Blocks of Five

Exposition by William Gasarch-U of MD



Part |:

A UMCP Math Competition Problem

And Its Generalization
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Problem 4 From the UMCP Math Competition

If Ais a finite set then |A| is the number of elements in A.
We refer to finite sets as blocks throughout.

Def A collection blocks A;, ..., Am C{1,...,2025} is called
awesome if

1) V1 < i< m, |Ai] =5, and

2)V1§i<j§m, |A,‘ﬁAj|:1.

3) V1 <y <2025, there is an i, y € A;.

Problem

Find m € N such that the following are true

1) There exists an awesome collection of m blocks.

2) There does not exist an awesome collection of m + 1 blocks.
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We use the blocks
A1 =1{1,2,3,4,2025}
A, = {5,6,7,8,2025}

A = {4i —3,4i — 2,4i — 1,4i,2025}

Asos = {2021, 2022,2023,2024, 2025}

Are we done? No! Need to show
there is no set of > 507 blocks that works.
We first generalize the problem.
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n-awesome if

1) V1 <i<m,|A]|=5, and

2)V1§i<j§m, |A,‘ﬂAj|:1.

3) V1 <y <n, thereisan i, y € A;.
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Let Ay,..., A, be an n-awesome collection of blocks.
If thereisnoy € A;N---N A, then

1) For all y € [n], y appears in <5 of the A;'s.

2) m< 21.

We can assume A; = {1,2,3,4,n} and A, = {5,6,7,8, n}.
We can assume A; = {1,5,9,10,11}.

Let

T1={i242 nEA,-}.

T2={i23: n¢A,~}.
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Ay ={1,2,3,4,n}, A, = {5,6,7,8,n}, As = {1,5,9,10,11}.
T1={i24: nEA;}.

Bound on |T;|: Let i € T;. Options for A3 N A;?
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If 5 € A3N A, then {5, n} C A>NA;. NO!

So either 9 € A3NA; OR10€ A3NA; OR 11 € A3NA;.
1-1 map: i € T1 maps to A3 N A;. Only 9,10, 11 in image.

| T1] < 3.
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A]- = {17273747 n}, A2 = {5,6,7,87 n}
T2:{i23: n¢A,~}.

Bound on |T;| Let i € T,. Options for (A1 N A;, A2 N Aj)?
Since n ¢ A;,

A1 NA; €{1,2,3,4} and AN A; € {5,6,7,8}.

So (Al NA;, AN A,‘) S {(a, b): ac {1, 2, 3,4}, be {5, 6,7, 8}}
1-1 map: i € T, maps to (A1 NA;, A2 NA;).

| T, < 16.
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Restate Let m,n € N.

Let A,..., A, be an n-awesome collection of blocks.
If thereisnoy € A;N---N A, then

1) For all y € [n], y appears in <5 of the A;'s.

2) m<21.

1) Since | T2| < 3, the number of blocks that have nis <5.
There was noting special about n. Hence all x € [n], appear <5
times.

2)m< 2+ |Ty|+|To) <2+3+16 =21
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Thm Let A;,...,An C{1,...,2025} be such that
1) V1 < i< m, |Ai| =5, and

)V1<i<j<m, |ANA|=1 and

3) V1 <y <2025, there is an i, y € A;.

Then m = 506.

Case 1 There is some y € Ay N --- N Ap. Then this is the
construction we gave earlier so m = 506.

Case 2 There is no such y, Then m < 21.

Hence m = 506 is the answer.
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We only had to prove that there is no awesome collection of 507
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What We Did
We showed that every awesome collection of blocks has size 506.

This leads to our general problem.
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The Function f(n)

Notation Let n > 5.
Let f(n) be the set of m such that there is an n-awesome

collection of size m.
We showed £(2025) = {506}.

Question For all n > 5 determine f(n).
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Generalizing our UMCP Proof

Thm If n > 106 then
1) If n=1 (mod 4) then f(n)
2) If n#£ 1 (mod 4) then f(n) =

{21}
0

Case 1 There is some y € Ay N --- N Ap. Then this is the

construction we gave earlier so m = 2. Hence n =1 (mod 4).

Case 2 There is no such y. Then by prior Lemma m < 21. If there
are 21 blocks then n =21 x 5 = 105.

Side Project We will soon improve this bound to n < 33 using
complicated though elementary techniques. Try to get a
better-than-105 bound on n that uses simple elementary
techniques.
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For which n < 105 does there exist Aj,..., A such that
1) For 1 <i <21, |Aj| =5.

