

Blocks of Five

Exposition by William Gasarch-U of MD

Part I:

A UMCP Math Competition Problem And Its Generalization

Problem 4 From the UMCP Math Competition

If A is a finite set then $|A|$ is the number of elements in A .

Problem 4 From the UMCP Math Competition

If A is a finite set then $|A|$ is the number of elements in A .
We refer to finite sets as **blocks** throughout.

Problem 4 From the UMCP Math Competition

If A is a finite set then $|A|$ is the number of elements in A .

We refer to finite sets as **blocks** throughout.

Def A collection blocks $A_1, \dots, A_m \subseteq \{1, \dots, 2025\}$ is called **awesome** if

Problem 4 From the UMCP Math Competition

If A is a finite set then $|A|$ is the number of elements in A .

We refer to finite sets as **blocks** throughout.

Def A collection blocks $A_1, \dots, A_m \subseteq \{1, \dots, 2025\}$ is called **awesome** if

- 1) $\forall 1 \leq i \leq m$, $|A_i| = 5$, and

Problem 4 From the UMCP Math Competition

If A is a finite set then $|A|$ is the number of elements in A .

We refer to finite sets as **blocks** throughout.

Def A collection blocks $A_1, \dots, A_m \subseteq \{1, \dots, 2025\}$ is called **awesome** if

- 1) $\forall 1 \leq i \leq m$, $|A_i| = 5$, and
- 2) $\forall 1 \leq i < j \leq m$, $|A_i \cap A_j| = 1$.

Problem 4 From the UMCP Math Competition

If A is a finite set then $|A|$ is the number of elements in A .

We refer to finite sets as **blocks** throughout.

Def A collection blocks $A_1, \dots, A_m \subseteq \{1, \dots, 2025\}$ is called **awesome** if

- 1) $\forall 1 \leq i \leq m$, $|A_i| = 5$, and
- 2) $\forall 1 \leq i < j \leq m$, $|A_i \cap A_j| = 1$.
- 3) $\forall 1 \leq y \leq 2025$, there is an i , $y \in A_i$.

Problem 4 From the UMCP Math Competition

If A is a finite set then $|A|$ is the number of elements in A .

We refer to finite sets as **blocks** throughout.

Def A collection blocks $A_1, \dots, A_m \subseteq \{1, \dots, 2025\}$ is called **awesome** if

- 1) $\forall 1 \leq i \leq m$, $|A_i| = 5$, and
- 2) $\forall 1 \leq i < j \leq m$, $|A_i \cap A_j| = 1$.
- 3) $\forall 1 \leq y \leq 2025$, there is an i , $y \in A_i$.

Problem

Find $m \in \mathbb{N}$ such that the following are true

Problem 4 From the UMCP Math Competition

If A is a finite set then $|A|$ is the number of elements in A .

We refer to finite sets as **blocks** throughout.

Def A collection blocks $A_1, \dots, A_m \subseteq \{1, \dots, 2025\}$ is called **awesome** if

- 1) $\forall 1 \leq i \leq m$, $|A_i| = 5$, and
- 2) $\forall 1 \leq i < j \leq m$, $|A_i \cap A_j| = 1$.
- 3) $\forall 1 \leq y \leq 2025$, there is an i , $y \in A_i$.

Problem

Find $m \in \mathbb{N}$ such that the following are true

- 1) There exists an awesome collection of m blocks.

Problem 4 From the UMCP Math Competition

If A is a finite set then $|A|$ is the number of elements in A .

We refer to finite sets as **blocks** throughout.

Def A collection blocks $A_1, \dots, A_m \subseteq \{1, \dots, 2025\}$ is called **awesome** if

- 1) $\forall 1 \leq i \leq m$, $|A_i| = 5$, and
- 2) $\forall 1 \leq i < j \leq m$, $|A_i \cap A_j| = 1$.
- 3) $\forall 1 \leq y \leq 2025$, there is an i , $y \in A_i$.

Problem

Find $m \in \mathbb{N}$ such that the following are true

- 1) There exists an awesome collection of m blocks.
- 2) There does not exist an awesome collection of $m + 1$ blocks.

Answer to Problem 4

We use the blocks

Answer to Problem 4

We use the blocks

$$A_1 = \{1, 2, 3, 4, 2025\}$$

Answer to Problem 4

We use the blocks

$$A_1 = \{1, 2, 3, 4, 2025\}$$

$$A_2 = \{5, 6, 7, 8, 2025\}$$

⋮

Answer to Problem 4

We use the blocks

$$A_1 = \{1, 2, 3, 4, 2025\}$$

$$A_2 = \{5, 6, 7, 8, 2025\}$$

⋮

$$A_i = \{4i - 3, 4i - 2, 4i - 1, 4i, 2025\}$$

⋮

Answer to Problem 4

We use the blocks

$$A_1 = \{1, 2, 3, 4, 2025\}$$

$$A_2 = \{5, 6, 7, 8, 2025\}$$

⋮

$$A_i = \{4i - 3, 4i - 2, 4i - 1, 4i, 2025\}$$

⋮

$$A_{506} = \{2021, 2022, 2023, 2024, 2025\}$$

Answer to Problem 4

We use the blocks

$$A_1 = \{1, 2, 3, 4, 2025\}$$

$$A_2 = \{5, 6, 7, 8, 2025\}$$

⋮

$$A_i = \{4i - 3, 4i - 2, 4i - 1, 4i, 2025\}$$

⋮

$$A_{506} = \{2021, 2022, 2023, 2024, 2025\}$$

Are we done?

Answer to Problem 4

We use the blocks

$$A_1 = \{1, 2, 3, 4, 2025\}$$

$$A_2 = \{5, 6, 7, 8, 2025\}$$

⋮

$$A_i = \{4i - 3, 4i - 2, 4i - 1, 4i, 2025\}$$

⋮

$$A_{506} = \{2021, 2022, 2023, 2024, 2025\}$$

Are we done? **No!**

Answer to Problem 4

We use the blocks

$$A_1 = \{1, 2, 3, 4, 2025\}$$

$$A_2 = \{5, 6, 7, 8, 2025\}$$

⋮

$$A_i = \{4i - 3, 4i - 2, 4i - 1, 4i, 2025\}$$

⋮

$$A_{506} = \{2021, 2022, 2023, 2024, 2025\}$$

Are we done? **No!** Need to show

Answer to Problem 4

We use the blocks

$$A_1 = \{1, 2, 3, 4, 2025\}$$

$$A_2 = \{5, 6, 7, 8, 2025\}$$

⋮

$$A_i = \{4i - 3, 4i - 2, 4i - 1, 4i, 2025\}$$

⋮

$$A_{506} = \{2021, 2022, 2023, 2024, 2025\}$$

Are we done? **No!** Need to show
there is no set of ≥ 507 blocks that works.

Answer to Problem 4

We use the blocks

$$A_1 = \{1, 2, 3, 4, 2025\}$$

$$A_2 = \{5, 6, 7, 8, 2025\}$$

⋮

$$A_i = \{4i - 3, 4i - 2, 4i - 1, 4i, 2025\}$$

⋮

$$A_{506} = \{2021, 2022, 2023, 2024, 2025\}$$

Are we done? **No!** Need to show
there is no set of ≥ 507 blocks that works.
We first generalize the problem.

n-Awesome

Notation If $n \in \mathbb{N}$ then $[n] = \{1, \dots, n\}$.

n-Awesome

Notation If $n \in \mathbb{N}$ then $[n] = \{1, \dots, n\}$. **WRITE THIS DOWN!**

n-Awesome

Notation If $n \in \mathbb{N}$ then $[n] = \{1, \dots, n\}$. **WRITE THIS DOWN!**

Def Let $n, m \in \mathbb{N}$. A collection of blocks $A_1, \dots, A_m \subseteq [n]$ is called ***n*-awesome** if

n-Awesome

Notation If $n \in \mathbb{N}$ then $[n] = \{1, \dots, n\}$. **WRITE THIS DOWN!**

Def Let $n, m \in \mathbb{N}$. A collection of blocks $A_1, \dots, A_m \subseteq [n]$ is called ***n*-awesome** if

- 1) $\forall 1 \leq i \leq m$, $|A_i| = 5$, and

n-Awesome

Notation If $n \in \mathbb{N}$ then $[n] = \{1, \dots, n\}$. **WRITE THIS DOWN!**

Def Let $n, m \in \mathbb{N}$. A collection of blocks $A_1, \dots, A_m \subseteq [n]$ is called ***n*-awesome** if

- 1) $\forall 1 \leq i \leq m$, $|A_i| = 5$, and
- 2) $\forall 1 \leq i < j \leq m$, $|A_i \cap A_j| = 1$.

n-Awesome

Notation If $n \in \mathbb{N}$ then $[n] = \{1, \dots, n\}$. **WRITE THIS DOWN!**

Def Let $n, m \in \mathbb{N}$. A collection of blocks $A_1, \dots, A_m \subseteq [n]$ is called ***n*-awesome** if

- 1) $\forall 1 \leq i \leq m$, $|A_i| = 5$, and
- 2) $\forall 1 \leq i < j \leq m$, $|A_i \cap A_j| = 1$.
- 3) $\forall 1 \leq y \leq n$, there is an i , $y \in A_i$.

Key Lemma

Let $m, n \in \mathbb{N}$.

Key Lemma

Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

Key Lemma

Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

If there is no $y \in A_1 \cap \dots \cap A_m$, then

Key Lemma

Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

If there is no $y \in A_1 \cap \dots \cap A_m$, then

1) For all $y \in [n]$, y appears in ≤ 5 of the A_i 's.

Key Lemma

Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

If there is no $y \in A_1 \cap \dots \cap A_m$, then

- 1) For all $y \in [n]$, y appears in ≤ 5 of the A_i 's.
- 2) $m \leq 21$.

Key Lemma

Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

If there is no $y \in A_1 \cap \dots \cap A_m$, then

- 1) For all $y \in [n]$, y appears in ≤ 5 of the A_i 's.
- 2) $m \leq 21$.

We can assume $A_1 = \{1, 2, 3, 4, n\}$ and $A_2 = \{5, 6, 7, 8, n\}$.

Key Lemma

Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

If there is no $y \in A_1 \cap \dots \cap A_m$, then

- 1) For all $y \in [n]$, y appears in ≤ 5 of the A_i 's.
- 2) $m \leq 21$.

We can assume $A_1 = \{1, 2, 3, 4, n\}$ and $A_2 = \{5, 6, 7, 8, n\}$.

We can assume $A_3 = \{1, 5, 9, 10, 11\}$.

Let

Key Lemma

Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

If there is no $y \in A_1 \cap \dots \cap A_m$, then

- 1) For all $y \in [n]$, y appears in ≤ 5 of the A_i 's.
- 2) $m \leq 21$.

We can assume $A_1 = \{1, 2, 3, 4, n\}$ and $A_2 = \{5, 6, 7, 8, n\}$.

We can assume $A_3 = \{1, 5, 9, 10, 11\}$.

Let

$T_1 = \{i \geq 4: n \in A_i\}$.

Key Lemma

Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

If there is no $y \in A_1 \cap \dots \cap A_m$, then

- 1) For all $y \in [n]$, y appears in ≤ 5 of the A_i 's.
- 2) $m \leq 21$.

We can assume $A_1 = \{1, 2, 3, 4, n\}$ and $A_2 = \{5, 6, 7, 8, n\}$.

We can assume $A_3 = \{1, 5, 9, 10, 11\}$.

Let

$$T_1 = \{i \geq 4: n \in A_i\}.$$

$$T_2 = \{i \geq 3: n \notin A_i\}.$$

Key Lemma: Bound on $|T_1|$

$$A_1 = \{1, 2, 3, 4, n\}, A_2 = \{5, 6, 7, 8, n\}, A_3 = \{1, 5, 9, 10, 11\}.$$

Key Lemma: Bound on $|T_1|$

$A_1 = \{1, 2, 3, 4, n\}$, $A_2 = \{5, 6, 7, 8, n\}$, $A_3 = \{1, 5, 9, 10, 11\}$.
 $T_1 = \{i \geq 4: n \in A_i\}$.

Key Lemma: Bound on $|T_1|$

$A_1 = \{1, 2, 3, 4, n\}$, $A_2 = \{5, 6, 7, 8, n\}$, $A_3 = \{1, 5, 9, 10, 11\}$.
 $T_1 = \{i \geq 4: n \in A_i\}$.

Bound on $|T_1|$: Let $i \in T_1$. Options for $A_3 \cap A_i$?

Key Lemma: Bound on $|T_1|$

$A_1 = \{1, 2, 3, 4, n\}$, $A_2 = \{5, 6, 7, 8, n\}$, $A_3 = \{1, 5, 9, 10, 11\}$.
 $T_1 = \{i \geq 4: n \in A_i\}$.

Bound on $|T_1|$: Let $i \in T_1$. Options for $A_3 \cap A_i$?

If $1 \in A_3 \cap A_i$ then $\{1, n\} \subseteq A_1 \cap A_i$.

Key Lemma: Bound on $|T_1|$

$A_1 = \{1, 2, 3, 4, n\}$, $A_2 = \{5, 6, 7, 8, n\}$, $A_3 = \{1, 5, 9, 10, 11\}$.
 $T_1 = \{i \geq 4: n \in A_i\}$.

Bound on $|T_1|$: Let $i \in T_1$. Options for $A_3 \cap A_i$?
If $1 \in A_3 \cap A_i$ then $\{1, n\} \subseteq A_1 \cap A_i$. **NO!**

Key Lemma: Bound on $|T_1|$

$A_1 = \{1, 2, 3, 4, n\}$, $A_2 = \{5, 6, 7, 8, n\}$, $A_3 = \{1, 5, 9, 10, 11\}$.
 $T_1 = \{i \geq 4: n \in A_i\}$.

Bound on $|T_1|$: Let $i \in T_1$. Options for $A_3 \cap A_i$?

If $1 \in A_3 \cap A_i$ then $\{1, n\} \subseteq A_1 \cap A_i$. **NO!**

If $5 \in A_3 \cap A_i$ then $\{5, n\} \subseteq A_2 \cap A_i$.

Key Lemma: Bound on $|T_1|$

$A_1 = \{1, 2, 3, 4, n\}$, $A_2 = \{5, 6, 7, 8, n\}$, $A_3 = \{1, 5, 9, 10, 11\}$.
 $T_1 = \{i \geq 4: n \in A_i\}$.

Bound on $|T_1|$: Let $i \in T_1$. Options for $A_3 \cap A_i$?

If $1 \in A_3 \cap A_i$ then $\{1, n\} \subseteq A_1 \cap A_i$. **NO!**

If $5 \in A_3 \cap A_i$ then $\{5, n\} \subseteq A_2 \cap A_i$. **NO!**

Key Lemma: Bound on $|T_1|$

$A_1 = \{1, 2, 3, 4, n\}$, $A_2 = \{5, 6, 7, 8, n\}$, $A_3 = \{1, 5, 9, 10, 11\}$.
 $T_1 = \{i \geq 4: n \in A_i\}$.

Bound on $|T_1|$: Let $i \in T_1$. Options for $A_3 \cap A_i$?

If $1 \in A_3 \cap A_i$ then $\{1, n\} \subseteq A_1 \cap A_i$. **NO!**

If $5 \in A_3 \cap A_i$ then $\{5, n\} \subseteq A_2 \cap A_i$. **NO!**

So either $9 \in A_3 \cap A_i$ OR $10 \in A_3 \cap A_i$ OR $11 \in A_3 \cap A_i$.

Key Lemma: Bound on $|T_1|$

$A_1 = \{1, 2, 3, 4, n\}$, $A_2 = \{5, 6, 7, 8, n\}$, $A_3 = \{1, 5, 9, 10, 11\}$.
 $T_1 = \{i \geq 4: n \in A_i\}$.

Bound on $|T_1|$: Let $i \in T_1$. Options for $A_3 \cap A_i$?

If $1 \in A_3 \cap A_i$ then $\{1, n\} \subseteq A_1 \cap A_i$. **NO!**

If $5 \in A_3 \cap A_i$ then $\{5, n\} \subseteq A_2 \cap A_i$. **NO!**

So either $9 \in A_3 \cap A_i$ OR $10 \in A_3 \cap A_i$ OR $11 \in A_3 \cap A_i$.

1-1 map: $i \in T_1$ maps to $A_3 \cap A_i$.

Key Lemma: Bound on $|T_1|$

$A_1 = \{1, 2, 3, 4, n\}$, $A_2 = \{5, 6, 7, 8, n\}$, $A_3 = \{1, 5, 9, 10, 11\}$.
 $T_1 = \{i \geq 4: n \in A_i\}$.

Bound on $|T_1|$: Let $i \in T_1$. Options for $A_3 \cap A_i$?

If $1 \in A_3 \cap A_i$ then $\{1, n\} \subseteq A_1 \cap A_i$. **NO!**

If $5 \in A_3 \cap A_i$ then $\{5, n\} \subseteq A_2 \cap A_i$. **NO!**

So either $9 \in A_3 \cap A_i$ OR $10 \in A_3 \cap A_i$ OR $11 \in A_3 \cap A_i$.

1-1 map: $i \in T_1$ maps to $A_3 \cap A_i$. Only 9, 10, 11 in image.

Key Lemma: Bound on $|T_1|$

$A_1 = \{1, 2, 3, 4, n\}$, $A_2 = \{5, 6, 7, 8, n\}$, $A_3 = \{1, 5, 9, 10, 11\}$.
 $T_1 = \{i \geq 4: n \in A_i\}$.

Bound on $|T_1|$: Let $i \in T_1$. Options for $A_3 \cap A_i$?

If $1 \in A_3 \cap A_i$ then $\{1, n\} \subseteq A_1 \cap A_i$. **NO!**

If $5 \in A_3 \cap A_i$ then $\{5, n\} \subseteq A_2 \cap A_i$. **NO!**

So either $9 \in A_3 \cap A_i$ OR $10 \in A_3 \cap A_i$ OR $11 \in A_3 \cap A_i$.

1-1 map: $i \in T_1$ maps to $A_3 \cap A_i$. Only 9, 10, 11 in image.

$|T_1| \leq 3$.

Key Lemma: Bound on $|T_2|$

$$A_1 = \{1, 2, 3, 4, n\}, A_2 = \{5, 6, 7, 8, n\}$$

Key Lemma: Bound on $|T_2|$

$A_1 = \{1, 2, 3, 4, n\}$, $A_2 = \{5, 6, 7, 8, n\}$
 $T_2 = \{i \geq 3 : n \notin A_i\}$.

Key Lemma: Bound on $|T_2|$

$A_1 = \{1, 2, 3, 4, n\}$, $A_2 = \{5, 6, 7, 8, n\}$
 $T_2 = \{i \geq 3 : n \notin A_i\}$.

Bound on $|T_2|$

Key Lemma: Bound on $|T_2|$

$$A_1 = \{1, 2, 3, 4, n\}, A_2 = \{5, 6, 7, 8, n\}$$
$$T_2 = \{i \geq 3 : n \notin A_i\}.$$

Bound on $|T_2|$ Let $i \in T_2$.

Key Lemma: Bound on $|T_2|$

$$A_1 = \{1, 2, 3, 4, n\}, A_2 = \{5, 6, 7, 8, n\}$$
$$T_2 = \{i \geq 3 : n \notin A_i\}.$$

Bound on $|T_2|$ Let $i \in T_2$. Options for $(A_1 \cap A_i, A_2 \cap A_i)$?

Key Lemma: Bound on $|T_2|$

$$A_1 = \{1, 2, 3, 4, n\}, A_2 = \{5, 6, 7, 8, n\}$$
$$T_2 = \{i \geq 3: n \notin A_i\}.$$

Bound on $|T_2|$ Let $i \in T_2$. Options for $(A_1 \cap A_i, A_2 \cap A_i)$?
Since $n \notin A_i$,

Key Lemma: Bound on $|T_2|$

$$A_1 = \{1, 2, 3, 4, n\}, A_2 = \{5, 6, 7, 8, n\}$$
$$T_2 = \{i \geq 3 : n \notin A_i\}.$$

Bound on $|T_2|$ Let $i \in T_2$. Options for $(A_1 \cap A_i, A_2 \cap A_i)$?

Since $n \notin A_i$,

$A_1 \cap A_i \in \{1, 2, 3, 4\}$ and $A_2 \cap A_i \in \{5, 6, 7, 8\}$.

