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Graphs G such that RAM(G) Holds

Questions
Is there a graph G w/o a K6-subgraph such that RAM(G )?
We showed Yes. The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G )?

We showed Yes. The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G )?
Vote: YES or NO or UNKNOWN TO SCIENCE.



Graphs G such that RAM(G) Holds

Questions

Is there a graph G w/o a K6-subgraph such that RAM(G )?
We showed Yes. The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G )?

We showed Yes. The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G )?
Vote: YES or NO or UNKNOWN TO SCIENCE.



Graphs G such that RAM(G) Holds

Questions
Is there a graph G w/o a K6-subgraph such that RAM(G )?

We showed Yes. The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G )?

We showed Yes. The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G )?
Vote: YES or NO or UNKNOWN TO SCIENCE.



Graphs G such that RAM(G) Holds

Questions
Is there a graph G w/o a K6-subgraph such that RAM(G )?
We showed Yes.

The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G )?

We showed Yes. The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G )?
Vote: YES or NO or UNKNOWN TO SCIENCE.



Graphs G such that RAM(G) Holds

Questions
Is there a graph G w/o a K6-subgraph such that RAM(G )?
We showed Yes. The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G )?

We showed Yes. The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G )?
Vote: YES or NO or UNKNOWN TO SCIENCE.



Graphs G such that RAM(G) Holds

Questions
Is there a graph G w/o a K6-subgraph such that RAM(G )?
We showed Yes. The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G )?

We showed Yes. The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G )?
Vote: YES or NO or UNKNOWN TO SCIENCE.



Graphs G such that RAM(G) Holds

Questions
Is there a graph G w/o a K6-subgraph such that RAM(G )?
We showed Yes. The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G )?

We showed Yes.

The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G )?
Vote: YES or NO or UNKNOWN TO SCIENCE.



Graphs G such that RAM(G) Holds

Questions
Is there a graph G w/o a K6-subgraph such that RAM(G )?
We showed Yes. The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G )?

We showed Yes. The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G )?
Vote: YES or NO or UNKNOWN TO SCIENCE.



Graphs G such that RAM(G) Holds

Questions
Is there a graph G w/o a K6-subgraph such that RAM(G )?
We showed Yes. The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G )?

We showed Yes. The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G )?

Vote: YES or NO or UNKNOWN TO SCIENCE.



Graphs G such that RAM(G) Holds

Questions
Is there a graph G w/o a K6-subgraph such that RAM(G )?
We showed Yes. The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G )?

We showed Yes. The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G )?
Vote:

YES or NO or UNKNOWN TO SCIENCE.



Graphs G such that RAM(G) Holds

Questions
Is there a graph G w/o a K6-subgraph such that RAM(G )?
We showed Yes. The graph had 9 vertices and thats min.

Is there a graph G w/o a K5-subgraph such that RAM(G )?

We showed Yes. The graph had 18 vertices. 9 would be impossible.

Is there a graph G w/o a K4-subgraph such that RAM(G )?
Vote: YES or NO or UNKNOWN TO SCIENCE.



Vote on Size of G

There IS a graph G such that RAM(G ) holds and

K4 is NOT a subgraph of G , and

Vote on the Size of the Smallest Known G

≤ 100.

between 103 and 1010.

Over A(10, 10) vertices where A is Ackerman’s function.

Answer on next slide.
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The Size of G : History

(Folkman) The number of vertices is not explicit but is said to be
quite large. I suspect ≥ A(10, 10).

(Nesetril & Rodl) Completely diff proof but graph is still LARGE.

Erdös offers a $100 reward for a a graph that is ≤ 1010 vertices.

Frankl and Rodl obtain a graph with 7× 1011 vertices. Darn!

Spencer obtains a graph with 3× 108 and gets fame and fortune.
Fame within the 10-person Ramsey Theory community, and $100.

We will sketch Spencer’s proof.
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G Such That
RAM(G),

G Has No K4 Subgraph,

G Has 3× 108 Vertices



Two Part Plan

Part I We prove a theorem of the form
If G satisfies condition BLAH then RAM(G ).
We will prove this in more detail than in Spencer’s paper.

Part II We prove that there exists a graph G with property BLAH.
We will prove this in less detail than in Spencer’s paper.
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Implies RAM(G)



Boring Notation

Throughout this talk

1. G = (V ,E ) is a graph.

2. COL : E → [2] has no mono 4s.

3. The colors will be R and B.

4. x , y , z will be vertices.