2) Forall1<i<j<2l, |[AiNA]|=1

3) Forall y € {1,...,n} there exists i, y € A;

ChatGPT Said n = 21 and n = 35. Uses finite geometry.

| tried to verify these two claims.

1) For n = 21 this was true and is interesting!

2) For n =35 | proved there was no such set of blocks!

| showed ChatGPT both its output and my proof that n = 35 does
not work.

ChatGPT Said You were right to check my work. | was wrong.
There is no such set of blocks with n = 35. | apologize. When you
use ChatGPT you should always verify!
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We restate our lemmas:

Lemmas Let m,n € N.

Let Ay,..., A, be an n-awesome collection of blocks.

1) If there exists y € Ay N ---N A, then n = "Zl.

2) If thereisnoy € AN ---N A, then for all y € [n], y appears
in <5 of the blocks.

Upshot We only need to consider awesome collections where, for
all y € [n], y appears in <5 of the blocks.

Notation The phrase

Let Ay,..., A, be an n-awesome* collection of blocks
means a collection of blocks where every y € [n] appears <5
times.
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Def Let Aq,..., A, be an n-awesome* collection of blocks. An
incidence is an ordered pair ((y, /) € [n] x [m] such y € A;.

Notation Ag,..., A is an n-awesome* collection.
1) For 1 <i <5 let n; be the number of elements of {1,...,n}
appearing in exactly i blocks.

2) For 1 < < nlet r; be the number of blocks that i is in. Also
called the multiplicity of /.

3) If y has multiplicty i we say that y is a mult-i elt
WRITE DOWN the Def and Notation!
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Lemma Z:e[n] ( ) = (;1)
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r1:3 I’2:3 I’3:3 I’4:2 I’5:2 e =
rr=2 r=1 rn=2 ny=3 ni=2 rp=
I’13—3 I’14—2 r15:1 r16:2 r17:3 r18:3
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A1 =1{1,2,3,4,5} A,=1{1,6,7,8,9} As;={1,10,11,12,13}
Ay ={2,6,10,14,15} As ={2,7,11,16,17} As = {3,6,12,16,18}
A; ={3,8,13,14,17} Ag ={4,7,13,15,18} Ay ={5,9,10,17,18}
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n=18 m=09.

A ={1,2,3,4,5} A, ={1,6,7,8,9} As={1,10,11,12,13}
Ay ={2,6,10,14,15} As ={2,7,11,16,17} As = {3,6,12,16,18}
A; = {3,8,13,14,17} Ag={4,7,13,15,18} Ao = {5,9,10,17,18}

r1:3 I’2:3 I’3:3 I’4:2 r5:2 e =
rr=2 rg=1 rg=2 rno=3 ny =2 rnp =2
I’13—3 I’14—2 r15:1 r16:2 r17:3 r18:3
Lemma 3, 1, (5 ) = (';)

Algebra: 37ci 17 = n* +4m.

Another way to calculate 3, r7:
n3 =9 via {1,2,3,6,7,10,13,17,18}. Each contributes 32 = 9. So
Lemma 3,5 i°ni = 3y 17 = 1 + 4m WRITE THIS DOWN!



Summary of Lemmas Plus. ..



Summary of Lemmas Plus. ..

Lemma Let m,n € N. Assume A1,..., A is an n-awesome*
collection of blocks.



Summary of Lemmas Plus. ..

Lemma Let m,n € N. Assume Aq,..., A, is an n-awesome*
collection of blocks.

1) For 1 < i <5 n; is the numb of y € [n] that appear i times.



Summary of Lemmas Plus. ..

Lemma Let m,n € N. Assume Aq,..., A, is an n-awesome*
collection of blocks.

1) For 1 < i <5 n; is the numb of y € [n] that appear i times.
Zie[S] np=n.



Summary of Lemmas Plus. ..

Lemma Let m,n € N. Assume Aq,..., A, is an n-awesome*
collection of blocks.

1) For 1 < i <5 n; is the numb of y € [n] that appear i times.
D icfs) i = -

Zi€[5] ini =bm.



Summary of Lemmas Plus. ..

Lemma Let m,n € N. Assume Aq,..., A, is an n-awesome*
collection of blocks.

1) For 1 < i <5 n; is the numb of y € [n] that appear i times.
Zie[S] nj=n.

> ic[s) ini = 5m.

> icps] i’n; = n® + 4m.



Summary of Lemmas Plus. ..

Lemma Let m,n € N. Assume Aq,..., A, is an n-awesome*
collection of blocks.

1) For 1 < i <5 n; is the numb of y € [n] that appear i times.
Zie[S] np=n.