Key Lemma: Bound on $|T_2|$

$$A_1 = \{1, 2, 3, 4, n\}, A_2 = \{5, 6, 7, 8, n\}$$
$$T_2 = \{i \geq 3: n \notin A_i\}.$$

Bound on $|T_2|$ Let $i \in T_2$. Options for $(A_1 \cap A_i, A_2 \cap A_i)$?

Since $n \notin A_i$,

$A_1 \cap A_i \in \{1, 2, 3, 4\}$ and $A_2 \cap A_i \in \{5, 6, 7, 8\}$.

So $(A_1 \cap A_i, A_2 \cap A_i) \in \{(a, b): a \in \{1, 2, 3, 4\}, b \in \{5, 6, 7, 8\}\}$.

Key Lemma: Bound on $|T_2|$

$$A_1 = \{1, 2, 3, 4, n\}, A_2 = \{5, 6, 7, 8, n\}$$
$$T_2 = \{i \geq 3: n \notin A_i\}.$$

Bound on $|T_2|$ Let $i \in T_2$. Options for $(A_1 \cap A_i, A_2 \cap A_i)$?

Since $n \notin A_i$,

$A_1 \cap A_i \in \{1, 2, 3, 4\}$ and $A_2 \cap A_i \in \{5, 6, 7, 8\}$.

So $(A_1 \cap A_i, A_2 \cap A_i) \in \{(a, b): a \in \{1, 2, 3, 4\}, b \in \{5, 6, 7, 8\}\}$.

1-1 map: $i \in T_2$ maps to $(A_1 \cap A_i, A_2 \cap A_i)$.

Key Lemma: Bound on $|T_2|$

$$A_1 = \{1, 2, 3, 4, n\}, A_2 = \{5, 6, 7, 8, n\}$$
$$T_2 = \{i \geq 3: n \notin A_i\}.$$

Bound on $|T_2|$ Let $i \in T_2$. Options for $(A_1 \cap A_i, A_2 \cap A_i)$?

Since $n \notin A_i$,

$A_1 \cap A_i \in \{1, 2, 3, 4\}$ and $A_2 \cap A_i \in \{5, 6, 7, 8\}$.

So $(A_1 \cap A_i, A_2 \cap A_i) \in \{(a, b): a \in \{1, 2, 3, 4\}, b \in \{5, 6, 7, 8\}\}$.

1-1 map: $i \in T_2$ maps to $(A_1 \cap A_i, A_2 \cap A_i)$.

$$|T_2| \leq 16.$$

Restate and Prove Key Lemma

Restate Let $m, n \in \mathbb{N}$.

Restate and Prove Key Lemma

Restate Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

Restate and Prove Key Lemma

Restate Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

If there is no $y \in A_1 \cap \dots \cap A_m$, then

Restate and Prove Key Lemma

Restate Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

If there is no $y \in A_1 \cap \dots \cap A_m$, then

1) For all $y \in [n]$, y appears in ≤ 5 of the A_i 's.

Restate and Prove Key Lemma

Restate Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

If there is no $y \in A_1 \cap \dots \cap A_m$, then

- 1) For all $y \in [n]$, y appears in ≤ 5 of the A_i 's.
- 2) $m \leq 21$.

Restate and Prove Key Lemma

Restate Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

If there is no $y \in A_1 \cap \dots \cap A_m$, then

- 1) For all $y \in [n]$, y appears in ≤ 5 of the A_i 's.
- 2) $m \leq 21$.

- 1) Since $|T_2| \leq 3$, the number of blocks that have n is ≤ 5 .

Restate and Prove Key Lemma

Restate Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

If there is no $y \in A_1 \cap \dots \cap A_m$, then

- 1) For all $y \in [n]$, y appears in ≤ 5 of the A_i 's.
- 2) $m \leq 21$.

1) Since $|T_2| \leq 3$, the number of blocks that have n is ≤ 5 .

There was noting special about n . Hence all $x \in [n]$, appear ≤ 5 times.

Restate and Prove Key Lemma

Restate Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

If there is no $y \in A_1 \cap \dots \cap A_m$, then

- 1) For all $y \in [n]$, y appears in ≤ 5 of the A_i 's.
- 2) $m \leq 21$.

1) Since $|T_2| \leq 3$, the number of blocks that have n is ≤ 5 .

There was noting special about n . Hence all $x \in [n]$, appear ≤ 5 times.

2) $m \leq 2 + |T_1| + |T_2| \leq 2 + 3 + 16 = 21$.

Back to our UMCP Problem

Thm Let $A_1, \dots, A_m \subseteq \{1, \dots, 2025\}$ be such that

Back to our UMCP Problem

Thm Let $A_1, \dots, A_m \subseteq \{1, \dots, 2025\}$ be such that

- 1) $\forall 1 \leq i \leq m, |A_i| = 5$, and

Back to our UMCP Problem

Thm Let $A_1, \dots, A_m \subseteq \{1, \dots, 2025\}$ be such that

- 1) $\forall 1 \leq i \leq m$, $|A_i| = 5$, and
- 2) $\forall 1 \leq i < j \leq m$, $|A_i \cap A_j| = 1$, and

Back to our UMCP Problem

Thm Let $A_1, \dots, A_m \subseteq \{1, \dots, 2025\}$ be such that

- 1) $\forall 1 \leq i \leq m$, $|A_i| = 5$, and
- 2) $\forall 1 \leq i < j \leq m$, $|A_i \cap A_j| = 1$, and
- 3) $\forall 1 \leq y \leq 2025$, there is an i , $y \in A_i$.

Back to our UMCP Problem

Thm Let $A_1, \dots, A_m \subseteq \{1, \dots, 2025\}$ be such that

- 1) $\forall 1 \leq i \leq m, |A_i| = 5$, and
- 2) $\forall 1 \leq i < j \leq m, |A_i \cap A_j| = 1$, and
- 3) $\forall 1 \leq y \leq 2025$, there is an $i, y \in A_i$.

Then $m = 506$.

Back to our UMCP Problem

Thm Let $A_1, \dots, A_m \subseteq \{1, \dots, 2025\}$ be such that

- 1) $\forall 1 \leq i \leq m$, $|A_i| = 5$, and
- 2) $\forall 1 \leq i < j \leq m$, $|A_i \cap A_j| = 1$, and
- 3) $\forall 1 \leq y \leq 2025$, there is an i , $y \in A_i$.

Then $m = 506$.

Case 1 There is some $y \in A_1 \cap \dots \cap A_m$. Then this is the construction we gave earlier so $m = 506$.

Back to our UMCP Problem

Thm Let $A_1, \dots, A_m \subseteq \{1, \dots, 2025\}$ be such that

- 1) $\forall 1 \leq i \leq m$, $|A_i| = 5$, and
- 2) $\forall 1 \leq i < j \leq m$, $|A_i \cap A_j| = 1$, and
- 3) $\forall 1 \leq y \leq 2025$, there is an i , $y \in A_i$.

Then $m = 506$.

Case 1 There is some $y \in A_1 \cap \dots \cap A_m$. Then this is the construction we gave earlier so $m = 506$.

Case 2 There is no such y , Then $m \leq 21$.

Back to our UMCP Problem

Thm Let $A_1, \dots, A_m \subseteq \{1, \dots, 2025\}$ be such that

- 1) $\forall 1 \leq i \leq m, |A_i| = 5$, and
- 2) $\forall 1 \leq i < j \leq m, |A_i \cap A_j| = 1$, and
- 3) $\forall 1 \leq y \leq 2025$, there is an $i, y \in A_i$.

Then $m = 506$.

Case 1 There is some $y \in A_1 \cap \dots \cap A_m$. Then this is the construction we gave earlier so $m = 506$.

Case 2 There is no such y , Then $m \leq 21$.

Hence $m = 506$ is the answer.

The UMCP Problem: We Proved a Stronger Result

The UMCP Problem: We Proved a Stronger Result

What We Needed

The UMCP Problem: We Proved a Stronger Result

What We Needed

We only had to prove that there is no awesome collection of 507 blocks.

The UMCP Problem: We Proved a Stronger Result

What We Needed

We only had to prove that there is no awesome collection of 507 blocks.

What We Did

The UMCP Problem: We Proved a Stronger Result

What We Needed

We only had to prove that there is no awesome collection of 507 blocks.

What We Did

We showed that **every** awesome collection of blocks has size 506.

The UMCP Problem: We Proved a Stronger Result

What We Needed

We only had to prove that there is no awesome collection of 507 blocks.

What We Did

We showed that **every** awesome collection of blocks has size 506.

This leads to our general problem.

The Function $f(n)$

Notation Let $n \geq 5$.

The Function $f(n)$

Notation Let $n \geq 5$.

Let $f(n)$ be the set of m such that there is an n -awesome collection of size m .

The Function $f(n)$

Notation Let $n \geq 5$.

Let $f(n)$ be the set of m such that there is an n -awesome collection of size m .

We showed $f(2025) = \{506\}$.

The Function $f(n)$

Notation Let $n \geq 5$.

Let $f(n)$ be the set of m such that there is an n -awesome collection of size m .

We showed $f(2025) = \{506\}$.

Question For all $n \geq 5$ determine $f(n)$.

Part II:

Generalize the UMCP Solution

To Determine $f(n)$ for $n \geq 106$

Generalizing our UMCP Proof

Thm If $n \geq 106$ then

Generalizing our UMCP Proof

Thm If $n \geq 106$ then

1) If $n \equiv 1 \pmod{4}$ then $f(n) = \left\{ \frac{n-1}{4} \right\}$.

Generalizing our UMCP Proof

Thm If $n \geq 106$ then

- 1) If $n \equiv 1 \pmod{4}$ then $f(n) = \left\{ \frac{n-1}{4} \right\}$.
- 2) If $n \not\equiv 1 \pmod{4}$ then $f(n) = \emptyset$.

Generalizing our UMCP Proof

Thm If $n \geq 106$ then

- 1) If $n \equiv 1 \pmod{4}$ then $f(n) = \{\frac{n-1}{4}\}$.
- 2) If $n \not\equiv 1 \pmod{4}$ then $f(n) = \emptyset$.

Case 1 There is some $y \in A_1 \cap \dots \cap A_m$. Then this is the construction we gave earlier so $m = \frac{n-1}{4}$. Hence $n \equiv 1 \pmod{4}$.

Generalizing our UMCP Proof

Thm If $n \geq 106$ then

- 1) If $n \equiv 1 \pmod{4}$ then $f(n) = \{\frac{n-1}{4}\}$.
- 2) If $n \not\equiv 1 \pmod{4}$ then $f(n) = \emptyset$.

Case 1 There is some $y \in A_1 \cap \dots \cap A_m$. Then this is the construction we gave earlier so $m = \frac{n-1}{4}$. Hence $n \equiv 1 \pmod{4}$.

Case 2 There is no such y . Then by prior Lemma $m \leq 21$. If there are 21 blocks then $n \equiv 21 \times 5 = 105$.

Generalizing our UMCP Proof

Thm If $n \geq 106$ then

- 1) If $n \equiv 1 \pmod{4}$ then $f(n) = \{\frac{n-1}{4}\}$.
- 2) If $n \not\equiv 1 \pmod{4}$ then $f(n) = \emptyset$.

Case 1 There is some $y \in A_1 \cap \dots \cap A_m$. Then this is the construction we gave earlier so $m = \frac{n-1}{4}$. Hence $n \equiv 1 \pmod{4}$.

Case 2 There is no such y . Then by prior Lemma $m \leq 21$. If there are 21 blocks then $n \equiv 21 \times 5 = 105$.

Side Project We will soon improve this bound to $n \leq 33$ using **complicated** though elementary techniques. Try to get a better-than-105 bound on n that uses **simple** elementary techniques.

ChatGPT Cautionary Note

I asked ChatGPT

For which $n \leq 105$ does there exist A_1, \dots, A_{21} such that

ChatGPT Cautionary Note

I asked ChatGPT

For which $n \leq 105$ does there exist A_1, \dots, A_{21} such that

- 1) For $1 \leq i \leq 21$, $|A_i| = 5$.

ChatGPT Cautionary Note

I asked ChatGPT

For which $n \leq 105$ does there exist A_1, \dots, A_{21} such that

- 1) For $1 \leq i \leq 21$, $|A_i| = 5$.
- 2) For all $1 \leq i < j \leq 21$, $|A_i \cap A_j| = 1$

ChatGPT Cautionary Note

I asked ChatGPT

For which $n \leq 105$ does there exist A_1, \dots, A_{21} such that

- 1) For $1 \leq i \leq 21$, $|A_i| = 5$.
- 2) For all $1 \leq i < j \leq 21$, $|A_i \cap A_j| = 1$
- 3) For all $y \in \{1, \dots, n\}$ there exists i , $y \in A_i$

ChatGPT Cautionary Note

I asked ChatGPT

For which $n \leq 105$ does there exist A_1, \dots, A_{21} such that

- 1) For $1 \leq i \leq 21$, $|A_i| = 5$.
- 2) For all $1 \leq i < j \leq 21$, $|A_i \cap A_j| = 1$
- 3) For all $y \in \{1, \dots, n\}$ there exists i , $y \in A_i$

ChatGPT Said $n = 21$ and $n = 35$. Uses finite geometry.

ChatGPT Cautionary Note

I asked ChatGPT

For which $n \leq 105$ does there exist A_1, \dots, A_{21} such that

- 1) For $1 \leq i \leq 21$, $|A_i| = 5$.
- 2) For all $1 \leq i < j \leq 21$, $|A_i \cap A_j| = 1$
- 3) For all $y \in \{1, \dots, n\}$ there exists i , $y \in A_i$

ChatGPT Said $n = 21$ and $n = 35$. Uses finite geometry.

I tried to verify these two claims.

ChatGPT Cautionary Note

I asked ChatGPT

For which $n \leq 105$ does there exist A_1, \dots, A_{21} such that

- 1) For $1 \leq i \leq 21$, $|A_i| = 5$.
- 2) For all $1 \leq i < j \leq 21$, $|A_i \cap A_j| = 1$
- 3) For all $y \in \{1, \dots, n\}$ there exists i , $y \in A_i$

ChatGPT Said $n = 21$ and $n = 35$. Uses finite geometry.

I **tried to verify** these two claims.

- 1) For $n = 21$ this was true and is interesting!

ChatGPT Cautionary Note

I asked ChatGPT

For which $n \leq 105$ does there exist A_1, \dots, A_{21} such that

- 1) For $1 \leq i \leq 21$, $|A_i| = 5$.
- 2) For all $1 \leq i < j \leq 21$, $|A_i \cap A_j| = 1$
- 3) For all $y \in \{1, \dots, n\}$ there exists $i, y \in A_i$

ChatGPT Said $n = 21$ and $n = 35$. Uses finite geometry.

I **tried to verify** these two claims.

- 1) For $n = 21$ this was true and is interesting!
- 2) For $n = 35$ I proved there was no such set of blocks!

ChatGPT Cautionary Note

I asked ChatGPT

For which $n \leq 105$ does there exist A_1, \dots, A_{21} such that

- 1) For $1 \leq i \leq 21$, $|A_i| = 5$.
- 2) For all $1 \leq i < j \leq 21$, $|A_i \cap A_j| = 1$
- 3) For all $y \in \{1, \dots, n\}$ there exists i , $y \in A_i$

ChatGPT Said $n = 21$ and $n = 35$. Uses finite geometry.

I tried to verify these two claims.

- 1) For $n = 21$ this was true and is interesting!
- 2) For $n = 35$ I proved there was no such set of blocks!

I showed ChatGPT both its output and my proof that $n = 35$ does not work.

ChatGPT Cautionary Note

I asked ChatGPT

For which $n \leq 105$ does there exist A_1, \dots, A_{21} such that

- 1) For $1 \leq i \leq 21$, $|A_i| = 5$.
- 2) For all $1 \leq i < j \leq 21$, $|A_i \cap A_j| = 1$
- 3) For all $y \in \{1, \dots, n\}$ there exists i , $y \in A_i$

ChatGPT Said $n = 21$ and $n = 35$. Uses finite geometry.

I tried to verify these two claims.

- 1) For $n = 21$ this was true and is interesting!
- 2) For $n = 35$ I proved there was no such set of blocks!

I showed ChatGPT both its output and my proof that $n = 35$ does not work.

ChatGPT Said You were right to check my work. I was wrong.

ChatGPT Cautionary Note

I asked ChatGPT

For which $n \leq 105$ does there exist A_1, \dots, A_{21} such that

- 1) For $1 \leq i \leq 21$, $|A_i| = 5$.
- 2) For all $1 \leq i < j \leq 21$, $|A_i \cap A_j| = 1$
- 3) For all $y \in \{1, \dots, n\}$ there exists i , $y \in A_i$

ChatGPT Said $n = 21$ and $n = 35$. Uses finite geometry.

I tried to verify these two claims.

- 1) For $n = 21$ this was true and is interesting!
- 2) For $n = 35$ I proved there was no such set of blocks!

I showed ChatGPT both its output and my proof that $n = 35$ does not work.

ChatGPT Said You were right to check my work. I was wrong.
There is no such set of blocks with $n = 35$. I apologize.

ChatGPT Cautionary Note

I asked ChatGPT

For which $n \leq 105$ does there exist A_1, \dots, A_{21} such that

- 1) For $1 \leq i \leq 21$, $|A_i| = 5$.
- 2) For all $1 \leq i < j \leq 21$, $|A_i \cap A_j| = 1$
- 3) For all $y \in \{1, \dots, n\}$ there exists i , $y \in A_i$

ChatGPT Said $n = 21$ and $n = 35$. Uses finite geometry.

I tried to verify these two claims.

- 1) For $n = 21$ this was true and is interesting!
- 2) For $n = 35$ I proved there was no such set of blocks!

I showed ChatGPT both its output and my proof that $n = 35$ does not work.

ChatGPT Said You were right to check my work. I was wrong.

There is no such set of blocks with $n = 35$. I apologize. When you use ChatGPT you should always verify!

Part III:

Applying Equations To Our Problem

We Determine $f(n)$ for $33 \leq n \leq 105$

We Only Need to Consider ...

We Only Need to Consider ...

We restate our lemmas:

We Only Need to Consider ...

We restate our lemmas:

Lemmas Let $m, n \in \mathbb{N}$.

We Only Need to Consider ...

We restate our lemmas:

Lemmas Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

We Only Need to Consider ...

We restate our lemmas:

Lemmas Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

1) If there exists $y \in A_1 \cap \dots \cap A_m$ then $n = \frac{n-1}{4}$.

We Only Need to Consider ...

We restate our lemmas:

Lemmas Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

- 1) If there exists $y \in A_1 \cap \dots \cap A_m$ then $n = \frac{n-1}{4}$.
- 2) If there is no $y \in A_1 \cap \dots \cap A_m$, then for all $y \in [n]$, y appears in ≤ 5 of the blocks.

We Only Need to Consider ...

We restate our lemmas:

Lemmas Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

- 1) If there exists $y \in A_1 \cap \dots \cap A_m$ then $n = \frac{n-1}{4}$.
- 2) If there is no $y \in A_1 \cap \dots \cap A_m$, then for all $y \in [n]$, y appears in ≤ 5 of the blocks.

Upshot We only need to consider awesome collections where, for all $y \in [n]$, y appears in ≤ 5 of the blocks.

We Only Need to Consider ...

We restate our lemmas:

Lemmas Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

- 1) If there exists $y \in A_1 \cap \dots \cap A_m$ then $n = \frac{n-1}{4}$.
- 2) If there is no $y \in A_1 \cap \dots \cap A_m$, then for all $y \in [n]$, y appears in ≤ 5 of the blocks.

Upshot We only need to consider awesome collections where, for all $y \in [n]$, y appears in ≤ 5 of the blocks.

Notation The phrase

We Only Need to Consider ...

We restate our lemmas:

Lemmas Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

- 1) If there exists $y \in A_1 \cap \dots \cap A_m$ then $n = \frac{n-1}{4}$.
- 2) If there is no $y \in A_1 \cap \dots \cap A_m$, then for all $y \in [n]$, y appears in ≤ 5 of the blocks.

Upshot We only need to consider awesome collections where, for all $y \in [n]$, y appears in ≤ 5 of the blocks.

Notation The phrase

Let A_1, \dots, A_m be an n -awesome* collection of blocks

We Only Need to Consider ...