5. xy = {x , y}, xyz = {x , y , z}.
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Interesting Notation: U

1. U =
⋃

x ,y ,z∈(V3){(x , xyz) : xyz is a triangle of G }.

2. If x ∈ V then
U(x) = {(x , xyz) : xyz is a triangle of G }.

3. If x ∈ V then
N(x) = {y : xy ∈ E}
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U(1) = {(1, 124), (1, 125), (1, 136), (1, 137), (1, 147), (1, 157)}

|U(1)| = 6.
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UCOL: An Interesting Subset of U

1. UCOL is the the union over x , y , z ∈
(V
3

)
(x , xyz) such that

xyz is a triangle of G , and
COL(xy) 6= COL(xz).

2. Let x ∈ V
UCOL(x) is the set of all (x , xyz) such that
xyz is a triangle of G , and
COL(xy) 6= COL(xz). (Similar to a ZAN.)
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Relating |U| and |UCOL|

Thm |UCOL| = 2
3 |U|.

Let T be the number of triangles in G .

∀xyz ∈ T ∃ 3 elts of U: {(x , xyz), (y , xyz), (z , xyz)}

∀xyz ∈ T ∃ 2 elts of UCOL: {(x , xyz), (y , xyz))}
if z is the one vertex in xyz with COL(xz) = COL(yz).

Hence |U| = 3|T | and |UCOL| = 2|T |, so UCOL = 2
3 |U|.

Note |UCOL| = 2
3 |U| relates

|UCOL| which depends on COL, and

|U| which does not depend on COL, only on G .



Relating |U| and |UCOL|

Thm |UCOL| = 2
3 |U|.

Let T be the number of triangles in G .

∀xyz ∈ T ∃ 3 elts of U: {(x , xyz), (y , xyz), (z , xyz)}

∀xyz ∈ T ∃ 2 elts of UCOL: {(x , xyz), (y , xyz))}
if z is the one vertex in xyz with COL(xz) = COL(yz).

Hence |U| = 3|T | and |UCOL| = 2|T |, so UCOL = 2
3 |U|.

Note |UCOL| = 2
3 |U| relates

|UCOL| which depends on COL, and

|U| which does not depend on COL, only on G .



Relating |U| and |UCOL|

Thm |UCOL| = 2
3 |U|.

Let T be the number of triangles in G .

∀xyz ∈ T ∃ 3 elts of U: {(x , xyz), (y , xyz), (z , xyz)}

∀xyz ∈ T ∃ 2 elts of UCOL: {(x , xyz), (y , xyz))}
if z is the one vertex in xyz with COL(xz) = COL(yz).

Hence |U| = 3|T | and |UCOL| = 2|T |, so UCOL = 2
3 |U|.

Note |UCOL| = 2
3 |U| relates

|UCOL| which depends on COL, and

|U| which does not depend on COL, only on G .



Relating |U| and |UCOL|

Thm |UCOL| = 2
3 |U|.

Let T be the number of triangles in G .

∀xyz ∈ T ∃ 3 elts of U: {(x , xyz), (y , xyz), (z , xyz)}

∀xyz ∈ T ∃ 2 elts of UCOL: {(x , xyz), (y , xyz))}
if z is the one vertex in xyz with COL(xz) = COL(yz).

Hence |U| = 3|T | and |UCOL| = 2|T |, so UCOL = 2
3 |U|.

Note |UCOL| = 2
3 |U| relates

|UCOL| which depends on COL, and

|U| which does not depend on COL, only on G .



Relating |U| and |UCOL|

Thm |UCOL| = 2
3 |U|.

Let T be the number of triangles in G .

∀xyz ∈ T ∃ 3 elts of U: {(x , xyz), (y , xyz), (z , xyz)}

∀xyz ∈ T ∃ 2 elts of UCOL: {(x , xyz), (y , xyz))}
if z is the one vertex in xyz with COL(xz) = COL(yz).

Hence |U| = 3|T | and |UCOL| = 2|T |, so UCOL = 2
3 |U|.

Note |UCOL| = 2
3 |U| relates

|UCOL| which depends on COL, and

|U| which does not depend on COL, only on G .



Relating |U| and |UCOL|

Thm |UCOL| = 2
3 |U|.

Let T be the number of triangles in G .

∀xyz ∈ T ∃ 3 elts of U: {(x , xyz), (y , xyz), (z , xyz)}

∀xyz ∈ T ∃ 2 elts of UCOL: {(x , xyz), (y , xyz))}
if z is the one vertex in xyz with COL(xz) = COL(yz).