Zi€[5] ini =bm.
> icps] i’n; = n® + 4m.
2) (n1,...,ns) is a solution in Z° iff 3p, q € Z such that:



Summary of Lemmas Plus. ..

Lemma Let m,n € N. Assume Aq,..., A, is an n-awesome*
collection of blocks.

1) For 1 < i <5 n; is the numb of y € [n] that appear i times.

Zie[S] nj=n.
> ic[s) ini = 5m.

> icps] i’nj = n? + 4m.
2) (n1,...,ns) is a solution in Z° iff 3p, q € Z such that:

n =0.5m>—10.5m+3n—p—3q
n2:—m2+16m—3n+3p+8q

n3 =0.5m?> —5.5m+n—3p—6q
ny =p

ns =4q

(Proof by more algebra than you want to do.)
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Lemma Let Ay, ..., A, be an n-awesome* collection of blocks.
We know that y appears in <5 blocks.
We know that there exists p, g > 0 such that

m =0.5m?>—10.5m+3n—p—3q

n, =-m?>+16m—3n+3p+8q
n3 =0.5m*>—55m+n—3p—6q
ny =p
ns =4g

np > 0: Algebra: n < 16%‘"’2 +p+ %q (1)
n3 > 0: Algebra: n > anfn# +3p+ 6gq (2)
(1) and (2):



Better Bound on n

Lemma Let Ay, ..., A, be an n-awesome* collection of blocks.
We know that y appears in <5 blocks.
We know that there exists p, g > 0 such that

m =0.5m?>—10.5m+3n—p—3q

n, =-m?>+16m—3n+3p+8q
n3 =0.5m*>—55m+n—3p—6q
ny =p
ns =4g

np > 0: Algebra: n < 16%‘"’2 +p+ %q (1)
n3 > 0: Algebra: n > anfn# +3p+ 6gq (2)
(1) and (2): Algebra: 12p+20g<m?—-m  (3)
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An Optimization Problem

2
n§16m3m +P+%

Here is our curren;c problem:

Maximize 16’"%’" +p+ %q

Constraint 12p 4+ 20g < m?> — m and m, p,q > 0.

From Algebra and Calc have upper bound is max when m = 13:
n< 26><l3 13x13 _ 169 —33.8

SmceneN n<33
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Problem Solved for n > 34

Thm Let n > 34.

1) If n=1 (mod 4) then f(n) = {%*}.
2) If n#£1 (mod 4) then f(n) = (.
Let Ai,..., A, be an n-awesome collection of blocks.

1

Case 1 There exists a y that is in every block. Then m = 2= and

4
n=1 (mod 4).
Case 2 There is no such y. Then n < 33, contrary to hypothesis.



Part 1V:
Using Programs

We Determine f(n) for 5 < n < 32
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GEN-NI PROGRAM. Generates all (ny, ny, n3, ng, ng)

Sketch of Code

Input n, m.

TABLE-NI = (.

For p=0ton
Forq=0ton—p

n = 0.5m?> — 10.5m + 3n — p—3qg
ny=—m?+16m—3n+3p+ 8q
n3:05m2—5.5m+n—3p—6q
ng =p
ns =4q
If (Vi)[0 < n; < 5] then

TABLE-NI = TABLE-NI U (n, m; n1, n2, n3, na, ns)
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n =22, m=17. The possible (n1, na, n3, na, ns):

1,0,10,1,10)
0,3,7,2,10)
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0,4,4,5,9)
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0,5,1,8,8)
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1,3,1,10,7)
(2,1,1,12,6)

Those are a lot of options!
If we eliminate all of them then we know 17 ¢ f(22).
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Running Example: n =22, m =17

n =22, m=17. The possible (n1, na, n3, na, ns):

1,0,10,1,10)

0,3,7,2,10)

1,1,7,4)9)

0,4,4,5,9)

1,2,4,7,8)

0,5,1,8,8)

2,0,4,9,7)

1,3,1,10,7)

(2,1,1,12,6)

Those are a lot of options!

If we eliminate all of them then we know 17 ¢ f(22).
If we eliminate some of them we may have insight into how to
construct a 22-awesome* collection of 17 blocks.

AN AN AN AN AN AN N N
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This does mean that bt; is not a valid blocktype.
General Theorem on next slide.
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Elim-bt Theorem

Thm Assume there is an n-awesome* collection.

For 1 < i <5 let n; be the number of i-mult elts.

Let bt be a blocktype.