We restate our lemmas:

Lemmas Let $m, n \in \mathbb{N}$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

- 1) If there exists $y \in A_1 \cap \dots \cap A_m$ then $n = \frac{n-1}{4}$.
- 2) If there is no $y \in A_1 \cap \dots \cap A_m$, then for all $y \in [n]$, y appears in ≤ 5 of the blocks.

Upshot We only need to consider awesome collections where, for all $y \in [n]$, y appears in ≤ 5 of the blocks.

Notation The phrase

Let A_1, \dots, A_m be an n -awesome* collection of blocks

means a collection of blocks where every $y \in [n]$ appears ≤ 5 times.

Needed Defs and Notation

Def Let A_1, \dots, A_m be an n -awesome* collection of blocks. An **incidence** is an ordered pair $((y, i) \in [n] \times [m]$ such $y \in A_i$.

Needed Defs and Notation

Def Let A_1, \dots, A_m be an n -awesome* collection of blocks. An **incidence** is an ordered pair $((y, i) \in [n] \times [m]$ such $y \in A_i$.

Notation A_1, \dots, A_m is an n -awesome* collection.

Needed Defs and Notation

Def Let A_1, \dots, A_m be an n -awesome* collection of blocks. An **incidence** is an ordered pair $((y, i) \in [n] \times [m]$ such $y \in A_i$.

Notation A_1, \dots, A_m is an n -awesome* collection.

- 1) For $1 \leq i \leq 5$ let n_i be the number of elements of $\{1, \dots, n\}$ appearing in exactly i blocks.

Needed Defs and Notation

Def Let A_1, \dots, A_m be an n -awesome* collection of blocks. An **incidence** is an ordered pair $((y, i) \in [n] \times [m]$ such $y \in A_i$.

Notation A_1, \dots, A_m is an n -awesome* collection.

- 1) For $1 \leq i \leq 5$ let \mathbf{r}_i be the number of elements of $\{1, \dots, n\}$ appearing in exactly i blocks.
- 2) For $1 \leq i \leq n$ let \mathbf{r}_i be the number of blocks that i is in. Also called the **multiplicity of i** .

Needed Defs and Notation

Def Let A_1, \dots, A_m be an n -awesome* collection of blocks. An **incidence** is an ordered pair $((y, i) \in [n] \times [m]$ such $y \in A_i$.

Notation A_1, \dots, A_m is an n -awesome* collection.

- 1) For $1 \leq i \leq 5$ let r_i be the number of elements of $\{1, \dots, n\}$ appearing in exactly i blocks.
- 2) For $1 \leq i \leq n$ let r_i be the number of blocks that i is in. Also called the **multiplicity of i** .
- 3) If y has multiplicity i we say that **y is a mult- i elt**

Needed Defs and Notation

Def Let A_1, \dots, A_m be an n -awesome* collection of blocks. An **incidence** is an ordered pair $((y, i) \in [n] \times [m]$ such $y \in A_i$.

Notation A_1, \dots, A_m is an n -awesome* collection.

- 1) For $1 \leq i \leq 5$ let \mathbf{r}_i be the number of elements of $\{1, \dots, n\}$ appearing in exactly i blocks.
- 2) For $1 \leq i \leq n$ let \mathbf{r}_i be the number of blocks that i is in. Also called the **multiplicity of i** .
- 3) If y has multiplicity i we say that **y is a mult- i elt**

WRITE DOWN the Def and Notation!

Example and Thm: $\sum_{i \in [5]} n_i = n$

Example and Thm: $\sum_{i \in [5]} n_i = n$

Examples $n = 14$, $m = 5$. blocks are:

$$\{1, 2, 3, 4, 9\}$$

$$\{5, 6, 7, 8, 9\}$$

$$\{1, 5, 10, 11, 12\}$$

$$\{3, 7, 10, 13, 14\}$$

Example and Thm: $\sum_{i \in [5]} n_i = n$

Examples $n = 14$, $m = 5$. blocks are:

$$\{1, 2, 3, 4, 9\} \quad \{5, 6, 7, 8, 9\}$$

$$\{1, 5, 10, 11, 12\} \quad \{3, 7, 10, 13, 14\}$$

1) $n_1 = 8$: 8 elts appear in one block : $\{2, 4, 6, 8, 11, 12, 13, 14\}$.

Example and Thm: $\sum_{i \in [5]} n_i = n$

Examples $n = 14$, $m = 5$. blocks are:

$$\{1, 2, 3, 4, 9\} \quad \{5, 6, 7, 8, 9\}$$

$$\{1, 5, 10, 11, 12\} \quad \{3, 7, 10, 13, 14\}$$

1) $n_1 = 8$: 8 elts appear in one block : $\{2, 4, 6, 8, 11, 12, 13, 14\}$.

2) $n_2 = 6$: 6 elts appear in two blocks: $\{1, 3, 5, 7, 9, 10\}$.

Example and Thm: $\sum_{i \in [5]} n_i = n$

Examples $n = 14$, $m = 5$. blocks are:

$$\{1, 2, 3, 4, 9\} \quad \{5, 6, 7, 8, 9\}$$

$$\{1, 5, 10, 11, 12\} \quad \{3, 7, 10, 13, 14\}$$

1) $n_1 = 8$: 8 elts appear in one block : $\{2, 4, 6, 8, 11, 12, 13, 14\}$.

2) $n_2 = 6$: 6 elts appear in two blocks: $\{1, 3, 5, 7, 9, 10\}$.

3) $n_3 = n_4 = n_5 = 0$: No elts appear in three or four of five blocks.

Example and Thm: $\sum_{i \in [5]} n_i = n$

Examples $n = 14$, $m = 5$. blocks are:

$$\{1, 2, 3, 4, 9\} \quad \{5, 6, 7, 8, 9\}$$

$$\{1, 5, 10, 11, 12\} \quad \{3, 7, 10, 13, 14\}$$

1) $n_1 = 8$: 8 elts appear in one block : $\{2, 4, 6, 8, 11, 12, 13, 14\}$.

2) $n_2 = 6$: 6 elts appear in two blocks: $\{1, 3, 5, 7, 9, 10\}$.

3) $n_3 = n_4 = n_5 = 0$: No elts appear in three or four of five blocks.

Note $\{2, 4, 6, 8, 11, 12, 13, 14\}$ and $\{1, 3, 5, 7, 9, 10\}$ form a partition of [14].

Example and Thm: $\sum_{i \in [5]} n_i = n$

Examples $n = 14$, $m = 5$. blocks are:

$$\{1, 2, 3, 4, 9\} \quad \{5, 6, 7, 8, 9\}$$

$$\{1, 5, 10, 11, 12\} \quad \{3, 7, 10, 13, 14\}$$

1) $n_1 = 8$: 8 elts appear in one block : $\{2, 4, 6, 8, 11, 12, 13, 14\}$.

2) $n_2 = 6$: 6 elts appear in two blocks: $\{1, 3, 5, 7, 9, 10\}$.

3) $n_3 = n_4 = n_5 = 0$: No elts appear in three or four of five blocks.

Note $\{2, 4, 6, 8, 11, 12, 13, 14\}$ and $\{1, 3, 5, 7, 9, 10\}$ form a partition of [14].

$$n_1 + n_2 + n_3 + n_4 + n_5 = 14.$$

Example and Thm: $\sum_{i \in [5]} n_i = n$

Examples $n = 14$, $m = 5$. blocks are:

$$\{1, 2, 3, 4, 9\} \quad \{5, 6, 7, 8, 9\}$$

$$\{1, 5, 10, 11, 12\} \quad \{3, 7, 10, 13, 14\}$$

1) $n_1 = 8$: 8 elts appear in one block : $\{2, 4, 6, 8, 11, 12, 13, 14\}$.

2) $n_2 = 6$: 6 elts appear in two blocks: $\{1, 3, 5, 7, 9, 10\}$.

3) $n_3 = n_4 = n_5 = 0$: No elts appear in three or four of five blocks.

Note $\{2, 4, 6, 8, 11, 12, 13, 14\}$ and $\{1, 3, 5, 7, 9, 10\}$ form a partition of [14].

$$n_1 + n_2 + n_3 + n_4 + n_5 = 14.$$

Lemma $\sum_{i \in [5]} n_i = n$. **WRITE THIS DOWN!**

Example and Thm

Example and Thm

Examples $n = 14$, $m = 5$. blocks are:

$\{1, 2, 3, 4, 9\}$ $\{5, 6, 7, 8, 9\}$

$\{1, 5, 10, 11, 12\}$ $\{3, 7, 10, 13, 14\}$

Example and Thm

Examples $n = 14$, $m = 5$. blocks are:

$$\{1, 2, 3, 4, 9\} \quad \{5, 6, 7, 8, 9\}$$

$$\{1, 5, 10, 11, 12\} \quad \{3, 7, 10, 13, 14\}$$

$$1) \quad n_1 = 8 \quad n_2 = 6 \quad n_3 = n_4 = n_5 = 0.$$

Example and Thm

Examples $n = 14$, $m = 5$. blocks are:

$$\{1, 2, 3, 4, 9\} \quad \{5, 6, 7, 8, 9\}$$

$$\{1, 5, 10, 11, 12\} \quad \{3, 7, 10, 13, 14\}$$

1) $n_1 = 8 \quad n_2 = 6 \quad n_3 = n_4 = n_5 = 0$.

2) How many incidences:

Example and Thm

Examples $n = 14$, $m = 5$. blocks are:

$$\{1, 2, 3, 4, 9\} \quad \{5, 6, 7, 8, 9\}$$

$$\{1, 5, 10, 11, 12\} \quad \{3, 7, 10, 13, 14\}$$

1) $n_1 = 8 \quad n_2 = 6 \quad n_3 = n_4 = n_5 = 0$.

2) How many incidences: $(\text{Numb blocks}) \times 5 = 4 \times 5 = 20$.

Example and Thm

Examples $n = 14$, $m = 5$. blocks are:

$$\{1, 2, 3, 4, 9\} \quad \{5, 6, 7, 8, 9\}$$

$$\{1, 5, 10, 11, 12\} \quad \{3, 7, 10, 13, 14\}$$

1) $n_1 = 8 \quad n_2 = 6 \quad n_3 = n_4 = n_5 = 0$.

2) How many incidences: (Numb blocks) $\times 5 = 4 \times 5 = 20$.

3) How many incidences:

Example and Thm

Examples $n = 14$, $m = 5$. blocks are:

$$\{1, 2, 3, 4, 9\} \quad \{5, 6, 7, 8, 9\}$$

$$\{1, 5, 10, 11, 12\} \quad \{3, 7, 10, 13, 14\}$$

1) $n_1 = 8 \quad n_2 = 6 \quad n_3 = n_4 = n_5 = 0$.

2) How many incidences: (Numb blocks) $\times 5 = 4 \times 5 = 20$.

3) How many incidences:

$n_1 = 8$ via $\{2, 4, 6, 8, 11, 12, 13, 14\}$. Each contributes 1 to the number of incidences, so total contribution is $1 \times n_1 = 8$.

Example and Thm

Examples $n = 14$, $m = 5$. blocks are:

$$\{1, 2, 3, 4, 9\} \quad \{5, 6, 7, 8, 9\}$$

$$\{1, 5, 10, 11, 12\} \quad \{3, 7, 10, 13, 14\}$$

1) $n_1 = 8 \quad n_2 = 6 \quad n_3 = n_4 = n_5 = 0$.

2) How many incidences: (Numb blocks) $\times 5 = 4 \times 5 = 20$.

3) How many incidences:

$n_1 = 8$ via $\{2, 4, 6, 8, 11, 12, 13, 14\}$. Each contributes 1 to the number of incidences, so total contribution is $1 \times n_1 = 8$.

$n_2 = 6$ via $\{1, 3, 5, 7, 9, 10\}$. Each contributes 2 to the number of incidences, so total contribution is $2 \times n_2 = 12$.

Example and Thm

Examples $n = 14$, $m = 5$. blocks are:

$$\{1, 2, 3, 4, 9\} \quad \{5, 6, 7, 8, 9\}$$

$$\{1, 5, 10, 11, 12\} \quad \{3, 7, 10, 13, 14\}$$

1) $n_1 = 8 \quad n_2 = 6 \quad n_3 = n_4 = n_5 = 0$.

2) How many incidences: (Numb blocks) $\times 5 = 4 \times 5 = 20$.

3) How many incidences:

$n_1 = 8$ via $\{2, 4, 6, 8, 11, 12, 13, 14\}$. Each contributes 1 to the number of incidences, so total contribution is $1 \times n_1 = 8$.

$n_2 = 6$ via $\{1, 3, 5, 7, 9, 10\}$. Each contributes 2 to the number of incidences, so total contribution is $2 \times n_2 = 12$.

$n_3 = n_4 = n_5 = 0$. These contribute $3n_3 + 4n_4 + 5n_5 = 0$.

Example and Thm

Examples $n = 14$, $m = 5$. blocks are:

$$\{1, 2, 3, 4, 9\} \quad \{5, 6, 7, 8, 9\}$$

$$\{1, 5, 10, 11, 12\} \quad \{3, 7, 10, 13, 14\}$$

1) $n_1 = 8 \quad n_2 = 6 \quad n_3 = n_4 = n_5 = 0$.

2) How many incidences: (Numb blocks) $\times 5 = 4 \times 5 = 20$.

3) How many incidences:

$n_1 = 8$ via $\{2, 4, 6, 8, 11, 12, 13, 14\}$. Each contributes 1 to the number of incidences, so total contribution is $1 \times n_1 = 8$.

$n_2 = 6$ via $\{1, 3, 5, 7, 9, 10\}$. Each contributes 2 to the number of incidences, so total contribution is $2 \times n_2 = 12$.

$n_3 = n_4 = n_5 = 0$. These contribute $3n_3 + 4n_4 + 5n_5 = 0$.

Number of Inc: $1 \times n_1 + 2 \times n_2 + 3 \times n_3 + 4 \times n_4 + 5 \times n_5$.

Example and Thm

Examples $n = 14$, $m = 5$. blocks are:

$$\{1, 2, 3, 4, 9\} \quad \{5, 6, 7, 8, 9\}$$

$$\{1, 5, 10, 11, 12\} \quad \{3, 7, 10, 13, 14\}$$

1) $n_1 = 8 \quad n_2 = 6 \quad n_3 = n_4 = n_5 = 0$.

2) How many incidences: (Numb blocks) $\times 5 = 4 \times 5 = 20$.

3) How many incidences:

$n_1 = 8$ via $\{2, 4, 6, 8, 11, 12, 13, 14\}$. Each contributes 1 to the number of incidences, so total contribution is $1 \times n_1 = 8$.

$n_2 = 6$ via $\{1, 3, 5, 7, 9, 10\}$. Each contributes 2 to the number of incidences, so total contribution is $2 \times n_2 = 12$.

$n_3 = n_4 = n_5 = 0$. These contribute $3n_3 + 4n_4 + 5n_5 = 0$.

Number of Inc: $1 \times n_1 + 2 \times n_2 + 3 \times n_3 + 4 \times n_4 + 5 \times n_5$.

Lemma $\sum_{i \in [5]} in_i = mn$. **WRITE THIS DOWN!**

Example and Lemma:

$$\sum_{i \in [n]} r_i \text{ choose } 2 = m \text{ choose } 2$$

Example and Lemma:

$$\sum_{i \in [n]} r_i \text{ choose } 2 = m \text{ choose } 2$$

$$n = 18, m = 9.$$

Example and Lemma:

$$\sum_{i \in [n]} r_i \text{ choose } 2 = m \text{ choose } 2$$

$$n = 18, m = 9.$$

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 6, 12, 16, 18\}$$

$$A_7 = \{3, 8, 13, 14, 17\} \quad A_8 = \{4, 7, 13, 15, 18\} \quad A_9 = \{5, 9, 10, 17, 18\}$$

Example and Lemma:

$$\sum_{i \in [n]} r_i \text{ choose } 2 = m \text{ choose } 2$$

$$n = 18, m = 9.$$

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 6, 12, 16, 18\}$$

$$A_7 = \{3, 8, 13, 14, 17\} \quad A_8 = \{4, 7, 13, 15, 18\} \quad A_9 = \{5, 9, 10, 17, 18\}$$

$$r_1 = 3 \quad r_2 = 3 \quad r_3 = 3 \quad r_4 = 2 \quad r_5 = 2 \quad r_6 = 3$$

$$r_7 = 3 \quad r_8 = 2 \quad r_9 = 2 \quad r_{10} = 3 \quad r_{11} = 2 \quad r_{12} = 2$$

$$r_{13} = 3 \quad r_{14} = 2 \quad r_{15} = 2 \quad r_{16} = 2 \quad r_{17} = 3 \quad r_{18} = 3$$

Example and Lemma:

$$\sum_{i \in [n]} r_i \text{ choose } 2 = m \text{ choose } 2$$

$$n = 18, m = 9.$$

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 6, 12, 16, 18\}$$

$$A_7 = \{3, 8, 13, 14, 17\} \quad A_8 = \{4, 7, 13, 15, 18\} \quad A_9 = \{5, 9, 10, 17, 18\}$$

$$r_1 = 3 \quad r_2 = 3 \quad r_3 = 3 \quad r_4 = 2 \quad r_5 = 2 \quad r_6 = 3$$

$$r_7 = 3 \quad r_8 = 2 \quad r_9 = 2 \quad r_{10} = 3 \quad r_{11} = 2 \quad r_{12} = 2$$

$$r_{13} = 3 \quad r_{14} = 2 \quad r_{15} = 2 \quad r_{16} = 2 \quad r_{17} = 3 \quad r_{18} = 3$$

How many pairs of blocks are there?

Example and Lemma:

$$\sum_{i \in [n]} r_i \text{ choose } 2 = m \text{ choose } 2$$

$$n = 18, m = 9.$$

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 6, 12, 16, 18\}$$

$$A_7 = \{3, 8, 13, 14, 17\} \quad A_8 = \{4, 7, 13, 15, 18\} \quad A_9 = \{5, 9, 10, 17, 18\}$$

$$r_1 = 3 \quad r_2 = 3 \quad r_3 = 3 \quad r_4 = 2 \quad r_5 = 2 \quad r_6 = 3$$

$$r_7 = 3 \quad r_8 = 2 \quad r_9 = 2 \quad r_{10} = 3 \quad r_{11} = 2 \quad r_{12} = 2$$

$$r_{13} = 3 \quad r_{14} = 2 \quad r_{15} = 2 \quad r_{16} = 2 \quad r_{17} = 3 \quad r_{18} = 3$$

How many pairs of blocks are there? $\binom{9}{2}$.

Example and Lemma:

$$\sum_{i \in [n]} r_i \text{ choose } 2 = m \text{ choose } 2$$

$$n = 18, m = 9.$$

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 6, 12, 16, 18\}$$

$$A_7 = \{3, 8, 13, 14, 17\} \quad A_8 = \{4, 7, 13, 15, 18\} \quad A_9 = \{5, 9, 10, 17, 18\}$$

$$r_1 = 3 \quad r_2 = 3 \quad r_3 = 3 \quad r_4 = 2 \quad r_5 = 2 \quad r_6 = 3$$

$$r_7 = 3 \quad r_8 = 2 \quad r_9 = 2 \quad r_{10} = 3 \quad r_{11} = 2 \quad r_{12} = 2$$

$$r_{13} = 3 \quad r_{14} = 2 \quad r_{15} = 2 \quad r_{16} = 2 \quad r_{17} = 3 \quad r_{18} = 3$$

How many pairs of blocks are there? $\binom{9}{2}$. More generally $\binom{m}{2}$.

Example and Lemma:

$$\sum_{i \in [n]} r_i \text{ choose } 2 = m \text{ choose } 2$$

$$n = 18, m = 9.$$

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 6, 12, 16, 18\}$$

$$A_7 = \{3, 8, 13, 14, 17\} \quad A_8 = \{4, 7, 13, 15, 18\} \quad A_9 = \{5, 9, 10, 17, 18\}$$

$$r_1 = 3 \quad r_2 = 3 \quad r_3 = 3 \quad r_4 = 2 \quad r_5 = 2 \quad r_6 = 3$$

$$r_7 = 3 \quad r_8 = 2 \quad r_9 = 2 \quad r_{10} = 3 \quad r_{11} = 2 \quad r_{12} = 2$$

$$r_{13} = 3 \quad r_{14} = 2 \quad r_{15} = 2 \quad r_{16} = 2 \quad r_{17} = 3 \quad r_{18} = 3$$

How many pairs of blocks are there? $\binom{9}{2}$. More generally $\binom{m}{2}$.