Hence |U| = 3|T | and |UCOL| = 2|T |, so UCOL = 2
3 |U|.

Note |UCOL| = 2
3 |U| relates

|UCOL| which depends on COL, and

|U| which does not depend on COL, only on G .



Relating |U| and |UCOL|

Thm |UCOL| = 2
3 |U|.

Let T be the number of triangles in G .

∀xyz ∈ T ∃ 3 elts of U: {(x , xyz), (y , xyz), (z , xyz)}

∀xyz ∈ T ∃ 2 elts of UCOL: {(x , xyz), (y , xyz))}
if z is the one vertex in xyz with COL(xz) = COL(yz).

Hence |U| = 3|T | and |UCOL| = 2|T |, so UCOL = 2
3 |U|.

Note |UCOL| = 2
3 |U| relates

|UCOL| which depends on COL, and

|U| which does not depend on COL, only on G .



Relating |U| and |UCOL|

Thm |UCOL| = 2
3 |U|.

Let T be the number of triangles in G .

∀xyz ∈ T ∃ 3 elts of U: {(x , xyz), (y , xyz), (z , xyz)}

∀xyz ∈ T ∃ 2 elts of UCOL: {(x , xyz), (y , xyz))}
if z is the one vertex in xyz with COL(xz) = COL(yz).

Hence |U| = 3|T | and |UCOL| = 2|T |, so UCOL = 2
3 |U|.

Note |UCOL| = 2
3 |U| relates

|UCOL| which depends on COL, and

|U| which does not depend on COL, only on G .
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UCOL(1) = {(1, 124), (1, 137), (1, 157)}.
Let R = {4, 7}, B = {2, 3, 5, 6}.
|UCOL(1)| = |{(x , y) : x ∈ R ∧ y ∈ B ∧ 1xy ∈ T}|.
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COLs and UCOLs and Partitions, Oh My!

Thm Let x ∈ V . Let

R(x) = {y : COL(xy) = R} B(x) = {x : COL(xz) = B}.

1) |UCOL(x)| = |{(y , z) ∈ E : y ∈ R(x) ∧ z ∈ B(x)}|.

2) |UCOL(x)| ≤ maxN(x)=Y∪Z |{(y , z) ∈ E : y ∈ Y ∧ z ∈ Z}|.

The above statements are obvious.
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Motivated Def About Max Over Partitions

Recall from last slide:

|UCOL(x)| ≤ maxN(x)=R∪B |{(y , z) ∈ E : y ∈ R ∧ z ∈ B}|.

This inequality motivates the following definition.

Apologies to the Math Majors who are not used to motivations.

Def A(x) = maxN(x)=R∪B{(y , z) ∈ E : y ∈ R ∧ z ∈ B}|.

Thm |UCOL(x)| ≤ A(x). Trivial.

Note |UCOL(x)| ≤ A(x) relates

|UCOL(x)| which depends on COL, and

A(x) which does not depend on COL, only on G .
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We want to know A(1).
All that matters are the neighbors of 1, not 1 itself.
The next slide is just the neighbors of 1.
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Example of A(1)
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{2, 3} ∪ {4, 5, 6, 7}: Edges (2, 4), (2, 5), (3, 6), (3, 7) A(1) ≥ 4

{2, 6, 7} ∪ {3, 4, 5}: Edges (2, 4), (2, 5), (6, 3), (7, 3) A(1) ≥ 4.
Didn’t do any better.

One can easily show A(1) ≤ 4, so A(1) = 4.
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Putting It All Together

Thm Let G = (V ,E ). Let COL : E → [2] with no mono 4s. Then
2
3 |U| ≤

∑
x∈V A(x)

|UCOL(x)| ≤ A(x).∑
x∈V |UCOL(x)| ≤
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x∈V A(x).
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The Useful Contrapositive

Thm Let G = (V ,E ). If

∑
x∈V

A(x) <
2

3
|U|

then RAM(G ).

So we have a way to test if RAM(G ) that is much faster than
looking at every 2-coloring of E .
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The Random Graph

Parameters 0 < p < 1 and n ∈ N.

Def The Random Graph G (n, p) is the graph on n vertices
formed by, for each xy ∈

([n]
2

)
, put in an edge with probability p.

G (n, p) is not a graph. Its a way to generate graphs.