If there exists 1 < i < 5 such that bt’ > n; then there is no block
of type bt.

bt is called invalid

If bt’ > n; then bt has > n; mult-i elts which is a contradiction.
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GEN-BT PROGRAM

Sketch of Code
Input (n, m; n1, n2, n3, ng, ns)
TABLE-BT = ()
For by =5 downto 1
For b, = by downto 1
For b3 = by downto 1
For by = b3 downto 1
b5:m—|—4—b1—b2—b3—b4
if 1 < bs <5 then
bt = [bl, by, b3, by, b5]
If (V1 < i <5)[bt’ < n;] then
TABLE-BT = TABLE-BT U { bt}

Note Output is a set of blocktypes.

Side project Do this program more efficiently.
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n =22, m=17. We consider (ny, n2, n3, ng, ns) = (0,3,7,2,10).
Each block type must sum to m + 4 = 21.

Blocktypes are 5-tuples of numbers in {1,2,3,4,5} that sum to 21:
[5,5,5,4,2]

[5,5,5,3,3]

[5,5,4,4,3]

[5,4,4,4,4]. No! has 4 4's but ng =2 < 4.

There are no blocks of type [5,4,4,4] since there are only 2
elements of multiplicity 4.

Continue this exciting story on the next slide.
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n=22, m=17. (n1,np, n3,na,n5) = (0,3,7,2,10).

Block types:

x1 blocks of type [5,5,5,4,2]. 3 mult-5, 1 mult-4, 1 mult-2.
xp blocks of type [5,5,5,3,3]. 3 mult-5, 2 mult-3.

x3 blocks of type [5,5,4,4,3]. 2 mult-5, 2 mult-4, 1 mult-3.

Using mult-5: 3x; 4+ 3xp +2x3 =5 x 10 =50

Using mult-4: x; +2xp =4 x2 =38

Using mult-3: 2x0 +x3 =3 x7=21

Using mult-2: x; =2x3 =6

Since there are 17 blocks: x; + xo + x3 = 17.

Algebra shows these equations have no solution at all!
Only needed that it had no solution in N.
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GEN-EQ PROGRAM

Sketch of Code
Input [[bty], ..., [bte]]. A set of blocktypes.
TABLE-EQ =0
For 1 <j < e, x; is var for the numb of blocks of type bt;.
For1<i<5

TABLE-EQ = TABLE-EQU

{ (Num of i's'in bty)x; + --- + (Num of i'sin bte)xe = in; }

TABLE-EQ = TABLE-EQU { xy + -+ Xxe =m }

We call this set of equations the usual equations.
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GEN-SOL PROGRAM

Sketch of Code

Input (eq1,...,eqe) A set of 6 linear equations.
Use a package to find out about solutions.
Output

If there is no solution at all output NONE

If there is is a solution but not a solution over N then output
NONE-N.

If there are solutions over N then output all of them.
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n=22, m=17, (ny,n2,n3,na,ns) = (1,1,7,4,9).
Blocktypes:

x1 [5,5,5,5,1]

x2 [5,5,5,4,2]

x3 [5,5,5,3,3]

X4 [5,5,4,4, 3]

x5 [5,4,4,4,4]



Eliminating a Solution
n=22, m=17, (ny,n2,n3,na,ns) = (1,1,7,4,9).
Blocktypes:
x1 [5,5,5,5,1]
x2 [5,5,5,4,2]
x3 [5,5,5,3,3]
X4 [5,5,4,4, 3]
x5 [5,4,4,4,4]
The equations:
Mult 1: xy=1xn =1
Mult 2: xo =2 X np =2
Mult 3: 2x3 + x4 =3 x n3 =21
Mult 4: xo +2x4 + 4x5 = 4 X ng = 16
Mult 5: 4x1 +3x0 +3x3 +2x4 + x5 = 5 X ng = 45
Blocks: x1 + xo + x3 + x4 + x5 = 17.
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Eliminating a Solution
n=22, m=17, (ny,n2,n3,na,ns) = (1,1,7,4,9).
Blocktypes:
x1 [5,5,5,5,1]
x2 [5,5,5,4,2]
x3 [5,5,5,3,3]
X4 [5,5,4,4, 3]
x5 [5,4,4,4,4]
The equations:
Mult 1: xy=1xn =1
Mult 2: xo =2 X np =2
Mult 3: 2x3 + x4 =3 x n3 =21
Mult 4: xo +2x4 + 4x5 = 4 X ng = 16
Mult 5: 4x1 +3x0 +3x3 +2x4 + x5 = 5 X ng = 45
Blocks: x1 + xo + x3 + x4 + x5 = 17.