How many pairs of blocks are there?

Example and Lemma:

$$\sum_{i \in [n]} r_i \text{ choose } 2 = m \text{ choose } 2$$

$$n = 18, m = 9.$$

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 6, 12, 16, 18\}$$

$$A_7 = \{3, 8, 13, 14, 17\} \quad A_8 = \{4, 7, 13, 15, 18\} \quad A_9 = \{5, 9, 10, 17, 18\}$$

$$r_1 = 3 \quad r_2 = 3 \quad r_3 = 3 \quad r_4 = 2 \quad r_5 = 2 \quad r_6 = 3$$

$$r_7 = 3 \quad r_8 = 2 \quad r_9 = 2 \quad r_{10} = 3 \quad r_{11} = 2 \quad r_{12} = 2$$

$$r_{13} = 3 \quad r_{14} = 2 \quad r_{15} = 2 \quad r_{16} = 2 \quad r_{17} = 3 \quad r_{18} = 3$$

How many pairs of blocks are there? $\binom{9}{2}$. More generally $\binom{m}{2}$.

How many pairs of blocks are there?

$r_{18} = 3$ counts 3 pairs: $18 \in (A_6 \cap A_8) \cup (A_6 \cap A_9) \cup (A_8 \cap A_9)$.

Example and Lemma:

$$\sum_{i \in [n]} r_i \text{ choose } 2 = m \text{ choose } 2$$

$$n = 18, m = 9.$$

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 6, 12, 16, 18\}$$

$$A_7 = \{3, 8, 13, 14, 17\} \quad A_8 = \{4, 7, 13, 15, 18\} \quad A_9 = \{5, 9, 10, 17, 18\}$$

$$r_1 = 3 \quad r_2 = 3 \quad r_3 = 3 \quad r_4 = 2 \quad r_5 = 2 \quad r_6 = 3$$

$$r_7 = 3 \quad r_8 = 2 \quad r_9 = 2 \quad r_{10} = 3 \quad r_{11} = 2 \quad r_{12} = 2$$

$$r_{13} = 3 \quad r_{14} = 2 \quad r_{15} = 2 \quad r_{16} = 2 \quad r_{17} = 3 \quad r_{18} = 3$$

How many pairs of blocks are there? $\binom{9}{2}$. More generally $\binom{m}{2}$.

How many pairs of blocks are there?

$r_{18} = 3$ counts 3 pairs: $18 \in (A_6 \cap A_8) \cup (A_6 \cap A_9) \cup (A_8 \cap A_9)$.

No other elt is in any of those \cap 's

Example and Lemma:

$$\sum_{i \in [n]} r_i \text{ choose } 2 = m \text{ choose } 2$$

$$n = 18, m = 9.$$

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 6, 12, 16, 18\}$$

$$A_7 = \{3, 8, 13, 14, 17\} \quad A_8 = \{4, 7, 13, 15, 18\} \quad A_9 = \{5, 9, 10, 17, 18\}$$

$$r_1 = 3 \quad r_2 = 3 \quad r_3 = 3 \quad r_4 = 2 \quad r_5 = 2 \quad r_6 = 3$$

$$r_7 = 3 \quad r_8 = 2 \quad r_9 = 2 \quad r_{10} = 3 \quad r_{11} = 2 \quad r_{12} = 2$$

$$r_{13} = 3 \quad r_{14} = 2 \quad r_{15} = 2 \quad r_{16} = 2 \quad r_{17} = 3 \quad r_{18} = 3$$

How many pairs of blocks are there? $\binom{9}{2}$. More generally $\binom{m}{2}$.

How many pairs of blocks are there?

$r_{18} = 3$ counts 3 pairs: $18 \in (A_6 \cap A_8) \cup (A_6 \cap A_9) \cup (A_8 \cap A_9)$.

No other elt is in any of those \cap 's

More generally, i counts $\binom{r_i}{2}$ pairs of blocks.

Example and Lemma:

$$\sum_{i \in [n]} r_i \text{ choose } 2 = m \text{ choose } 2$$

$$n = 18, m = 9.$$

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 6, 12, 16, 18\}$$

$$A_7 = \{3, 8, 13, 14, 17\} \quad A_8 = \{4, 7, 13, 15, 18\} \quad A_9 = \{5, 9, 10, 17, 18\}$$

$$r_1 = 3 \quad r_2 = 3 \quad r_3 = 3 \quad r_4 = 2 \quad r_5 = 2 \quad r_6 = 3$$

$$r_7 = 3 \quad r_8 = 2 \quad r_9 = 2 \quad r_{10} = 3 \quad r_{11} = 2 \quad r_{12} = 2$$

$$r_{13} = 3 \quad r_{14} = 2 \quad r_{15} = 2 \quad r_{16} = 2 \quad r_{17} = 3 \quad r_{18} = 3$$

How many pairs of blocks are there? $\binom{9}{2}$. More generally $\binom{m}{2}$.

How many pairs of blocks are there?

$r_{18} = 3$ counts 3 pairs: $18 \in (A_6 \cap A_8) \cup (A_6 \cap A_9) \cup (A_8 \cap A_9)$.

No other elt is in any of those \cap 's

More generally, i counts $\binom{r_i}{2}$ pairs of blocks.

Lemma $\sum_{i \in [n]} \binom{r_i}{2} = \binom{m}{2}$.

Example and Lemma: $\sum_{i \in [5]} i^2 n_i = n^2 + 4m$

Example and Lemma: $\sum_{i \in [5]} i^2 n_i = n^2 + 4m$

$n = 18, m = 9.$

Example and Lemma: $\sum_{i \in [5]} i^2 n_i = n^2 + 4m$

$n = 18, m = 9$.

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 6, 12, 16, 18\}$$

$$A_7 = \{3, 8, 13, 14, 17\} \quad A_8 = \{4, 7, 13, 15, 18\} \quad A_9 = \{5, 9, 10, 17, 18\}$$

Example and Lemma: $\sum_{i \in [5]} i^2 n_i = n^2 + 4m$

$$n = 18, m = 9.$$

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 6, 12, 16, 18\}$$

$$A_7 = \{3, 8, 13, 14, 17\} \quad A_8 = \{4, 7, 13, 15, 18\} \quad A_9 = \{5, 9, 10, 17, 18\}$$

$$r_1 = 3 \quad r_2 = 3 \quad r_3 = 3 \quad r_4 = 2 \quad r_5 = 2 \quad r_6 = 3$$

$$r_7 = 2 \quad r_8 = 1 \quad r_9 = 2 \quad r_{10} = 3 \quad r_{11} = 2 \quad r_{12} = 2$$

$$r_{13} = 3 \quad r_{14} = 2 \quad r_{15} = 1 \quad r_{16} = 2 \quad r_{17} = 3 \quad r_{18} = 3$$

Example and Lemma: $\sum_{i \in [5]} i^2 n_i = n^2 + 4m$

$$n = 18, m = 9.$$

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 6, 12, 16, 18\}$$

$$A_7 = \{3, 8, 13, 14, 17\} \quad A_8 = \{4, 7, 13, 15, 18\} \quad A_9 = \{5, 9, 10, 17, 18\}$$

$$r_1 = 3 \quad r_2 = 3 \quad r_3 = 3 \quad r_4 = 2 \quad r_5 = 2 \quad r_6 = 3$$

$$r_7 = 2 \quad r_8 = 1 \quad r_9 = 2 \quad r_{10} = 3 \quad r_{11} = 2 \quad r_{12} = 2$$

$$r_{13} = 3 \quad r_{14} = 2 \quad r_{15} = 1 \quad r_{16} = 2 \quad r_{17} = 3 \quad r_{18} = 3$$

Lemma $\sum_{i \in [n]} \binom{r_i}{2} = \binom{m}{2}$.

Example and Lemma: $\sum_{i \in [5]} i^2 n_i = n^2 + 4m$

$$n = 18, m = 9.$$

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 6, 12, 16, 18\}$$

$$A_7 = \{3, 8, 13, 14, 17\} \quad A_8 = \{4, 7, 13, 15, 18\} \quad A_9 = \{5, 9, 10, 17, 18\}$$

$$r_1 = 3 \quad r_2 = 3 \quad r_3 = 3 \quad r_4 = 2 \quad r_5 = 2 \quad r_6 = 3$$

$$r_7 = 2 \quad r_8 = 1 \quad r_9 = 2 \quad r_{10} = 3 \quad r_{11} = 2 \quad r_{12} = 2$$

$$r_{13} = 3 \quad r_{14} = 2 \quad r_{15} = 1 \quad r_{16} = 2 \quad r_{17} = 3 \quad r_{18} = 3$$

Lemma $\sum_{i \in [n]} \binom{r_i}{2} = \binom{m}{2}$.

Algebra: $\sum_{i \in [n]} r_i^2 = n^2 + 4m$.

Example and Lemma: $\sum_{i \in [5]} i^2 n_i = n^2 + 4m$

$n = 18, m = 9$.

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 6, 12, 16, 18\}$$

$$A_7 = \{3, 8, 13, 14, 17\} \quad A_8 = \{4, 7, 13, 15, 18\} \quad A_9 = \{5, 9, 10, 17, 18\}$$

$$r_1 = 3 \quad r_2 = 3 \quad r_3 = 3 \quad r_4 = 2 \quad r_5 = 2 \quad r_6 = 3$$

$$r_7 = 2 \quad r_8 = 1 \quad r_9 = 2 \quad r_{10} = 3 \quad r_{11} = 2 \quad r_{12} = 2$$

$$r_{13} = 3 \quad r_{14} = 2 \quad r_{15} = 1 \quad r_{16} = 2 \quad r_{17} = 3 \quad r_{18} = 3$$

Lemma $\sum_{i \in [n]} \binom{r_i}{2} = \binom{m}{2}$.

Algebra: $\sum_{i \in [n]} r_i^2 = n^2 + 4m$.

Another way to calculate $\sum_{i \in [n]} r_i^2$:

Example and Lemma: $\sum_{i \in [5]} i^2 n_i = n^2 + 4m$

$$n = 18, m = 9.$$

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 6, 12, 16, 18\}$$

$$A_7 = \{3, 8, 13, 14, 17\} \quad A_8 = \{4, 7, 13, 15, 18\} \quad A_9 = \{5, 9, 10, 17, 18\}$$

$$r_1 = 3 \quad r_2 = 3 \quad r_3 = 3 \quad r_4 = 2 \quad r_5 = 2 \quad r_6 = 3$$

$$r_7 = 2 \quad r_8 = 1 \quad r_9 = 2 \quad r_{10} = 3 \quad r_{11} = 2 \quad r_{12} = 2$$

$$r_{13} = 3 \quad r_{14} = 2 \quad r_{15} = 1 \quad r_{16} = 2 \quad r_{17} = 3 \quad r_{18} = 3$$

Lemma $\sum_{i \in [n]} \binom{r_i}{2} = \binom{m}{2}$.

Algebra: $\sum_{i \in [n]} r_i^2 = n^2 + 4m$.

Another way to calculate $\sum_{i \in [n]} r_i^2$:

$n_3 = 9$ via $\{1, 2, 3, 6, 7, 10, 13, 17, 18\}$. Each contributes $3^2 = 9$. So

Example and Lemma: $\sum_{i \in [5]} i^2 n_i = n^2 + 4m$

$$n = 18, m = 9.$$

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 6, 12, 16, 18\}$$

$$A_7 = \{3, 8, 13, 14, 17\} \quad A_8 = \{4, 7, 13, 15, 18\} \quad A_9 = \{5, 9, 10, 17, 18\}$$

$$r_1 = 3 \quad r_2 = 3 \quad r_3 = 3 \quad r_4 = 2 \quad r_5 = 2 \quad r_6 = 3$$

$$r_7 = 2 \quad r_8 = 1 \quad r_9 = 2 \quad r_{10} = 3 \quad r_{11} = 2 \quad r_{12} = 2$$

$$r_{13} = 3 \quad r_{14} = 2 \quad r_{15} = 1 \quad r_{16} = 2 \quad r_{17} = 3 \quad r_{18} = 3$$

Lemma $\sum_{i \in [n]} \binom{r_i}{2} = \binom{m}{2}.$

Algebra: $\sum_{i \in [n]} r_i^2 = n^2 + 4m.$

Another way to calculate $\sum_{i \in [n]} r_i^2$:

$n_3 = 9$ via $\{1, 2, 3, 6, 7, 10, 13, 17, 18\}$. Each contributes $3^2 = 9$. So

Lemma $\sum_{i \in [5]} i^2 n_i = \sum_{i \in [n]} r_i^2 = n^2 + 4m$ **WRITE THIS DOWN!**

Summary of Lemmas Plus...

Summary of Lemmas Plus...

Lemma Let $m, n \in \mathbb{N}$. Assume A_1, \dots, A_m is an n -awesome* collection of blocks.

Summary of Lemmas Plus...

Lemma Let $m, n \in \mathbb{N}$. Assume A_1, \dots, A_m is an n -awesome* collection of blocks.

- 1) For $1 \leq i \leq 5$ n_i is the number of $y \in [n]$ that appear i times.

Summary of Lemmas Plus...

Lemma Let $m, n \in \mathbb{N}$. Assume A_1, \dots, A_m is an n -awesome* collection of blocks.

- 1) For $1 \leq i \leq 5$ n_i is the number of $y \in [n]$ that appear i times.
 $\sum_{i \in [5]} n_i = n$.

Summary of Lemmas Plus...

Lemma Let $m, n \in \mathbb{N}$. Assume A_1, \dots, A_m is an n -awesome* collection of blocks.

1) For $1 \leq i \leq 5$ n_i is the number of $y \in [n]$ that appear i times.

$$\sum_{i \in [5]} n_i = n.$$

$$\sum_{i \in [5]} i n_i = 5m.$$

Summary of Lemmas Plus...

Lemma Let $m, n \in \mathbb{N}$. Assume A_1, \dots, A_m is an n -awesome* collection of blocks.

1) For $1 \leq i \leq 5$ n_i is the number of $y \in [n]$ that appear i times.

$$\sum_{i \in [5]} n_i = n.$$

$$\sum_{i \in [5]} i n_i = 5m.$$

$$\sum_{i \in [5]} i^2 n_i = n^2 + 4m.$$

Summary of Lemmas Plus...

Lemma Let $m, n \in \mathbb{N}$. Assume A_1, \dots, A_m is an n -awesome* collection of blocks.

1) For $1 \leq i \leq 5$ n_i is the number of $y \in [n]$ that appear i times.

$$\sum_{i \in [5]} n_i = n.$$

$$\sum_{i \in [5]} i n_i = 5m.$$

$$\sum_{i \in [5]} i^2 n_i = n^2 + 4m.$$

2) (n_1, \dots, n_5) is a solution in \mathbb{Z}^5 iff $\exists p, q \in \mathbb{Z}$ such that:

Summary of Lemmas Plus...

Lemma Let $m, n \in \mathbb{N}$. Assume A_1, \dots, A_m is an n -awesome* collection of blocks.

1) For $1 \leq i \leq 5$ n_i is the number of $y \in [n]$ that appear i times.

$$\sum_{i \in [5]} n_i = n.$$

$$\sum_{i \in [5]} i n_i = 5m.$$

$$\sum_{i \in [5]} i^2 n_i = n^2 + 4m.$$

2) (n_1, \dots, n_5) is a solution in \mathbb{Z}^5 iff $\exists p, q \in \mathbb{Z}$ such that:

$$n_1 = 0.5m^2 - 10.5m + 3n - p - 3q$$

$$n_2 = -m^2 + 16m - 3n + 3p + 8q$$

$$n_3 = 0.5m^2 - 5.5m + n - 3p - 6q$$

$$n_4 = p$$

$$n_5 = q$$

(Proof by more algebra than you want to do.)

Better Bound on n

Lemma Let A_1, \dots, A_m be an n -awesome* collection of blocks.

Better Bound on n

Lemma Let A_1, \dots, A_m be an n -awesome* collection of blocks. We know that y appears in ≤ 5 blocks.

Better Bound on n

Lemma Let A_1, \dots, A_m be an n -awesome* collection of blocks.

We know that y appears in ≤ 5 blocks.

We know that there exists $p, q \geq 0$ such that

$$n_1 = 0.5m^2 - 10.5m + 3n - p - 3q$$

$$n_2 = -m^2 + 16m - 3n + 3p + 8q$$

$$n_3 = 0.5m^2 - 5.5m + n - 3p - 6q$$

$$n_4 = p$$

$$n_5 = q$$

Better Bound on n

Lemma Let A_1, \dots, A_m be an n -awesome* collection of blocks.

We know that y appears in ≤ 5 blocks.

We know that there exists $p, q \geq 0$ such that

$$n_1 = 0.5m^2 - 10.5m + 3n - p - 3q$$

$$n_2 = -m^2 + 16m - 3n + 3p + 8q$$

$$n_3 = 0.5m^2 - 5.5m + n - 3p - 6q$$

$$n_4 = p$$

$$n_5 = q$$

$$n_2 \geq 0:$$

Better Bound on n

Lemma Let A_1, \dots, A_m be an n -awesome* collection of blocks.

We know that y appears in ≤ 5 blocks.

We know that there exists $p, q \geq 0$ such that

$$n_1 = 0.5m^2 - 10.5m + 3n - p - 3q$$

$$n_2 = -m^2 + 16m - 3n + 3p + 8q$$

$$n_3 = 0.5m^2 - 5.5m + n - 3p - 6q$$

$$n_4 = p$$

$$n_5 = q$$

$$n_2 \geq 0: \text{Algebra: } n \leq \frac{16m - m^2}{3} + p + \frac{8}{3}q \quad (1)$$

Better Bound on n

Lemma Let A_1, \dots, A_m be an n -awesome* collection of blocks.

We know that y appears in ≤ 5 blocks.

We know that there exists $p, q \geq 0$ such that

$$n_1 = 0.5m^2 - 10.5m + 3n - p - 3q$$

$$n_2 = -m^2 + 16m - 3n + 3p + 8q$$

$$n_3 = 0.5m^2 - 5.5m + n - 3p - 6q$$

$$n_4 = p$$

$$n_5 = q$$

$$n_2 \geq 0: \text{Algebra: } n \leq \frac{16m - m^2}{3} + p + \frac{8}{3}q \quad (1)$$

$$n_3 \geq 0:$$

Better Bound on n

Lemma Let A_1, \dots, A_m be an n -awesome* collection of blocks.

We know that y appears in ≤ 5 blocks.

We know that there exists $p, q \geq 0$ such that

$$n_1 = 0.5m^2 - 10.5m + 3n - p - 3q$$

$$n_2 = -m^2 + 16m - 3n + 3p + 8q$$

$$n_3 = 0.5m^2 - 5.5m + n - 3p - 6q$$

$$n_4 = p$$

$$n_5 = q$$

$$n_2 \geq 0: \text{Algebra: } n \leq \frac{16m - m^2}{3} + p + \frac{8}{3}q \quad (1)$$

$$n_3 \geq 0: \text{Algebra: } n \geq \frac{11m - m^2}{2} + 3p + 6q \quad (2)$$

Better Bound on n

Lemma Let A_1, \dots, A_m be an n -awesome* collection of blocks.

We know that y appears in ≤ 5 blocks.

We know that there exists $p, q \geq 0$ such that

$$n_1 = 0.5m^2 - 10.5m + 3n - p - 3q$$

$$n_2 = -m^2 + 16m - 3n + 3p + 8q$$

$$n_3 = 0.5m^2 - 5.5m + n - 3p - 6q$$

$$n_4 = p$$

$$n_5 = q$$

$$n_2 \geq 0: \text{Algebra: } n \leq \frac{16m - m^2}{3} + p + \frac{8}{3}q \quad (1)$$

$$n_3 \geq 0: \text{Algebra: } n \geq \frac{11m - m^2}{2} + 3p + 6q \quad (2)$$

(1) and (2):

Better Bound on n

Lemma Let A_1, \dots, A_m be an n -awesome* collection of blocks.

We know that y appears in ≤ 5 blocks.

