < 1, and I . (Example: n = 100, p = 1/10,
I = 1000) Do the following until you either find the graph you
want, or you’ve done it I times.

2) Form a graph on n vertices by, for each e ∈
([n]
2

)
, flip a coin

with prob p of IN, prob 1− p of OUT. Call the graph G ′.

3) List all of the K4’s in G ′.

4) For each K4 on the list check if it is still a K4. If so then delete
an edge randomly. (This might make later elements on the list no
longer K4.)

5) Call the new graph G . Compute
∑

x∈V A(x) and 2
3 |U|. If∑

x∈V A(x) < 2
3 |U| then YEAH!

A Program To Write

1) Input n ∈ N, 0 < p < 1, and I . (Example: n = 100, p = 1/10,
I = 1000) Do the following until you either find the graph you
want, or you’ve done it I times.

2) Form a graph on n vertices by, for each e ∈
([n]
2

)
, flip a coin

with prob p of IN, prob 1− p of OUT. Call the graph G ′.

3) List all of the K4’s in G ′.

4) For each K4 on the list check if it is still a K4. If so then delete
an edge randomly. (This might make later elements on the list no
longer K4.)

5) Call the new graph G . Compute
∑

x∈V A(x) and 2
3 |U|. If∑

x∈V A(x) < 2
3 |U| then YEAH!

A Program To Write

1) Input n ∈ N, 0 < p < 1, and I . (Example: n = 100, p = 1/10,
I = 1000) Do the following until you either find the graph you
want, or you’ve done it I times.

2) Form a graph on n vertices by, for each e ∈
([n]
2

)
, flip a coin

with prob p of IN, prob 1− p of OUT. Call the graph G ′.

3) List all of the K4’s in G ′.

4) For each K4 on the list check if it is still a K4. If so then delete
an edge randomly. (This might make later elements on the list no
longer K4.)

5) Call the new graph G . Compute
∑

x∈V A(x) and 2
3 |U|. If∑

x∈V A(x) < 2
3 |U| then YEAH!

A Program To Write

1) Input n ∈ N, 0 < p < 1, and I . (Example: n = 100, p = 1/10,
I = 1000) Do the following until you either find the graph you
want, or you’ve done it I times.

2) Form a graph on n vertices by, for each e ∈
([n]
2

)
, flip a coin

with prob p of IN, prob 1− p of OUT. Call the graph G ′.

3) List all of the K4’s in G ′.

4) For each K4 on the list check if it is still a K4. If so then delete
an edge randomly. (This might make later elements on the list no
longer K4.)

5) Call the new graph G . Compute
∑

x∈V A(x) and 2
3 |U|. If∑

x∈V A(x) < 2
3 |U| then YEAH!

A Program To Write

1) Input n ∈ N, 0 < p < 1, and I . (Example: n = 100, p = 1/10,
I = 1000) Do the following until you either find the graph you
want, or you’ve done it I times.

2) Form a graph on n vertices by, for each e ∈
([n]
2

)
, flip a coin

with prob p of IN, prob 1− p of OUT. Call the graph G ′.

3) List all of the K4’s in G ′.

4) For each K4 on the list check if it is still a K4. If so then delete
an edge randomly. (This might make later elements on the list no
longer K4.)

5) Call the new graph G . Compute
∑

x∈V A(x) and 2
3 |U|. If∑

x∈V A(x) < 2
3 |U| then YEAH!

Random Advice

You can also do this for a large variety of p. Say p = 1
10 , . . . ,

9
10 .

If for (say) 2
10 and 3

10 you almost get it, and the others are not as
good, then try 2.5

10 .

FIRST do this for n = 10 just to make sure your program is
correct. Increase n slowly since we do not know for which n the
approach is infeasible.

There may be many optimizations to do on the pseudo-code I
wrote. The list of K4s- is there a way to delete those you don’t
need to deal with?

Random Advice

You can also do this for a large variety of p. Say p = 1
10 , . . . ,

9
10 .

If for (say) 2
10 and 3

10 you almost get it, and the others are not as
good, then try 2.5

10 .

FIRST do this for n = 10 just to make sure your program is
correct. Increase n slowly since we do not know for which n the
approach is infeasible.

There may be many optimizations to do on the pseudo-code I
wrote. The list of K4s- is there a way to delete those you don’t
need to deal with?

Random Advice

You can also do this for a large variety of p. Say p = 1
10 , . . . ,

9
10 .

If for (say) 2
10 and 3

10 you almost get it, and the others are not as
good, then try 2.5

10 .

FIRST do this for n = 10 just to make sure your program is
correct. Increase n slowly since we do not know for which n the
approach is infeasible.

There may be many optimizations to do on the pseudo-code I
wrote. The list of K4s- is there a way to delete those you don’t
need to deal with?

Random Advice

You can also do this for a large variety of p. Say p = 1
10 , . . . ,

9
10 .

If for (say) 2
10 and 3

10 you almost get it, and the others are not as
good, then try 2.5

10 .

FIRST do this for n = 10 just to make sure your program is
correct. Increase n slowly since we do not know for which n the
approach is infeasible.

There may be many optimizations to do on the pseudo-code I
wrote. The list of K4s- is there a way to delete those you don’t
need to deal with?

Random Advice

You can also do this for a large variety of p. Say p = 1
10 , . . . ,

9
10 .

If for (say) 2
10 and 3

10 you almost get it, and the others are not as
good, then try 2.5

10 .

FIRST do this for n = 10 just to make sure your program is
correct. Increase n slowly since we do not know for which n the
approach is infeasible.

There may be many optimizations to do on the pseudo-code I
wrote. The list of K4s- is there a way to delete those you don’t
need to deal with?