There are 4 solutions: (x1, x2, X3, Xa, X5) =
(1,2,7,7,0), (1,2,8,5,1), (1,2,9,3,2), (1,2,10,1,3)
We show (1,2,9,3,2) does not work on next slide.
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Solution (x1, x2, x3, x4, x5) = (1,2,9,3,2).

Blocktypes:

x1=115,5,5,5,1]

xp =215,5,5,4,2]
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2 [5,5,5,4,2]'s contributes 2 x (3) pairs of elts of mult 5.

9 [5,5,5,3,3]'s contributes 9 x (g) pairs of elts of mult 5.
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These pairs are distinct since all intersections are of size 1.

Numb of pairs of elts is > 6 + 6 + 27 + 3 = 42.
But (%) = (3) = 36 < 42. Contradiction.
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Example of Elim using Equations

Recall bt is a block type. If 1 < i <5 then bt is how many i's are
in bt.

Example m =22, m =17, (n1, n2, n3, n4, ns) = (1,1,7,4,9).

1 bty [5,5,5,5,1]. bti =1. bt} = 4.

2 bty [5,5,5,4,2]. bt2 = 1. bty = 1. bt = 3.

9 bt3 [5,5,5,3,3]. bt =2. bt3 =3.

3 bty [5,5,4,4,3]. bt = 1. bt§ =2. bt = 2.

4 bts [5,4,4,4,4]. btg =4. bt2 = 1.

We rephrase the argument from the last slide.

The number of pairs of Mult-5 elts is at least

bt? bt3 bt3 bt} bt
1x(2>+2x(2 +9x 5 +3x 5 +4x 5 =42

Numb of pairs of Mult-5 elts: (3) = (g) =36 < 45.
Contradiction!

General Theorem on next slide.
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Elimination Theorem

Thm The following cannot happen: Let n,m € N. There is an
n-awesome* collection of m block such that:

1) For 1 < i <5 there are n; i-mult elements.

2) The block types are bty, ..., bte.

3) V solution to the usual equations (xi,...,xe) 31 < i <5:

bti - bt! (i
X1 ) Xe ) ) .
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Input (n, m; n1, no, n3, na, ns),[[bt1], ..., [bte]], (x1,...

Boolean Variable SOLGOOD is set to TRUE.
Fori=1tob _
If x1 (bZti) 4+ Xe (béé) > (';’) then
SOLGOOD=FALSE



SOL-BAD PROGRAM

Input (n, m; n1, no, n3, na, ns),[[bt1], ..., [bte]], (x1,...

Boolean Variable SOLGOOD is set to TRUE.
Fori=1tob _
If xq (bZti) + ot Xe (béé) > (';’) then
SOLGOOD=FALSE
Output SOLGOOD (this will be TRUE or FALSE)
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Input(n, m)

TABLE-NI = GEN-NI(n, m). So TABLE-NI is possible

(n, m; n1, na, n3, ng, ns).

For all (n, m; ny, ny, n3, ng, ns) € TABLE-NI
TABLE-BT = GEN—BT(H, m; ni, N2, N3, Ng, n5)
For all [[bt1],...,[bte]] in TABLE-BT

TABLE-EQ = GEN-EQ[[bt1], .., [bte]]

For all (eqi,...,eqs) € TABLE-EQ
TABLE-SOL = GEN-SOL((eqi, . . ., €ge))
For all (x,...,xe) € TABLE-SOL

SOL-GOOD =
SOL-BAD(n, m; n1, n, n3, na, ns), [[bti], ..., [bte]], (x1, ..., Xe)
If SOL-GOOD # FALSE then output
(n, m; n1, na, n3, na, ns)
[[bt1], ..., [bte]]
(X1y. .0y Xe)
else output FALSE
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FINAL PROGRAM

Input n
if n>34 and n=1 (mod 4) then output (n, 27%) and STOP.
if n >34 and n# 1 (mod 4) then output () and STOP.
(If you get this far then 5 < n < 33. )
If n=1 (mod 4) then output (n, 2z%) (but do not stop).
For m=1to 21
x = mWORKS?(n, m)
If x is not FALSE then output all of the information x had.

We are not done yet. See Next Slide.
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What Might Happen

1) There are a few cases < 20 that I've already worked out.
Sometimes (though rarely) there IS an awesome n-collection with
n#1 (mod 4).

2) We may find that the few that | have found are the only ones,
so we are DONE.

3) We may find a case where we have all of that information but do
not have a contradiction. This may lead to more math of interest.

Which am | rooting for? | will be happy with either:

a) We are DONE

b) We find some math of interest and THEN we are DONE.
| will be unhappy if we can’t actually solve the problem.