We know that there exists $p, q \geq 0$ such that

$$n_1 = 0.5m^2 - 10.5m + 3n - p - 3q$$

$$n_2 = -m^2 + 16m - 3n + 3p + 8q$$

$$n_3 = 0.5m^2 - 5.5m + n - 3p - 6q$$

$$n_4 = p$$

$$n_5 = q$$

$$n_2 \geq 0: \text{Algebra: } n \leq \frac{16m - m^2}{3} + p + \frac{8}{3}q \quad (1)$$

$$n_3 \geq 0: \text{Algebra: } n \geq \frac{11m - m^2}{2} + 3p + 6q \quad (2)$$

$$(1) \text{ and } (2): \text{Algebra: } 12p + 20q \leq m^2 - m \quad (3)$$

An Optimization Problem

An Optimization Problem

$$n \leq \frac{16m-m^2}{3} + p + \frac{8q}{3}.$$

An Optimization Problem

$$n \leq \frac{16m-m^2}{3} + p + \frac{8q}{3}.$$

Here is our current problem:

An Optimization Problem

$$n \leq \frac{16m-m^2}{3} + p + \frac{8q}{3}.$$

Here is our current problem:

Maximize $\frac{16m-m^2}{3} + p + \frac{8q}{3}$

An Optimization Problem

$$n \leq \frac{16m-m^2}{3} + p + \frac{8q}{3}.$$

Here is our current problem:

Maximize $\frac{16m-m^2}{3} + p + \frac{8q}{3}$

Constraint $12p + 20q \leq m^2 - m$ and $m, p, q \geq 0$.

An Optimization Problem

$$n \leq \frac{16m-m^2}{3} + p + \frac{8q}{3}.$$

Here is our current problem:

Maximize $\frac{16m-m^2}{3} + p + \frac{8q}{3}$

Constraint $12p + 20q \leq m^2 - m$ and $m, p, q \geq 0$.

From Algebra and Calc have upper bound is max when $m = 13$:

An Optimization Problem

$$n \leq \frac{16m-m^2}{3} + p + \frac{8q}{3}.$$

Here is our current problem:

Maximize $\frac{16m-m^2}{3} + p + \frac{8q}{3}$

Constraint $12p + 20q \leq m^2 - m$ and $m, p, q \geq 0$.

From Algebra and Calc have upper bound is max when $m = 13$:

$$n \leq \frac{26 \times 13 - 13 \times 13}{5} = \frac{169}{5} = 33.8$$

An Optimization Problem

$$n \leq \frac{16m-m^2}{3} + p + \frac{8q}{3}.$$

Here is our current problem:

Maximize $\frac{16m-m^2}{3} + p + \frac{8q}{3}$

Constraint $12p + 20q \leq m^2 - m$ and $m, p, q \geq 0$.

From Algebra and Calc have upper bound is max when $m = 13$:

$$n \leq \frac{26 \times 13 - 13 \times 13}{5} = \frac{169}{5} = 33.8$$

Since $n \in \mathbb{N}$, $n \leq 33$.

Problem Solved for $n \geq 34$

Thm Let $n \geq 34$.

Problem Solved for $n \geq 34$

Thm Let $n \geq 34$.

1) If $n \equiv 1 \pmod{4}$ then $f(n) = \left\{ \frac{n-1}{4} \right\}$.

Problem Solved for $n \geq 34$

Thm Let $n \geq 34$.

- 1) If $n \equiv 1 \pmod{4}$ then $f(n) = \left\{ \frac{n-1}{4} \right\}$.
- 2) If $n \not\equiv 1 \pmod{4}$ then $f(n) = \emptyset$.

Problem Solved for $n \geq 34$

Thm Let $n \geq 34$.

- 1) If $n \equiv 1 \pmod{4}$ then $f(n) = \left\{ \frac{n-1}{4} \right\}$.
- 2) If $n \not\equiv 1 \pmod{4}$ then $f(n) = \emptyset$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

Problem Solved for $n \geq 34$

Thm Let $n \geq 34$.

- 1) If $n \equiv 1 \pmod{4}$ then $f(n) = \left\{ \frac{n-1}{4} \right\}$.
- 2) If $n \not\equiv 1 \pmod{4}$ then $f(n) = \emptyset$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

Case 1 There exists a y that is in every block. Then $m = \frac{n-1}{4}$ and $n \equiv 1 \pmod{4}$.

Problem Solved for $n \geq 34$

Thm Let $n \geq 34$.

- 1) If $n \equiv 1 \pmod{4}$ then $f(n) = \left\{ \frac{n-1}{4} \right\}$.
- 2) If $n \not\equiv 1 \pmod{4}$ then $f(n) = \emptyset$.

Let A_1, \dots, A_m be an n -awesome collection of blocks.

Case 1 There exists a y that is in every block. Then $m = \frac{n-1}{4}$ and $n \equiv 1 \pmod{4}$.

Case 2 There is no such y . Then $n \leq 33$, contrary to hypothesis.

Part IV:

Using Programs

We Determine $f(n)$ for $5 \leq n \leq 32$

GEN-NI PROGRAM. Generates all $(n_1, n_2, n_3, n_4, n_5)$

GEN-NI PROGRAM. Generates all $(n_1, n_2, n_3, n_4, n_5)$

Sketch of Code

GEN-NI PROGRAM. Generates all $(n_1, n_2, n_3, n_4, n_5)$

Sketch of Code

Input n, m .

GEN-NI PROGRAM. Generates all $(n_1, n_2, n_3, n_4, n_5)$

Sketch of Code

Input n, m .

TABLE-NI = \emptyset .

GEN-NI PROGRAM. Generates all $(n_1, n_2, n_3, n_4, n_5)$

Sketch of Code

Input n, m .

TABLE-NI = \emptyset .

For $p = 0$ **to** n

GEN-NI PROGRAM. Generates all $(n_1, n_2, n_3, n_4, n_5)$

Sketch of Code

Input n, m .

TABLE-NI = \emptyset .

For $p = 0$ **to** n

For $q = 0$ **to** $n - p$

$$n_1 = 0.5m^2 - 10.5m + 3n - p - 3q$$

$$n_2 = -m^2 + 16m - 3n + 3p + 8q$$

$$n_3 = 0.5m^2 - 5.5m + n - 3p - 6q$$

$$n_4 = p$$

$$n_5 = q$$

If $(\forall i)[0 \leq n_i \leq 5]$ **then**

$$\text{TABLE-NI} = \text{TABLE-NI} \cup (n, m; n_1, n_2, n_3, n_4, n_5)$$

Running Example: $n = 22$, $m = 17$

$n = 22$, $m = 17$. The possible $(n_1, n_2, n_3, n_4, n_5)$:

Running Example: $n = 22$, $m = 17$

$n = 22$, $m = 17$. The possible $(n_1, n_2, n_3, n_4, n_5)$:

(1,0,10,1,10)

(0,3,7,2,10)

(1,1,7,4,9)

(0,4,4,5,9)

(1,2,4,7,8)

(0,5,1,8,8)

(2,0,4,9,7)

(1,3,1,10,7)

(2,1,1,12,6)

Running Example: $n = 22$, $m = 17$

$n = 22$, $m = 17$. The possible $(n_1, n_2, n_3, n_4, n_5)$:

(1,0,10,1,10)

(0,3,7,2,10)

(1,1,7,4,9)

(0,4,4,5,9)

(1,2,4,7,8)

(0,5,1,8,8)

(2,0,4,9,7)

(1,3,1,10,7)

(2,1,1,12,6)

Those are a lot of options!

Running Example: $n = 22, m = 17$

$n = 22, m = 17$. The possible $(n_1, n_2, n_3, n_4, n_5)$:

$(1,0,10,1,10)$

$(0,3,7,2,10)$

$(1,1,7,4,9)$

$(0,4,4,5,9)$

$(1,2,4,7,8)$

$(0,5,1,8,8)$

$(2,0,4,9,7)$

$(1,3,1,10,7)$

$(2,1,1,12,6)$

Those are a lot of options!

If we eliminate **all** of them then we know $17 \notin f(22)$.

Running Example: $n = 22$, $m = 17$

$n = 22$, $m = 17$. The possible $(n_1, n_2, n_3, n_4, n_5)$:

$(1,0,10,1,10)$

$(0,3,7,2,10)$

$(1,1,7,4,9)$

$(0,4,4,5,9)$

$(1,2,4,7,8)$

$(0,5,1,8,8)$

$(2,0,4,9,7)$

$(1,3,1,10,7)$

$(2,1,1,12,6)$

Those are a lot of options!

If we eliminate **all** of them then we know $17 \notin f(22)$.

If we eliminate **some** of them we may have insight into how to construct a 22-awesome* collection of 17 blocks.

Block Types

Block Types

Let A_1, \dots, A_m be an n -awesome* collection.

Block Types

Let A_1, \dots, A_m be an n -awesome* collection.

Notation For $i \in [n]$ let r_i be the number of blocks i is in. Note that for our cases $1 \leq r_i \leq 5$.

Block Types

Let A_1, \dots, A_m be an n -awesome* collection.

Notation For $i \in [n]$ let r_i be the number of blocks i is in. Note that for our cases $1 \leq r_i \leq 5$.

Def Let A be a block with elements $\{a, b, c, d, e\}$. Assume $r_a \geq r_b \geq r_c \geq r_d \geq r_e$.

Block Types

Let A_1, \dots, A_m be an n -awesome* collection.

Notation For $i \in [n]$ let r_i be the number of blocks i is in. Note that for our cases $1 \leq r_i \leq 5$.

Def Let A be a block with elements $\{a, b, c, d, e\}$. Assume $r_a \geq r_b \geq r_c \geq r_d \geq r_e$. A is **of blocktype** $[r_a, r_b, r_c, r_d, r_e]$.

Block Types

Let A_1, \dots, A_m be an n -awesome* collection.

Notation For $i \in [n]$ let r_i be the number of blocks i is in. Note that for our cases $1 \leq r_i \leq 5$.

Def Let A be a block with elements $\{a, b, c, d, e\}$. Assume $r_a \geq r_b \geq r_c \geq r_d \geq r_e$. A is **of blocktype** $[r_a, r_b, r_c, r_d, r_e]$.

Thm A has blocktype $[r_a, r_b, r_c, r_d, r_e]$. Sum of the r 's is $m + 4$.

Block Types

Let A_1, \dots, A_m be an n -awesome* collection.

Notation For $i \in [n]$ let r_i be the number of blocks i is in. Note that for our cases $1 \leq r_i \leq 5$.

Def Let A be a block with elements $\{a, b, c, d, e\}$. Assume $r_a \geq r_b \geq r_c \geq r_d \geq r_e$. A is **of blocktype** $[r_a, r_b, r_c, r_d, r_e]$.

Thm A has blocktype $[r_a, r_b, r_c, r_d, r_e]$. Sum of the r 's is $m + 4$.

$$\mathcal{BX} = \{(B, x) : B \text{ is a block, } B \neq A, \text{ and } x \in A \cap B\}.$$

Block Types

Let A_1, \dots, A_m be an n -awesome* collection.

Notation For $i \in [n]$ let r_i be the number of blocks i is in. Note that for our cases $1 \leq r_i \leq 5$.

Def Let A be a block with elements $\{a, b, c, d, e\}$. Assume $r_a \geq r_b \geq r_c \geq r_d \geq r_e$. A is **of blocktype** $[r_a, r_b, r_c, r_d, r_e]$.

Thm A has blocktype $[r_a, r_b, r_c, r_d, r_e]$. Sum of the r 's is $m + 4$.

$$\mathcal{BX} = \{(B, x) : B \text{ is a block, } B \neq A, \text{ and } x \in A \cap B\}.$$

$$|\mathcal{BX}|?$$

Block Types

Let A_1, \dots, A_m be an n -awesome* collection.

Notation For $i \in [n]$ let r_i be the number of blocks i is in. Note that for our cases $1 \leq r_i \leq 5$.

Def Let A be a block with elements $\{a, b, c, d, e\}$. Assume $r_a \geq r_b \geq r_c \geq r_d \geq r_e$. A is **of blocktype** $[r_a, r_b, r_c, r_d, r_e]$.

Thm A has blocktype $[r_a, r_b, r_c, r_d, r_e]$. Sum of the r 's is $m + 4$.

$$\mathcal{BX} = \{(B, x) : B \text{ is a block, } B \neq A, \text{ and } x \in A \cap B\}.$$

$|\mathcal{BX}|$? Every block intersects A exactly once: $|\mathcal{BX}| = m - 1$.

Block Types

Let A_1, \dots, A_m be an n -awesome* collection.

Notation For $i \in [n]$ let r_i be the number of blocks i is in. Note that for our cases $1 \leq r_i \leq 5$.

Def Let A be a block with elements $\{a, b, c, d, e\}$. Assume $r_a \geq r_b \geq r_c \geq r_d \geq r_e$. A is **of blocktype** $[r_a, r_b, r_c, r_d, r_e]$.

Thm A has blocktype $[r_a, r_b, r_c, r_d, r_e]$. Sum of the r 's is $m + 4$.

$$\mathcal{BX} = \{(B, x) : B \text{ is a block, } B \neq A, \text{ and } x \in A \cap B\}.$$

$|\mathcal{BX}|$? Every block intersects A exactly once: $|\mathcal{BX}| = m - 1$.

$|\mathcal{BX}|$?

Block Types

Let A_1, \dots, A_m be an n -awesome* collection.

Notation For $i \in [n]$ let r_i be the number of blocks i is in. Note that for our cases $1 \leq r_i \leq 5$.

Def Let A be a block with elements $\{a, b, c, d, e\}$. Assume $r_a \geq r_b \geq r_c \geq r_d \geq r_e$. A is **of blocktype** $[r_a, r_b, r_c, r_d, r_e]$.

Thm A has blocktype $[r_a, r_b, r_c, r_d, r_e]$. Sum of the r 's is $m + 4$.

$$\mathcal{BX} = \{(B, x) : B \text{ is a block, } B \neq A, \text{ and } x \in A \cap B\}.$$

$|\mathcal{BX}|$? Every block intersects A exactly once: $|\mathcal{BX}| = m - 1$.

$|\mathcal{BX}|$? Each $y \in A$ contributes $r_y - 1$: $|\mathcal{BX}| = \sum_{y \in A} (r_y - 1)$.

Block Types

Let A_1, \dots, A_m be an n -awesome* collection.

Notation For $i \in [n]$ let r_i be the number of blocks i is in. Note that for our cases $1 \leq r_i \leq 5$.

Def Let A be a block with elements $\{a, b, c, d, e\}$. Assume $r_a \geq r_b \geq r_c \geq r_d \geq r_e$. A is **of blocktype** $[r_a, r_b, r_c, r_d, r_e]$.

Thm A has blocktype $[r_a, r_b, r_c, r_d, r_e]$. Sum of the r 's is $m + 4$.

$$\mathcal{BX} = \{(B, x) : B \text{ is a block, } B \neq A, \text{ and } x \in A \cap B\}.$$

$|\mathcal{BX}|$? Every block intersects A exactly once: $|\mathcal{BX}| = m - 1$.

$|\mathcal{BX}|$? Each $y \in A$ contributes $r_y - 1$: $|\mathcal{BX}| = \sum_{y \in A} (r_y - 1)$.

$$\sum_{y \in A} (r_y - 1) = m - 1$$

Block Types

Let A_1, \dots, A_m be an n -awesome* collection.

Notation For $i \in [n]$ let r_i be the number of blocks i is in. Note that for our cases $1 \leq r_i \leq 5$.

Def Let A be a block with elements $\{a, b, c, d, e\}$. Assume $r_a \geq r_b \geq r_c \geq r_d \geq r_e$. A is **of blocktype** $[r_a, r_b, r_c, r_d, r_e]$.

Thm A has blocktype $[r_a, r_b, r_c, r_d, r_e]$. Sum of the r 's is $m + 4$.

$$\mathcal{BX} = \{(B, x) : B \text{ is a block, } B \neq A, \text{ and } x \in A \cap B\}.$$

$|\mathcal{BX}|$? Every block intersects A exactly once: $|\mathcal{BX}| = m - 1$.

$|\mathcal{BX}|$? Each $y \in A$ contributes $r_y - 1$: $|\mathcal{BX}| = \sum_{y \in A} (r_y - 1)$.

$$\sum_{y \in A} (r_y - 1) = m - 1$$

$$\sum_{y \in A} r_y = m + 4$$

Example of Eliminating Blocktypes

$n = 22, m = 17, (n_1.n_2.n_3.n_4, n_5) = (9, 4, 1, 5, 3)$.

Example of Eliminating Blocktypes

$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (9, 4, 1, 5, 3)$.

Blocktypes are 5-tuples from $\{1, 2, 3, 4, 5\}$ that add to $m + 4 = 21$.

Example of Eliminating Blocktypes

$n = 22, m = 17, (n_1.n_2.n_3.n_4, n_5) = (9, 4, 1, 5, 3)$.

Blocktypes are 5-tuples from $\{1, 2, 3, 4, 5\}$ that add to $m + 4 = 21$.

$[5, 5, 5, 5, 1]$.

Example of Eliminating Blocktypes

$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (9, 4, 1, 5, 3)$.

Blocktypes are 5-tuples from $\{1, 2, 3, 4, 5\}$ that add to $m + 4 = 21$.

$[5, 5, 5, 5, 1]$. **No!**

Example of Eliminating Blocktypes

$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (9, 4, 1, 5, 3)$.

Blocktypes are 5-tuples from $\{1, 2, 3, 4, 5\}$ that add to $m + 4 = 21$.

$[5, 5, 5, 5, 1]$. **No!** Has 4 5's, but $n_5 = 3 < 4$.

Example of Eliminating Blocktypes

$$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (9, 4, 1, 5, 3).$$

Blocktypes are 5-tuples from $\{1, 2, 3, 4, 5\}$ that add to $m + 4 = 21$.

$[5, 5, 5, 5, 1]$. **No!** Has 4 5's, but $n_5 = 3 < 4$.

$[5, 5, 5, 4, 2]$.

Example of Eliminating Blocktypes

$$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (9, 4, 1, 5, 3).$$

Blocktypes are 5-tuples from $\{1, 2, 3, 4, 5\}$ that add to $m + 4 = 21$.

$[5, 5, 5, 5, 1]$. **No!** Has 4 5's, but $n_5 = 3 < 4$.

$[5, 5, 5, 4, 2]$. **Fine!**

Example of Eliminating Blocktypes

$$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (9, 4, 1, 5, 3).$$

Blocktypes are 5-tuples from $\{1, 2, 3, 4, 5\}$ that add to $m + 4 = 21$.

$[5, 5, 5, 5, 1]$. **No!** Has 4 5's, but $n_5 = 3 < 4$.

$[5, 5, 5, 4, 2]$. **Fine!**

$[5, 5, 5, 3, 3]$.

Example of Eliminating Blocktypes

$n = 22$, $m = 17$, $(n_1, n_2, n_3, n_4, n_5) = (9, 4, 1, 5, 3)$.

Blocktypes are 5-tuples from $\{1, 2, 3, 4, 5\}$ that add to $m + 4 = 21$.

$[5, 5, 5, 5, 1]$. **No!** Has 4 5's, but $n_5 = 3 < 4$.

$[5, 5, 5, 4, 2]$. **Fine!**

$[5, 5, 5, 3, 3]$. **No!**

Example of Eliminating Blocktypes

$$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (9, 4, 1, 5, 3).$$

Blocktypes are 5-tuples from $\{1, 2, 3, 4, 5\}$ that add to $m + 4 = 21$.

$[5, 5, 5, 5, 1]$. **No!** Has 4 5's, but $n_5 = 3 < 4$.

$[5, 5, 5, 4, 2]$. **Fine!**

$[5, 5, 5, 3, 3]$. **No!** has 2 3's but $n_3 = 1 < 2$.

Example of Eliminating Blocktypes

$n = 22$, $m = 17$, $(n_1, n_2, n_3, n_4, n_5) = (9, 4, 1, 5, 3)$.

Blocktypes are 5-tuples from $\{1, 2, 3, 4, 5\}$ that add to $m + 4 = 21$.

$[5, 5, 5, 5, 1]$. **No!** Has 4 5's, but $n_5 = 3 < 4$.

$[5, 5, 5, 4, 2]$. **Fine!**

$[5, 5, 5, 3, 3]$. **No!** has 2 3's but $n_3 = 1 < 2$.

$[5, 5, 4, 4, 3]$.

Example of Eliminating Blocktypes

$n = 22$, $m = 17$, $(n_1, n_2, n_3, n_4, n_5) = (9, 4, 1, 5, 3)$.