We show that for appropriate p, n the prob that G (n, p) has the
properties we want is nonzero.
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The Construction of the Graph

Parameters 0 < p < 1 and n ∈ N will be determined later.

1) n will end up needing to be large (3× 108).
2) p = cn1/2 where we determine c later (c will be 6).

Step 1 Generate G ′ = G (n, p) = (V ′,E ′).

Step 2 For every K4 in G ′, randomly select and delete an edge.

Step 3 The new graph is called G = (V ,E ).

1) G obviously has no K4 subgraph.

2) We pick p, n so Prob(
∑

x∈V A(x)) < 2
3 |U|) > 0.
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Messy Calculations That We Skip Reveal

p = cn1/2 with c , n to be picked later.

E (U) > 1
2c

3n3/2 − (c6/12 + c8/24)n∑
x∈V A(x) < 1

4c
3n3/2 + c4

2 (ln 2)1/2n5/4.

Need to look at Variance and make n large, but do indeed get that
if c = 6 and n = 3× 108 then there exists G with∑

x∈V
A(x)) <

2

3
|U|.

That is the desired G .



Messy Calculations That We Skip Reveal

p = cn1/2 with c , n to be picked later.

E (U) > 1
2c

3n3/2 − (c6/12 + c8/24)n

∑
x∈V A(x) < 1

4c
3n3/2 + c4

2 (ln 2)1/2n5/4.

Need to look at Variance and make n large, but do indeed get that
if c = 6 and n = 3× 108 then there exists G with∑

x∈V
A(x)) <

2

3
|U|.

That is the desired G .



Messy Calculations That We Skip Reveal

p = cn1/2 with c , n to be picked later.

E (U) > 1
2c

3n3/2 − (c6/12 + c8/24)n∑
x∈V A(x) < 1

4c
3n3/2 + c4

2 (ln 2)1/2n5/4.

Need to look at Variance and make n large, but do indeed get that
if c = 6 and n = 3× 108 then there exists G with∑

x∈V
A(x)) <

2

3
|U|.

That is the desired G .



Messy Calculations That We Skip Reveal

p = cn1/2 with c , n to be picked later.

E (U) > 1
2c

3n3/2 − (c6/12 + c8/24)n∑
x∈V A(x) < 1

4c
3n3/2 + c4

2 (ln 2)1/2n5/4.

Need to look at Variance and make n large, but do indeed get that
if c = 6 and n = 3× 108 then there exists G with∑

x∈V
A(x)) <

2

3
|U|.

That is the desired G .



Messy Calculations That We Skip Reveal

p = cn1/2 with c , n to be picked later.

E (U) > 1
2c

3n3/2 − (c6/12 + c8/24)n∑
x∈V A(x) < 1

4c
3n3/2 + c4

2 (ln 2)1/2n5/4.

Need to look at Variance and make n large, but do indeed get that
if c = 6 and n = 3× 108 then there exists G with∑

x∈V
A(x)) <

2

3
|U|.

That is the desired G .



Project Idea

Taking Probability Seriously



We Have The Criteria. Lets Use It

Spencer obtained a graph on 3× 108 vertices.

It is an open problem to find graphs of more reasonable size.

Looking at the proof we seek a graph G such that

1)
∑

x∈V A(x)) < 2
3 |U|.

2) G has no K4 as a subgraph.

Looking at the proof we are inspired to try probability.
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A Program To Write

1) Input n ∈ N, 0 < p < 1, and I . (Example: n = 100, p = 1/10,
I = 1000) Do the following until you either find the graph you
want, or you’ve done it I times.

2) Form a graph on n vertices by, for each e ∈
([n]
2

)
, flip a coin

with prob p of IN, prob 1− p of OUT. Call the graph G ′.

3) List all of the K4’s in G ′.

4) For each K4 on the list check if it is still a K4. If so then delete
an edge randomly. (This might make later elements on the list no
longer K4.)

5) Call the new graph G . Compute
∑

x∈V A(x) and 2
3 |U|. If∑

x∈V A(x) < 2
3 |U| then YEAH!
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Random Advice

You can also do this for a large variety of p. Say p = 1
10 , . . . ,

9
10 .

If for (say) 2
10 and 3

10 you almost get it, and the others are not as
good, then try 2.5

10 .

FIRST do this for n = 10 just to make sure your program is
correct. Increase n slowly since we do not know for which n the
approach is infeasible.

There may be many optimizations to do on the pseudo-code I
wrote. The list of K4s- is there a way to delete those you don’t
need to deal with?
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