Blocktypes are 5-tuples from $\{1, 2, 3, 4, 5\}$ that add to $m + 4 = 21$.

$[5, 5, 5, 5, 1]$. **No!** Has 4 5's, but $n_5 = 3 < 4$.

$[5, 5, 5, 4, 2]$. **Fine!**

$[5, 5, 5, 3, 3]$. **No!** has 2 3's but $n_3 = 1 < 2$.

$[5, 5, 4, 4, 3]$. **Fine!**

Example of Eliminating Blocktypes

$n = 22$, $m = 17$, $(n_1, n_2, n_3, n_4, n_5) = (9, 4, 1, 5, 3)$.

Blocktypes are 5-tuples from $\{1, 2, 3, 4, 5\}$ that add to $m + 4 = 21$.

$[5, 5, 5, 5, 1]$. **No!** Has 4 5's, but $n_5 = 3 < 4$.

$[5, 5, 5, 4, 2]$. **Fine!**

$[5, 5, 5, 3, 3]$. **No!** has 2 3's but $n_3 = 1 < 2$.

$[5, 5, 4, 4, 3]$. **Fine!**

$[5, 4, 4, 4, 4]$.

Example of Eliminating Blocktypes

$n = 22$, $m = 17$, $(n_1, n_2, n_3, n_4, n_5) = (9, 4, 1, 5, 3)$.

Blocktypes are 5-tuples from $\{1, 2, 3, 4, 5\}$ that add to $m + 4 = 21$.

$[5, 5, 5, 5, 1]$. **No!** Has 4 5's, but $n_5 = 3 < 4$.

$[5, 5, 5, 4, 2]$. **Fine!**

$[5, 5, 5, 3, 3]$. **No!** has 2 3's but $n_3 = 1 < 2$.

$[5, 5, 4, 4, 3]$. **Fine!**

$[5, 4, 4, 4, 4]$. **Fine!**

Example of Valid-bt Thm

Notation bt is a block type. If $1 \leq i \leq 5$ then bt^i is how many i 's are in bt .

Example of Valid-bt Thm

Notation bt is a block type. If $1 \leq i \leq 5$ then bt^i is how many i 's are in bt .

Example $m = 22$, $m = 17$, $(n_1, n_2, n_3, n_4, n_5) = (9, 4, 1, 5, 3)$

$bt_1 [5, 5, 5, 5, 1]$. $bt_1^1 = 1$. $bt_1^5 = 4$.

$bt_2 [5, 5, 5, 4, 2]$. $bt_2^2 = 1$. $bt_2^4 = 1$. $bt_2^5 = 3$.

$bt_3 [5, 5, 5, 3, 3]$. $bt_3^3 = 2$. $bt_3^5 = 3$.

$bt_4 [5, 5, 4, 4, 3]$. $bt_4^3 = 1$. $bt_4^4 = 2$. $bt_4^5 = 2$.

$bt_5 [5, 4, 4, 4, 4]$. $bt_5^4 = 4$. $bt_5^5 = 1$.

Example of Valid-bt Thm

Notation bt is a block type. If $1 \leq i \leq 5$ then bt^i is how many i 's are in bt .

Example $m = 22$, $m = 17$, $(n_1, n_2, n_3, n_4, n_5) = (9, 4, 1, 5, 3)$

$bt_1 [5, 5, 5, 5, 1]$. $bt_1^1 = 1$. $bt_1^5 = 4$.

$bt_2 [5, 5, 5, 4, 2]$. $bt_2^2 = 1$. $bt_2^4 = 1$. $bt_2^5 = 3$.

$bt_3 [5, 5, 5, 3, 3]$. $bt_3^3 = 2$. $bt_3^5 = 3$.

$bt_4 [5, 5, 4, 4, 3]$. $bt_4^3 = 1$. $bt_4^4 = 2$. $bt_4^5 = 2$.

$bt_5 [5, 4, 4, 4, 4]$. $bt_5^4 = 4$. $bt_5^5 = 1$.

We rephrase the argument from the last slide.

Example of Valid-bt Thm

Notation bt is a block type. If $1 \leq i \leq 5$ then bt^i is how many i 's are in bt .

Example $m = 22$, $m = 17$, $(n_1, n_2, n_3, n_4, n_5) = (9, 4, 1, 5, 3)$

$bt_1 [5, 5, 5, 5, 1]$. $bt_1^1 = 1$. $bt_1^5 = 4$.

$bt_2 [5, 5, 5, 4, 2]$. $bt_2^2 = 1$. $bt_2^4 = 1$. $bt_2^5 = 3$.

$bt_3 [5, 5, 5, 3, 3]$. $bt_3^3 = 2$. $bt_3^5 = 3$.

$bt_4 [5, 5, 4, 4, 3]$. $bt_4^3 = 1$. $bt_4^4 = 2$. $bt_4^5 = 2$.

$bt_5 [5, 4, 4, 4, 4]$. $bt_5^4 = 4$. $bt_5^5 = 1$.

We rephrase the argument from the last slide.

Since $bt_1^5 = 4$ and $x_1 = 1$ there are at least 1×4 Mult-5 elts.

Example of Valid-bt Thm

Notation bt is a block type. If $1 \leq i \leq 5$ then bt^i is how many i 's are in bt .

Example $m = 22$, $m = 17$, $(n_1, n_2, n_3, n_4, n_5) = (9, 4, 1, 5, 3)$

$bt_1 [5, 5, 5, 5, 1]$. $bt_1^1 = 1$. $bt_1^5 = 4$.

$bt_2 [5, 5, 5, 4, 2]$. $bt_2^2 = 1$. $bt_2^4 = 1$. $bt_2^5 = 3$.

$bt_3 [5, 5, 5, 3, 3]$. $bt_3^3 = 2$. $bt_3^5 = 3$.

$bt_4 [5, 5, 4, 4, 3]$. $bt_4^3 = 1$. $bt_4^4 = 2$. $bt_4^5 = 2$.

$bt_5 [5, 4, 4, 4, 4]$. $bt_5^4 = 4$. $bt_5^5 = 1$.

We rephrase the argument from the last slide.

Since $bt_1^5 = 4$ and $x_1 = 1$ there are at least 1×4 Mult-5 elts.

Since $n_5 = 3$ there are 3 Mult-5 elts.

Example of Valid-bt Thm

Notation bt is a block type. If $1 \leq i \leq 5$ then bt^i is how many i 's are in bt .

Example $m = 22$, $m = 17$, $(n_1, n_2, n_3, n_4, n_5) = (9, 4, 1, 5, 3)$

$bt_1 [5, 5, 5, 5, 1]$. $bt_1^1 = 1$. $bt_1^5 = 4$.

$bt_2 [5, 5, 5, 4, 2]$. $bt_2^2 = 1$. $bt_2^4 = 1$. $bt_2^5 = 3$.

$bt_3 [5, 5, 5, 3, 3]$. $bt_3^3 = 2$. $bt_3^5 = 3$.

$bt_4 [5, 5, 4, 4, 3]$. $bt_4^3 = 1$. $bt_4^4 = 2$. $bt_4^5 = 2$.

$bt_5 [5, 4, 4, 4, 4]$. $bt_5^4 = 4$. $bt_5^5 = 1$.

We rephrase the argument from the last slide.

Since $bt_1^5 = 4$ and $x_1 = 1$ there are at least 1×4 Mult-5 elts.

Since $n_5 = 3$ there are 3 Mult-5 elts.

This is **not** a contradiction.

Example of Valid-bt Thm

Notation bt is a block type. If $1 \leq i \leq 5$ then bt^i is how many i 's are in bt .

Example $m = 22$, $m = 17$, $(n_1, n_2, n_3, n_4, n_5) = (9, 4, 1, 5, 3)$

$bt_1 [5, 5, 5, 5, 1]$. $bt_1^1 = 1$. $bt_1^5 = 4$.

$bt_2 [5, 5, 5, 4, 2]$. $bt_2^2 = 1$. $bt_2^4 = 1$. $bt_2^5 = 3$.

$bt_3 [5, 5, 5, 3, 3]$. $bt_3^3 = 2$. $bt_3^5 = 3$.

$bt_4 [5, 5, 4, 4, 3]$. $bt_4^3 = 1$. $bt_4^4 = 2$. $bt_4^5 = 2$.

$bt_5 [5, 4, 4, 4, 4]$. $bt_5^4 = 4$. $bt_5^5 = 1$.

We rephrase the argument from the last slide.

Since $bt_1^5 = 4$ and $x_1 = 1$ there are at least 1×4 Mult-5 elts.

Since $n_5 = 3$ there are 3 Mult-5 elts.

This is **not** a contradiction.

This does mean that bt_1 is not a valid blocktype.

General Theorem on next slide.

Elim-bt Theorem

Thm Assume there is an n -awesome* collection.

Elim-bt Theorem

Thm Assume there is an n -awesome* collection.
For $1 \leq i \leq 5$ let n_i be the number of i -mult elts.

Elim-bt Theorem

Thm Assume there is an n -awesome* collection.
For $1 \leq i \leq 5$ let n_i be the number of i -mult elts.
Let bt be a blocktype.

Elim-bt Theorem

Thm Assume there is an n -awesome* collection.

For $1 \leq i \leq 5$ let n_i be the number of i -mult elts.

Let bt be a blocktype.

If there exists $1 \leq i \leq 5$ such that $bt^i > n_i$ then there is no block of type bt .

Elim-bt Theorem

Thm Assume there is an n -awesome* collection.

For $1 \leq i \leq 5$ let n_i be the number of i -mult elts.

Let bt be a blocktype.

If there exists $1 \leq i \leq 5$ such that $bt^i > n_i$ then there is no block of type bt .

bt is called **invalid**

Elim-bt Theorem

Thm Assume there is an n -awesome* collection.

For $1 \leq i \leq 5$ let n_i be the number of i -mult elts.

Let bt be a blocktype.

If there exists $1 \leq i \leq 5$ such that $bt^i > n_i$ then there is no block of type bt .

bt is called **invalid**

If $bt^i > n_i$ then bt has $> n_i$ mult- i elts which is a contradiction.

GEN-BT PROGRAM

GEN-BT PROGRAM

Sketch of Code

GEN-BT PROGRAM

Sketch of Code

Input $(n, m; n_1, n_2, n_3, n_4, n_5)$

GEN-BT PROGRAM

Sketch of Code

Input $(n, m; n_1, n_2, n_3, n_4, n_5)$

TABLE-BT = \emptyset

GEN-BT PROGRAM

Sketch of Code

Input $(n, m; n_1, n_2, n_3, n_4, n_5)$

TABLE-BT = \emptyset

For $b_1 = 5$ downto 1

GEN-BT PROGRAM

Sketch of Code

Input $(n, m; n_1, n_2, n_3, n_4, n_5)$

TABLE-BT = \emptyset

For $b_1 = 5$ downto 1

For $b_2 = b_1$ downto 1

GEN-BT PROGRAM

Sketch of Code

Input $(n, m; n_1, n_2, n_3, n_4, n_5)$

TABLE-BT = \emptyset

For $b_1 = 5$ downto 1

For $b_2 = b_1$ downto 1

For $b_3 = b_2$ downto 1

GEN-BT PROGRAM

Sketch of Code

Input $(n, m; n_1, n_2, n_3, n_4, n_5)$

TABLE-BT = \emptyset

For $b_1 = 5$ downto 1

For $b_2 = b_1$ downto 1

For $b_3 = b_2$ downto 1

For $b_4 = b_3$ downto 1

GEN-BT PROGRAM

Sketch of Code

Input $(n, m; n_1, n_2, n_3, n_4, n_5)$

TABLE-BT = \emptyset

For $b_1 = 5$ downto 1

For $b_2 = b_1$ downto 1

For $b_3 = b_2$ downto 1

For $b_4 = b_3$ downto 1

$b_5 = m + 4 - b_1 - b_2 - b_3 - b_4$

GEN-BT PROGRAM

Sketch of Code

Input $(n, m; n_1, n_2, n_3, n_4, n_5)$

TABLE-BT = \emptyset

For $b_1 = 5$ downto 1

For $b_2 = b_1$ downto 1

For $b_3 = b_2$ downto 1

For $b_4 = b_3$ downto 1

$b_5 = m + 4 - b_1 - b_2 - b_3 - b_4$

if $1 \leq b_5 \leq 5$ then

GEN-BT PROGRAM

Sketch of Code

Input $(n, m; n_1, n_2, n_3, n_4, n_5)$

TABLE-BT = \emptyset

For $b_1 = 5$ downto 1

For $b_2 = b_1$ downto 1

For $b_3 = b_2$ downto 1

For $b_4 = b_3$ downto 1

$b_5 = m + 4 - b_1 - b_2 - b_3 - b_4$

if $1 \leq b_5 \leq 5$ then

$bt = [b_1, b_2, b_3, b_4, b_5]$

GEN-BT PROGRAM

Sketch of Code

Input $(n, m; n_1, n_2, n_3, n_4, n_5)$

TABLE-BT = \emptyset

For $b_1 = 5$ downto 1

For $b_2 = b_1$ downto 1

For $b_3 = b_2$ downto 1

For $b_4 = b_3$ downto 1

$b_5 = m + 4 - b_1 - b_2 - b_3 - b_4$

if $1 \leq b_5 \leq 5$ then

$bt = [b_1, b_2, b_3, b_4, b_5]$

If $(\forall 1 \leq i \leq 5)[bt^i \leq n_i]$ then

GEN-BT PROGRAM

Sketch of Code

Input $(n, m; n_1, n_2, n_3, n_4, n_5)$

TABLE-BT = \emptyset

For $b_1 = 5$ downto 1

For $b_2 = b_1$ downto 1

For $b_3 = b_2$ downto 1

For $b_4 = b_3$ downto 1

$b_5 = m + 4 - b_1 - b_2 - b_3 - b_4$

if $1 \leq b_5 \leq 5$ then

$bt = [b_1, b_2, b_3, b_4, b_5]$

if $(\forall 1 \leq i \leq 5)[bt^i \leq n_i]$ then

 TABLE-BT = TABLE-BT $\cup \{bt\}$

Note Output is a **set** of blocktypes.

GEN-BT PROGRAM

Sketch of Code

Input $(n, m; n_1, n_2, n_3, n_4, n_5)$

TABLE-BT = \emptyset

For $b_1 = 5$ downto 1

For $b_2 = b_1$ downto 1

For $b_3 = b_2$ downto 1

For $b_4 = b_3$ downto 1

$b_5 = m + 4 - b_1 - b_2 - b_3 - b_4$

if $1 \leq b_5 \leq 5$ then

$bt = [b_1, b_2, b_3, b_4, b_5]$

If $(\forall 1 \leq i \leq 5)[bt^i \leq n_i]$ then

 TABLE-BT = TABLE-BT $\cup \{bt\}$

Note Output is a **set** of blocktypes.

Side project Do this program more efficiently.

Example of Elimination Via Equations

For $n = 17$ $m = 7$. $(n_1, n_2, n_3, n_4, n_5) = (6, 9, 2, 0, 0)$.

Example of Elimination Via Equations

For $n = 17$ $m = 7$. $(n_1, n_2, n_3, n_4, n_5) = (6, 9, 2, 0, 0)$.

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 8, 12, 14, 16\}$$

Example of Elimination Via Equations

For $n = 17$ $m = 7$. $(n_1, n_2, n_3, n_4, n_5) = (6, 9, 2, 0, 0)$.

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 8, 12, 14, 16\}$$

$$r_1 = 3 \quad r_2 = 3 \quad r_3 = 2 \quad r_4 = 1 \quad r_5 = 1 \quad r_6 = 2$$

$$r_7 = 2 \quad r_8 = 2 \quad r_9 = 1 \quad r_{10} = 2 \quad r_{11} = 2 \quad r_{12} = 2$$

$$r_{13} = 1 \quad r_{14} = 2 \quad r_{15} = 1 \quad r_{16} = 2 \quad r_{17} = 1$$

Example of Elimination Via Equations

For $n = 17$ $m = 7$. $(n_1, n_2, n_3, n_4, n_5) = (6, 9, 2, 0, 0)$.

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 8, 12, 14, 16\}$$

$$r_1 = 3 \quad r_2 = 3 \quad r_3 = 2 \quad r_4 = 1 \quad r_5 = 1 \quad r_6 = 2$$

$$r_7 = 2 \quad r_8 = 2 \quad r_9 = 1 \quad r_{10} = 2 \quad r_{11} = 2 \quad r_{12} = 2$$

$$r_{13} = 1 \quad r_{14} = 2 \quad r_{15} = 1 \quad r_{16} = 2 \quad r_{17} = 1$$

Block Types

A_1 has blocktype $[3, 3, 2, 1, 1]$

A_2, A_3, A_4, A_5 have blocktype $[3, 2, 2, 2, 1]$

A_6 has blocktype $[2, 2, 2, 2, 2]$

Example of Elimination Via Equations

For $n = 17$ $m = 7$. $(n_1, n_2, n_3, n_4, n_5) = (6, 9, 2, 0, 0)$.

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 8, 12, 14, 16\}$$

$$r_1 = 3 \quad r_2 = 3 \quad r_3 = 2 \quad r_4 = 1 \quad r_5 = 1 \quad r_6 = 2$$

$$r_7 = 2 \quad r_8 = 2 \quad r_9 = 1 \quad r_{10} = 2 \quad r_{11} = 2 \quad r_{12} = 2$$

$$r_{13} = 1 \quad r_{14} = 2 \quad r_{15} = 1 \quad r_{16} = 2 \quad r_{17} = 1$$

Block Types

A_1 has blocktype $[3, 3, 2, 1, 1]$

A_2, A_3, A_4, A_5 have blocktype $[3, 2, 2, 2, 1]$

A_6 has blocktype $[2, 2, 2, 2, 2]$

$n_1 = 6$. 6 elts appear 1 time. 1 appears 1×6 times in blocktypes.

Example of Elimination Via Equations

For $n = 17$ $m = 7$. $(n_1, n_2, n_3, n_4, n_5) = (6, 9, 2, 0, 0)$.

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 8, 12, 14, 16\}$$

$$r_1 = 3 \quad r_2 = 3 \quad r_3 = 2 \quad r_4 = 1 \quad r_5 = 1 \quad r_6 = 2$$

$$r_7 = 2 \quad r_8 = 2 \quad r_9 = 1 \quad r_{10} = 2 \quad r_{11} = 2 \quad r_{12} = 2$$

$$r_{13} = 1 \quad r_{14} = 2 \quad r_{15} = 1 \quad r_{16} = 2 \quad r_{17} = 1$$

Block Types

A_1 has blocktype $[3, 3, 2, 1, 1]$

A_2, A_3, A_4, A_5 have blocktype $[3, 2, 2, 2, 1]$

A_6 has blocktype $[2, 2, 2, 2, 2]$

$n_1 = 6$. 6 elts appear 1 time. 1 appears 1×6 times in blocktypes.

$n_2 = 9$. 9 elts appear 2 times. 2 appears $2 \times 9 = 18$ times in blocktypes.

Example of Elimination Via Equations

For $n = 17$ $m = 7$. $(n_1, n_2, n_3, n_4, n_5) = (6, 9, 2, 0, 0)$.

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 8, 12, 14, 16\}$$

$$r_1 = 3 \quad r_2 = 3 \quad r_3 = 2 \quad r_4 = 1 \quad r_5 = 1 \quad r_6 = 2$$

$$r_7 = 2 \quad r_8 = 2 \quad r_9 = 1 \quad r_{10} = 2 \quad r_{11} = 2 \quad r_{12} = 2$$

$$r_{13} = 1 \quad r_{14} = 2 \quad r_{15} = 1 \quad r_{16} = 2 \quad r_{17} = 1$$

Block Types

A_1 has blocktype $[3, 3, 2, 1, 1]$

A_2, A_3, A_4, A_5 have blocktype $[3, 2, 2, 2, 1]$

A_6 has blocktype $[2, 2, 2, 2, 2]$

$n_1 = 6$. 6 elts appear 1 time. 1 appears $1 \times 6 = 6$ times in blocktypes.

$n_2 = 9$. 9 elts appear 2 times. 2 appears $2 \times 9 = 18$ times in blocktypes.

$n_3 = 2$. 2 elts appear 3 times. 3 appears $3 \times 2 = 6$ times in blocktypes.

Example of Elimination Via Equations

For $n = 17$ $m = 7$. $(n_1, n_2, n_3, n_4, n_5) = (6, 9, 2, 0, 0)$.

$$A_1 = \{1, 2, 3, 4, 5\} \quad A_2 = \{1, 6, 7, 8, 9\} \quad A_3 = \{1, 10, 11, 12, 13\}$$

$$A_4 = \{2, 6, 10, 14, 15\} \quad A_5 = \{2, 7, 11, 16, 17\} \quad A_6 = \{3, 8, 12, 14, 16\}$$

$$r_1 = 3 \quad r_2 = 3 \quad r_3 = 2 \quad r_4 = 1 \quad r_5 = 1 \quad r_6 = 2$$

$$r_7 = 2 \quad r_8 = 2 \quad r_9 = 1 \quad r_{10} = 2 \quad r_{11} = 2 \quad r_{12} = 2$$

$$r_{13} = 1 \quad r_{14} = 2 \quad r_{15} = 1 \quad r_{16} = 2 \quad r_{17} = 1$$

Block Types

A_1 has blocktype $[3, 3, 2, 1, 1]$

A_2, A_3, A_4, A_5 have blocktype $[3, 2, 2, 2, 1]$

A_6 has blocktype $[2, 2, 2, 2, 2]$

$n_1 = 6$. 6 elts appear 1 time. 1 appears $1 \times 6 = 6$ times in blocktypes.

$n_2 = 9$. 9 elts appear 2 times. 2 appears $2 \times 9 = 18$ times in blocktypes.

$n_3 = 2$. 2 elts appear 3 times. 3 appears $3 \times 2 = 6$ times in blocktypes.

General i appears $i \times n_i$ times in blocktypes.

Example of Eliminate Via Equations

Example of Eliminate Via Equations

$$n = 22, m = 17.$$

Example of Eliminate Via Equations

$n = 22, m = 17$. We consider $(n_1, n_2, n_3, n_4, n_5) = (0, 3, 7, 2, 10)$.

Example of Eliminate Via Equations

$n = 22$, $m = 17$. We consider $(n_1, n_2, n_3, n_4, n_5) = (0, 3, 7, 2, 10)$.
Each block type must sum to $m + 4 = 21$.

Example of Eliminate Via Equations

$n = 22$, $m = 17$. We consider $(n_1, n_2, n_3, n_4, n_5) = (0, 3, 7, 2, 10)$.

Each block type must sum to $m + 4 = 21$.

Blocktypes are 5-tuples of numbers in $\{1, 2, 3, 4, 5\}$ that sum to 21:

$[5, 5, 5, 4, 2]$

$[5, 5, 5, 3, 3]$

$[5, 5, 4, 4, 3]$

$[5, 4, 4, 4, 4]$.

Example of Eliminate Via Equations

$n = 22$, $m = 17$. We consider $(n_1, n_2, n_3, n_4, n_5) = (0, 3, 7, 2, 10)$.

Each block type must sum to $m + 4 = 21$.

Blocktypes are 5-tuples of numbers in $\{1, 2, 3, 4, 5\}$ that sum to 21:

$[5, 5, 5, 4, 2]$

$[5, 5, 5, 3, 3]$

$[5, 5, 4, 4, 3]$

$[5, 4, 4, 4, 4]$. **No!**

Example of Eliminate Via Equations

$n = 22$, $m = 17$. We consider $(n_1, n_2, n_3, n_4, n_5) = (0, 3, 7, 2, 10)$.

Each block type must sum to $m + 4 = 21$.

Blocktypes are 5-tuples of numbers in $\{1, 2, 3, 4, 5\}$ that sum to 21:

$[5, 5, 5, 4, 2]$

$[5, 5, 5, 3, 3]$

$[5, 5, 4, 4, 3]$

$[5, 4, 4, 4, 4]$. **No!** has 4 4's but $n_4 = 2 < 4$.

Example of Eliminate Via Equations

$n = 22$, $m = 17$. We consider $(n_1, n_2, n_3, n_4, n_5) = (0, 3, 7, 2, 10)$.

Each block type must sum to $m + 4 = 21$.

Blocktypes are 5-tuples of numbers in $\{1, 2, 3, 4, 5\}$ that sum to 21:

$[5, 5, 5, 4, 2]$

$[5, 5, 5, 3, 3]$

$[5, 5, 4, 4, 3]$

$[5, 4, 4, 4, 4]$. **No!** has 4 4's but $n_4 = 2 < 4$.

There are **no** blocks of type $[5, 4, 4, 4]$ since there are only 2 elements of multiplicity 4.

Example of Eliminate Via Equations

$n = 22$, $m = 17$. We consider $(n_1, n_2, n_3, n_4, n_5) = (0, 3, 7, 2, 10)$.

Each block type must sum to $m + 4 = 21$.

Blocktypes are 5-tuples of numbers in $\{1, 2, 3, 4, 5\}$ that sum to 21:

$[5, 5, 5, 4, 2]$

$[5, 5, 5, 3, 3]$

$[5, 5, 4, 4, 3]$

$[5, 4, 4, 4, 4]$. **No!** has 4 4's but $n_4 = 2 < 4$.

There are **no** blocks of type $[5, 4, 4, 4]$ since there are only 2 elements of multiplicity 4.

Continue this exciting story on the next slide.

Eliminating (0, 3, 7, 2, 10)

Eliminating $(0, 3, 7, 2, 10)$

$n = 22, m = 17. (n_1, n_2, n_3, n_4, n_5) = (0, 3, 7, 2, 10).$

Eliminating (0, 3, 7, 2, 10)

$n = 22, m = 17. (n_1, n_2, n_3, n_4, n_5) = (0, 3, 7, 2, 10).$

Block types:

x_1 blocks of type [5, 5, 5, 4, 2]. 3 mult-5, 1 mult-4, 1 mult-2.

x_2 blocks of type [5, 5, 5, 3, 3]. 3 mult-5, 2 mult-3.

x_3 blocks of type [5, 5, 4, 4, 3]. 2 mult-5, 2 mult-4, 1 mult-3.

Eliminating (0, 3, 7, 2, 10)

$$n = 22, m = 17. (n_1, n_2, n_3, n_4, n_5) = (0, 3, 7, 2, 10).$$

Block types:

x_1 blocks of type [5, 5, 5, 4, 2]. 3 mult-5, 1 mult-4, 1 mult-2.

x_2 blocks of type [5, 5, 5, 3, 3]. 3 mult-5, 2 mult-3.

x_3 blocks of type [5, 5, 4, 4, 3]. 2 mult-5, 2 mult-4, 1 mult-3.

Using mult-5: $3x_1 + 3x_2 + 2x_3 = 5 \times 10 = 50$

Eliminating (0, 3, 7, 2, 10)

$$n = 22, m = 17. (n_1, n_2, n_3, n_4, n_5) = (0, 3, 7, 2, 10).$$

Block types:

x_1 blocks of type [5, 5, 5, 4, 2]. 3 mult-5, 1 mult-4, 1 mult-2.

x_2 blocks of type [5, 5, 5, 3, 3]. 3 mult-5, 2 mult-3.

x_3 blocks of type [5, 5, 4, 4, 3]. 2 mult-5, 2 mult-4, 1 mult-3.

Using mult-5: $3x_1 + 3x_2 + 2x_3 = 5 \times 10 = 50$

Using mult-4: $x_1 + 2x_2 = 4 \times 2 = 8$

Eliminating (0, 3, 7, 2, 10)

$n = 22, m = 17. (n_1, n_2, n_3, n_4, n_5) = (0, 3, 7, 2, 10).$

Block types:

x_1 blocks of type [5, 5, 5, 4, 2]. 3 mult-5, 1 mult-4, 1 mult-2.

x_2 blocks of type [5, 5, 5, 3, 3]. 3 mult-5, 2 mult-3.

x_3 blocks of type [5, 5, 4, 4, 3]. 2 mult-5, 2 mult-4, 1 mult-3.

Using mult-5: $3x_1 + 3x_2 + 2x_3 = 5 \times 10 = 50$

Using mult-4: $x_1 + 2x_2 = 4 \times 2 = 8$

Using mult-3: $2x_2 + x_3 = 3 \times 7 = 21$

Eliminating (0, 3, 7, 2, 10)

$n = 22, m = 17. (n_1, n_2, n_3, n_4, n_5) = (0, 3, 7, 2, 10).$

Block types:

x_1 blocks of type [5, 5, 5, 4, 2]. 3 mult-5, 1 mult-4, 1 mult-2.

x_2 blocks of type [5, 5, 5, 3, 3]. 3 mult-5, 2 mult-3.

x_3 blocks of type [5, 5, 4, 4, 3]. 2 mult-5, 2 mult-4, 1 mult-3.

Using mult-5: $3x_1 + 3x_2 + 2x_3 = 5 \times 10 = 50$

Using mult-4: $x_1 + 2x_2 = 4 \times 2 = 8$

Using mult-3: $2x_2 + x_3 = 3 \times 7 = 21$

Using mult-2: $x_1 = 2 \times 3 = 6$

Eliminating (0, 3, 7, 2, 10)

$$n = 22, m = 17. (n_1, n_2, n_3, n_4, n_5) = (0, 3, 7, 2, 10).$$

Block types:

x_1 blocks of type [5, 5, 5, 4, 2]. 3 mult-5, 1 mult-4, 1 mult-2.

x_2 blocks of type [5, 5, 5, 3, 3]. 3 mult-5, 2 mult-3.

x_3 blocks of type [5, 5, 4, 4, 3]. 2 mult-5, 2 mult-4, 1 mult-3.

Using mult-5: $3x_1 + 3x_2 + 2x_3 = 5 \times 10 = 50$

Using mult-4: $x_1 + 2x_2 = 4 \times 2 = 8$

Using mult-3: $2x_2 + x_3 = 3 \times 7 = 21$

Using mult-2: $x_1 = 2 \times 3 = 6$

Since there are 17 blocks: $x_1 + x_2 + x_3 = 17.$

Eliminating (0, 3, 7, 2, 10)

$n = 22$, $m = 17$. $(n_1, n_2, n_3, n_4, n_5) = (0, 3, 7, 2, 10)$.

Block types:

x_1 blocks of type [5, 5, 5, 4, 2]. 3 mult-5, 1 mult-4, 1 mult-2.

x_2 blocks of type [5, 5, 5, 3, 3]. 3 mult-5, 2 mult-3.

x_3 blocks of type [5, 5, 4, 4, 3]. 2 mult-5, 2 mult-4, 1 mult-3.

Using mult-5: $3x_1 + 3x_2 + 2x_3 = 5 \times 10 = 50$

Using mult-4: $x_1 + 2x_2 = 4 \times 2 = 8$

Using mult-3: $2x_2 + x_3 = 3 \times 7 = 21$

Using mult-2: $x_1 = 2 \times 3 = 6$

Since there are 17 blocks: $x_1 + x_2 + x_3 = 17$.

Algebra shows these equations have no solution at all!

Eliminating (0, 3, 7, 2, 10)

$n = 22, m = 17. (n_1, n_2, n_3, n_4, n_5) = (0, 3, 7, 2, 10).$

Block types:

x_1 blocks of type [5, 5, 5, 4, 2]. 3 mult-5, 1 mult-4, 1 mult-2.

x_2 blocks of type [5, 5, 5, 3, 3]. 3 mult-5, 2 mult-3.

x_3 blocks of type [5, 5, 4, 4, 3]. 2 mult-5, 2 mult-4, 1 mult-3.

Using mult-5: $3x_1 + 3x_2 + 2x_3 = 5 \times 10 = 50$

Using mult-4: $x_1 + 2x_2 = 4 \times 2 = 8$

Using mult-3: $2x_2 + x_3 = 3 \times 7 = 21$

Using mult-2: $x_1 = 2 \times 3 = 6$

Since there are 17 blocks: $x_1 + x_2 + x_3 = 17.$

Algebra shows these equations have no solution at all!

Only needed that it had no solution in \mathbb{N} .

GEN-EQ PROGRAM

GEN-EQ PROGRAM

Sketch of Code

GEN-EQ PROGRAM

Sketch of Code

Input $[[bt_1], \dots, [bt_e]]$. A set of blocktypes.

GEN-EQ PROGRAM

Sketch of Code

Input $[[bt_1], \dots, [bt_e]]$. A set of blocktypes.

TABLE-EQ = \emptyset

GEN-EQ PROGRAM

Sketch of Code

Input $[[bt_1], \dots, [bt_e]]$. A set of blocktypes.

$\text{TABLE-EQ} = \emptyset$

For $1 \leq j \leq e$, x_j is var for the numb of blocks of type bt_j .

GEN-EQ PROGRAM

Sketch of Code

Input $[[bt_1], \dots, [bt_e]]$. A set of blocktypes.

$\text{TABLE-EQ} = \emptyset$

For $1 \leq j \leq e$, x_j is var for the numb of blocks of type bt_j .

For $1 \leq i \leq 5$

$\text{TABLE-EQ} = \text{TABLE-EQ} \cup$

$\{ (\text{Num of } i\text{'s in } bt_1)x_1 + \dots + (\text{Num of } i\text{'s in } bt_e)x_e = in_i \}$

GEN-EQ PROGRAM

Sketch of Code

Input $[[bt_1], \dots, [bt_e]]$. A set of blocktypes.

$\text{TABLE-EQ} = \emptyset$

For $1 \leq j \leq e$, x_j is var for the numb of blocks of type bt_j .

For $1 \leq i \leq 5$

$\text{TABLE-EQ} = \text{TABLE-EQ} \cup$

$\{ (\text{Num of } i\text{'s in } bt_1)x_1 + \dots + (\text{Num of } i\text{'s in } bt_e)x_e = in_i \}$

$\text{TABLE-EQ} = \text{TABLE-EQ} \cup \{ x_1 + \dots + x_e = m \}$

GEN-EQ PROGRAM

Sketch of Code

Input $[[bt_1], \dots, [bt_e]]$. A set of blocktypes.

$\text{TABLE-EQ} = \emptyset$

For $1 \leq j \leq e$, x_j is var for the numb of blocks of type bt_j .

For $1 \leq i \leq 5$

$\text{TABLE-EQ} = \text{TABLE-EQ} \cup$

$\{ (\text{Num of } i\text{'s in } bt_1)x_1 + \dots + (\text{Num of } i\text{'s in } bt_e)x_e = in_i \}$

$\text{TABLE-EQ} = \text{TABLE-EQ} \cup \{ x_1 + \dots + x_e = m \}$

We call this set of equations **the usual equations**.

GEN-SOL PROGRAM

GEN-SOL PROGRAM

Sketch of Code

GEN-SOL PROGRAM

Sketch of Code

Input $\langle eq_1, \dots, eq_6 \rangle$ A set of 6 linear equations.

GEN-SOL PROGRAM

Sketch of Code

Input $\langle eq_1, \dots, eq_6 \rangle$ A set of 6 linear equations.
Use a package to find out about solutions.

GEN-SOL PROGRAM

Sketch of Code

Input $\langle eq_1, \dots, eq_6 \rangle$ A set of 6 linear equations.
Use a package to find out about solutions.

Output

GEN-SOL PROGRAM

Sketch of Code

Input $\langle eq_1, \dots, eq_6 \rangle$ A set of 6 linear equations.
Use a package to find out about solutions.

Output

If there is no solution at all output NONE

GEN-SOL PROGRAM

Sketch of Code

Input $\langle eq_1, \dots, eq_6 \rangle$ A set of 6 linear equations.

Use a package to find out about solutions.

Output

If there is no solution at all output NONE

If there is a solution but not a solution over \mathbb{N} then output
NONE- \mathbb{N} .

GEN-SOL PROGRAM

Sketch of Code

Input $\langle eq_1, \dots, eq_6 \rangle$ A set of 6 linear equations.

Use a package to find out about solutions.

Output

If there is no solution at all output NONE

If there is a solution but not a solution over \mathbb{N} then output NONE- \mathbb{N} .

If there are solutions over \mathbb{N} then output all of them.

Eliminating a Solution

Eliminating a Solution

$$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (1, 1, 7, 4, 9).$$

Eliminating a Solution

$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (1, 1, 7, 4, 9)$.

Blocktypes:

$x_1 [5, 5, 5, 5, 1]$

$x_2 [5, 5, 5, 4, 2]$

$x_3 [5, 5, 5, 3, 3]$

$x_4 [5, 5, 4, 4, 3]$

$x_5 [5, 4, 4, 4, 4]$

Eliminating a Solution

$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (1, 1, 7, 4, 9).$

Blocktypes:

$x_1 [5, 5, 5, 5, 1]$

$x_2 [5, 5, 5, 4, 2]$

$x_3 [5, 5, 5, 3, 3]$

$x_4 [5, 5, 4, 4, 3]$

$x_5 [5, 4, 4, 4, 4]$

The equations:

Mult 1: $x_1 = 1 \times n_1 = 1$

Mult 2: $x_2 = 2 \times n_2 = 2$

Mult 3: $2x_3 + x_4 = 3 \times n_3 = 21$

Mult 4: $x_2 + 2x_4 + 4x_5 = 4 \times n_4 = 16$

Mult 5: $4x_1 + 3x_2 + 3x_3 + 2x_4 + x_5 = 5 \times n_5 = 45$

Blocks: $x_1 + x_2 + x_3 + x_4 + x_5 = 17.$

Eliminating a Solution

$$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (1, 1, 7, 4, 9).$$

Blocktypes:

$$x_1 [5, 5, 5, 5, 1]$$

$$x_2 [5, 5, 5, 4, 2]$$

$$x_3 [5, 5, 5, 3, 3]$$

$$x_4 [5, 5, 4, 4, 3]$$

$$x_5 [5, 4, 4, 4, 4]$$

The equations:

$$\text{Mult 1: } x_1 = 1 \times n_1 = 1$$

$$\text{Mult 2: } x_2 = 2 \times n_2 = 2$$

$$\text{Mult 3: } 2x_3 + x_4 = 3 \times n_3 = 21$$

$$\text{Mult 4: } x_2 + 2x_4 + 4x_5 = 4 \times n_4 = 16$$

$$\text{Mult 5: } 4x_1 + 3x_2 + 3x_3 + 2x_4 + x_5 = 5 \times n_5 = 45$$

$$\text{Blocks: } x_1 + x_2 + x_3 + x_4 + x_5 = 17.$$

There are 4 solutions: $\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle 1, 2, 7, 7, 0 \rangle, \langle 1, 2, 8, 5, 1 \rangle, \langle 1, 2, 9, 3, 2 \rangle, \langle 1, 2, 10, 1, 3 \rangle$

Eliminating a Solution

$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (1, 1, 7, 4, 9).$

Blocktypes:

$x_1 [5, 5, 5, 5, 1]$

$x_2 [5, 5, 5, 4, 2]$

$x_3 [5, 5, 5, 3, 3]$

$x_4 [5, 5, 4, 4, 3]$

$x_5 [5, 4, 4, 4, 4]$

The equations:

Mult 1: $x_1 = 1 \times n_1 = 1$

Mult 2: $x_2 = 2 \times n_2 = 2$

Mult 3: $2x_3 + x_4 = 3 \times n_3 = 21$

Mult 4: $x_2 + 2x_4 + 4x_5 = 4 \times n_4 = 16$

Mult 5: $4x_1 + 3x_2 + 3x_3 + 2x_4 + x_5 = 5 \times n_5 = 45$

Blocks: $x_1 + x_2 + x_3 + x_4 + x_5 = 17.$

There are 4 solutions: $\langle x_1, x_2, x_3, x_4, x_5 \rangle =$
 $\langle 1, 2, 7, 7, 0 \rangle, \langle 1, 2, 8, 5, 1 \rangle, \langle 1, 2, 9, 3, 2 \rangle, \langle 1, 2, 10, 1, 3 \rangle$

We show $\langle 1, 2, 9, 3, 2 \rangle$ does not work on next slide.

$$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (1, 1, 7, 4, 9)$$

Solution $\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle 1, 2, 9, 3, 2 \rangle$.

$$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (1, 1, 7, 4, 9)$$

Solution $\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle 1, 2, 9, 3, 2 \rangle$.

Blocktypes:

$$x_1 = 1 [5, 5, 5, 5, 1]$$

$$x_2 = 2 [5, 5, 5, 4, 2]$$

$$x_3 = 9 [5, 5, 5, 3, 3]$$

$$x_4 = 3 [5, 5, 4, 4, 3]$$

$$x_5 = 2 [5, 4, 4, 4, 4]$$

$$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (1, 1, 7, 4, 9)$$

Solution $\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle 1, 2, 9, 3, 2 \rangle$.

Blocktypes:

$$x_1 = 1 [5, 5, 5, 5, 1]$$

$$x_2 = 2 [5, 5, 5, 4, 2]$$

$$x_3 = 9 [5, 5, 5, 3, 3]$$

$$x_4 = 3 [5, 5, 4, 4, 3]$$

$$x_5 = 2 [5, 4, 4, 4, 4]$$

1 [5, 5, 5, 5, 1]'s contributes $1 \times \binom{4}{2}$ **pairs** of elts of mult 5.

$$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (1, 1, 7, 4, 9)$$

Solution $\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle 1, 2, 9, 3, 2 \rangle$.

Blocktypes:

$$x_1 = 1 [5, 5, 5, 5, 1]$$

$$x_2 = 2 [5, 5, 5, 4, 2]$$

$$x_3 = 9 [5, 5, 5, 3, 3]$$

$$x_4 = 3 [5, 5, 4, 4, 3]$$

$$x_5 = 2 [5, 4, 4, 4, 4]$$

1 [5, 5, 5, 5, 1]'s contributes $1 \times \binom{4}{2}$ **pairs** of elts of mult 5.

2 [5, 5, 5, 4, 2]'s contributes $2 \times \binom{3}{2}$ **pairs** of elts of mult 5.

$$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (1, 1, 7, 4, 9)$$

Solution $\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle 1, 2, 9, 3, 2 \rangle$.

Blocktypes:

$$x_1 = 1 [5, 5, 5, 5, 1]$$

$$x_2 = 2 [5, 5, 5, 4, 2]$$

$$x_3 = 9 [5, 5, 5, 3, 3]$$

$$x_4 = 3 [5, 5, 4, 4, 3]$$

$$x_5 = 2 [5, 4, 4, 4, 4]$$

1 [5, 5, 5, 5, 1]'s contributes $1 \times \binom{4}{2}$ **pairs** of elts of mult 5.

2 [5, 5, 5, 4, 2]'s contributes $2 \times \binom{3}{2}$ **pairs** of elts of mult 5.

9 [5, 5, 5, 3, 3]'s contributes $9 \times \binom{3}{2}$ **pairs** of elts of mult 5.

$$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (1, 1, 7, 4, 9)$$

Solution $\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle 1, 2, 9, 3, 2 \rangle$.

Blocktypes:

$$x_1 = 1 [5, 5, 5, 5, 1]$$

$$x_2 = 2 [5, 5, 5, 4, 2]$$

$$x_3 = 9 [5, 5, 5, 3, 3]$$

$$x_4 = 3 [5, 5, 4, 4, 3]$$

$$x_5 = 2 [5, 4, 4, 4, 4]$$

1 [5, 5, 5, 5, 1]'s contributes $1 \times \binom{4}{2}$ **pairs** of elts of mult 5.

2 [5, 5, 5, 4, 2]'s contributes $2 \times \binom{3}{2}$ **pairs** of elts of mult 5.

9 [5, 5, 5, 3, 3]'s contributes $9 \times \binom{3}{2}$ **pairs** of elts of mult 5.

3 [5, 5, 4, 4, 3]'s contributes $3 \times \binom{2}{2}$ **pairs** of elts of mult 5.

$$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (1, 1, 7, 4, 9)$$

Solution $\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle 1, 2, 9, 3, 2 \rangle$.

Blocktypes:

$$x_1 = 1 [5, 5, 5, 5, 1]$$

$$x_2 = 2 [5, 5, 5, 4, 2]$$

$$x_3 = 9 [5, 5, 5, 3, 3]$$

$$x_4 = 3 [5, 5, 4, 4, 3]$$

$$x_5 = 2 [5, 4, 4, 4, 4]$$

1 [5, 5, 5, 5, 1]'s contributes $1 \times \binom{4}{2}$ **pairs** of elts of mult 5.

2 [5, 5, 5, 4, 2]'s contributes $2 \times \binom{3}{2}$ **pairs** of elts of mult 5.

9 [5, 5, 5, 3, 3]'s contributes $9 \times \binom{3}{2}$ **pairs** of elts of mult 5.

3 [5, 5, 4, 4, 3]'s contributes $3 \times \binom{2}{2}$ **pairs** of elts of mult 5.

These pairs are distinct since all intersections are of size 1.

$$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (1, 1, 7, 4, 9)$$

Solution $\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle 1, 2, 9, 3, 2 \rangle$.

Blocktypes:

$$x_1 = 1 [5, 5, 5, 5, 1]$$

$$x_2 = 2 [5, 5, 5, 4, 2]$$

$$x_3 = 9 [5, 5, 5, 3, 3]$$

$$x_4 = 3 [5, 5, 4, 4, 3]$$

$$x_5 = 2 [5, 4, 4, 4, 4]$$

1 [5, 5, 5, 5, 1]'s contributes $1 \times \binom{4}{2}$ **pairs** of elts of mult 5.

2 [5, 5, 5, 4, 2]'s contributes $2 \times \binom{3}{2}$ **pairs** of elts of mult 5.

9 [5, 5, 5, 3, 3]'s contributes $9 \times \binom{3}{2}$ **pairs** of elts of mult 5.

3 [5, 5, 4, 4, 3]'s contributes $3 \times \binom{2}{2}$ **pairs** of elts of mult 5.

These pairs are distinct since all intersections are of size 1.

Numb of pairs of elts is $\geq 6 + 6 + 27 + 3 = 42$.

$$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (1, 1, 7, 4, 9)$$

Solution $\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle 1, 2, 9, 3, 2 \rangle$.

Blocktypes:

$$x_1 = 1 [5, 5, 5, 5, 1]$$

$$x_2 = 2 [5, 5, 5, 4, 2]$$

$$x_3 = 9 [5, 5, 5, 3, 3]$$

$$x_4 = 3 [5, 5, 4, 4, 3]$$

$$x_5 = 2 [5, 4, 4, 4, 4]$$

1 [5, 5, 5, 5, 1]'s contributes $1 \times \binom{4}{2}$ **pairs** of elts of mult 5.

2 [5, 5, 5, 4, 2]'s contributes $2 \times \binom{3}{2}$ **pairs** of elts of mult 5.

9 [5, 5, 5, 3, 3]'s contributes $9 \times \binom{3}{2}$ **pairs** of elts of mult 5.

3 [5, 5, 4, 4, 3]'s contributes $3 \times \binom{2}{2}$ **pairs** of elts of mult 5.

These pairs are distinct since all intersections are of size 1.

Numb of pairs of elts is $\geq 6 + 6 + 27 + 3 = 42$.

But $\binom{n_5}{2} = \binom{9}{2} = 36 < 42$.

$$n = 22, m = 17, (n_1, n_2, n_3, n_4, n_5) = (1, 1, 7, 4, 9)$$

Solution $\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle 1, 2, 9, 3, 2 \rangle$.

Blocktypes:

$$x_1 = 1 [5, 5, 5, 5, 1]$$

$$x_2 = 2 [5, 5, 5, 4, 2]$$

$$x_3 = 9 [5, 5, 5, 3, 3]$$

$$x_4 = 3 [5, 5, 4, 4, 3]$$

$$x_5 = 2 [5, 4, 4, 4, 4]$$

1 [5, 5, 5, 5, 1]'s contributes $1 \times \binom{4}{2}$ **pairs** of elts of mult 5.

2 [5, 5, 5, 4, 2]'s contributes $2 \times \binom{3}{2}$ **pairs** of elts of mult 5.

9 [5, 5, 5, 3, 3]'s contributes $9 \times \binom{3}{2}$ **pairs** of elts of mult 5.

3 [5, 5, 4, 4, 3]'s contributes $3 \times \binom{2}{2}$ **pairs** of elts of mult 5.

These pairs are distinct since all intersections are of size 1.

Numb of pairs of elts is $\geq 6 + 6 + 27 + 3 = 42$.

But $\binom{n_5}{2} = \binom{9}{2} = 36 < 42$. Contradiction.

Example of Elim using Equations

Recall bt is a block type. If $1 \leq i \leq 5$ then bt^i is how many i 's are in bt .

Example of Elim using Equations

Recall bt is a block type. If $1 \leq i \leq 5$ then bt^i is how many i 's are in bt .

Example $m = 22$, $m = 17$, $(n_1, n_2, n_3, n_4, n_5) = (1, 1, 7, 4, 9)$.

1 bt_1 [5, 5, 5, 5, 1]. $bt_1^1 = 1$. $bt_1^5 = 4$.

2 bt_2 [5, 5, 5, 4, 2]. $bt_2^2 = 1$. $bt_2^4 = 1$. $bt_2^5 = 3$.

9 bt_3 [5, 5, 5, 3, 3]. $bt_3^3 = 2$. $bt_3^5 = 3$.

3 bt_4 [5, 5, 4, 4, 3]. $bt_4^3 = 1$. $bt_4^4 = 2$. $bt_4^5 = 2$.

4 bt_5 [5, 4, 4, 4, 4]. $bt_5^4 = 4$. $bt_5^5 = 1$.

Example of Elim using Equations

Recall bt is a block type. If $1 \leq i \leq 5$ then bt^i is how many i 's are in bt .

Example $m = 22$, $m = 17$, $(n_1, n_2, n_3, n_4, n_5) = (1, 1, 7, 4, 9)$.

1 bt_1 [5, 5, 5, 5, 1]. $bt_1^1 = 1$. $bt_1^5 = 4$.

2 bt_2 [5, 5, 5, 4, 2]. $bt_2^2 = 1$. $bt_2^4 = 1$. $bt_2^5 = 3$.

9 bt_3 [5, 5, 5, 3, 3]. $bt_3^3 = 2$. $bt_3^5 = 3$.

3 bt_4 [5, 5, 4, 4, 3]. $bt_4^3 = 1$. $bt_4^4 = 2$. $bt_4^5 = 2$.

4 bt_5 [5, 4, 4, 4, 4]. $bt_5^4 = 4$. $bt_5^5 = 1$.

We rephrase the argument from the last slide.

Example of Elim using Equations

Recall bt is a block type. If $1 \leq i \leq 5$ then bt^i is how many i 's are in bt .

Example $m = 22$, $m = 17$, $(n_1, n_2, n_3, n_4, n_5) = (1, 1, 7, 4, 9)$.

1 bt_1 [5, 5, 5, 5, 1]. $bt_1^1 = 1$. $bt_1^5 = 4$.

2 bt_2 [5, 5, 5, 4, 2]. $bt_2^2 = 1$. $bt_2^4 = 1$. $bt_2^5 = 3$.

9 bt_3 [5, 5, 5, 3, 3]. $bt_3^3 = 2$. $bt_3^5 = 3$.

3 bt_4 [5, 5, 4, 4, 3]. $bt_4^3 = 1$. $bt_4^4 = 2$. $bt_4^5 = 2$.

4 bt_5 [5, 4, 4, 4, 4]. $bt_5^4 = 4$. $bt_5^5 = 1$.

We rephrase the argument from the last slide.

The number of pairs of Mult-5 elts is at least

$$1 \times \binom{bt_1^5}{2} + 2 \times \binom{bt_2^5}{2} + 9 \times \binom{bt_3^5}{2} + 3 \times \binom{bt_4^5}{2} + 4 \times \binom{bt_5^5}{2} = 42$$

Example of Elim using Equations

Recall bt is a block type. If $1 \leq i \leq 5$ then bt^i is how many i 's are in bt .

Example $m = 22$, $m = 17$, $(n_1, n_2, n_3, n_4, n_5) = (1, 1, 7, 4, 9)$.

1 bt_1 [5, 5, 5, 5, 1]. $bt_1^1 = 1$. $bt_1^5 = 4$.

2 bt_2 [5, 5, 5, 4, 2]. $bt_2^2 = 1$. $bt_2^4 = 1$. $bt_2^5 = 3$.

9 bt_3 [5, 5, 5, 3, 3]. $bt_3^3 = 2$. $bt_3^5 = 3$.

3 bt_4 [5, 5, 4, 4, 3]. $bt_4^3 = 1$. $bt_4^4 = 2$. $bt_4^5 = 2$.

4 bt_5 [5, 4, 4, 4, 4]. $bt_5^4 = 4$. $bt_5^5 = 1$.

We rephrase the argument from the last slide.

The number of pairs of Mult-5 elts is at least

$$1 \times \binom{bt_1^5}{2} + 2 \times \binom{bt_2^5}{2} + 9 \times \binom{bt_3^5}{2} + 3 \times \binom{bt_4^5}{2} + 4 \times \binom{bt_5^5}{2} = 42$$

Numb of pairs of Mult-5 elts: $\binom{n_5}{2} = \binom{9}{2} = 36 < 45$.

Example of Elim using Equations

Recall bt is a block type. If $1 \leq i \leq 5$ then bt^i is how many i 's are in bt .

Example $m = 22$, $m = 17$, $(n_1, n_2, n_3, n_4, n_5) = (1, 1, 7, 4, 9)$.

1 bt_1 [5, 5, 5, 5, 1]. $bt_1^1 = 1$. $bt_1^5 = 4$.

2 bt_2 [5, 5, 5, 4, 2]. $bt_2^2 = 1$. $bt_2^4 = 1$. $bt_2^5 = 3$.

9 bt_3 [5, 5, 5, 3, 3]. $bt_3^3 = 2$. $bt_3^5 = 3$.

3 bt_4 [5, 5, 4, 4, 3]. $bt_4^3 = 1$. $bt_4^4 = 2$. $bt_4^5 = 2$.

4 bt_5 [5, 4, 4, 4, 4]. $bt_5^4 = 4$. $bt_5^5 = 1$.

We rephrase the argument from the last slide.

The number of pairs of Mult-5 elts is at least

$$1 \times \binom{bt_1^5}{2} + 2 \times \binom{bt_2^5}{2} + 9 \times \binom{bt_3^5}{2} + 3 \times \binom{bt_4^5}{2} + 4 \times \binom{bt_5^5}{2} = 42$$

Numb of pairs of Mult-5 elts: $\binom{n_5}{2} = \binom{9}{2} = 36 < 45$.

Contradiction!

Example of Elim using Equations

Recall bt is a block type. If $1 \leq i \leq 5$ then bt^i is how many i 's are in bt .

Example $m = 22$, $m = 17$, $(n_1, n_2, n_3, n_4, n_5) = (1, 1, 7, 4, 9)$.

1 bt_1 [5, 5, 5, 5, 1]. $bt_1^1 = 1$. $bt_1^5 = 4$.

2 bt_2 [5, 5, 5, 4, 2]. $bt_2^2 = 1$. $bt_2^4 = 1$. $bt_2^5 = 3$.

9 bt_3 [5, 5, 5, 3, 3]. $bt_3^3 = 2$. $bt_3^5 = 3$.

3 bt_4 [5, 5, 4, 4, 3]. $bt_4^3 = 1$. $bt_4^4 = 2$. $bt_4^5 = 2$.

4 bt_5 [5, 4, 4, 4, 4]. $bt_5^4 = 4$. $bt_5^5 = 1$.

We rephrase the argument from the last slide.

The number of pairs of Mult-5 elts is at least

$$1 \times \binom{bt_1^5}{2} + 2 \times \binom{bt_2^5}{2} + 9 \times \binom{bt_3^5}{2} + 3 \times \binom{bt_4^5}{2} + 4 \times \binom{bt_5^5}{2} = 42$$

Numb of pairs of Mult-5 elts: $\binom{n_5}{2} = \binom{9}{2} = 36 < 45$.

Contradiction!

General Theorem on next slide.

Elimination Theorem

Thm The following cannot happen: Let $n, m \in \mathbb{N}$. There is an n -awesome* collection of m blocks such that:

Elimination Theorem

Thm The following cannot happen: Let $n, m \in \mathbb{N}$. There is an n -awesome* collection of m blocks such that:

- 1) For $1 \leq i \leq 5$ there are n ; i -mult elements.

Elimination Theorem

Thm The following cannot happen: Let $n, m \in \mathbb{N}$. There is an n -awesome* collection of m blocks such that:

- 1) For $1 \leq i \leq 5$ there are n ; i -mult elements.
- 2) The block types are bt_1, \dots, bt_e .

Elimination Theorem

Thm The following cannot happen: Let $n, m \in \mathbb{N}$. There is an n -awesome* collection of m blocks such that:

- 1) For $1 \leq i \leq 5$ there are n_i i -mult elements.
- 2) The block types are bt_1, \dots, bt_e .
- 3) \forall solution $\langle x_1, \dots, x_e \rangle$ to the usual equations, $\exists 1 \leq i \leq 5$:

$$x_1 \binom{bt_1^i}{2} + \dots + x_e \binom{bt_e^i}{2} > \binom{n_i}{2}.$$

Elimination Theorem

Thm The following cannot happen: Let $n, m \in \mathbb{N}$. There is an n -awesome* collection of m block such that:

Elimination Theorem

Thm The following cannot happen: Let $n, m \in \mathbb{N}$. There is an n -awesome* collection of m block such that:

- 1) For $1 \leq i \leq 5$ there are n ; i -mult elements.

Elimination Theorem

Thm The following cannot happen: Let $n, m \in \mathbb{N}$. There is an n -awesome* collection of m block such that:

- 1) For $1 \leq i \leq 5$ there are n ; i -mult elements.
- 2) The block types are bt_1, \dots, bt_e .

Elimination Theorem

Thm The following cannot happen: Let $n, m \in \mathbb{N}$. There is an n -awesome* collection of m block such that:

- 1) For $1 \leq i \leq 5$ there are n_i i -mult elements.
- 2) The block types are bt_1, \dots, bt_e .
- 3) \forall solution to the usual equations $(x_1, \dots, x_e) \exists 1 \leq i \leq 5$:

$$x_1 \binom{bt_1^i}{2} + \dots + x_e \binom{bt_e^i}{2} > \binom{n_i}{2}.$$

SOL-BAD PROGRAM

Input $(n, m; n_1, n_2, n_3, n_4, n_5), [[bt_1], \dots, [bt_e]], \langle x_1, \dots, x_e \rangle$

SOL-BAD PROGRAM

Input $(n, m; n_1, n_2, n_3, n_4, n_5), [[bt_1], \dots, [bt_e]], \langle x_1, \dots, x_e \rangle$
Boolean Variable SOLGOOD is set to TRUE.

SOL-BAD PROGRAM

Input $(n, m; n_1, n_2, n_3, n_4, n_5), [[bt_1], \dots, [bt_e]], \langle x_1, \dots, x_e \rangle$
Boolean Variable SOLGOOD is set to TRUE.
For $i = 1$ to 5

SOL-BAD PROGRAM

Input $(n, m; n_1, n_2, n_3, n_4, n_5), [[bt_1], \dots, [bt_e]], \langle x_1, \dots, x_e \rangle$
Boolean Variable SOLGOOD is set to TRUE.

For $i = 1$ to 5

If $x_1 \binom{bt_1^i}{2} + \dots + x_e \binom{bt_e^i}{2} > \binom{n_i}{2}$ then

SOL-BAD PROGRAM

Input $(n, m; n_1, n_2, n_3, n_4, n_5), [[bt_1], \dots, [bt_e]], \langle x_1, \dots, x_e \rangle$
Boolean Variable SOLGOOD is set to TRUE.

For $i = 1$ to 5

If $x_1 \binom{bt_1^i}{2} + \dots + x_e \binom{bt_e^i}{2} > \binom{n_i}{2}$ then
SOLGOOD=FALSE

SOL-BAD PROGRAM

Input $(n, m; n_1, n_2, n_3, n_4, n_5), [[bt_1], \dots, [bt_e]], \langle x_1, \dots, x_e \rangle$
Boolean Variable SOLGOOD is set to TRUE.

For $i = 1$ to 5

If $x_1 \binom{bt_1^i}{2} + \dots + x_e \binom{bt_e^i}{2} > \binom{n_i}{2}$ then
SOLGOOD=FALSE

Output SOLGOOD (this will be TRUE or FALSE)

*m*WORKS? PROGRAM

*m*WORKS? PROGRAM

Input(n, m)

*m*WORKS? PROGRAM

Input(n, m)

TABLE-NI = GEN-NI(n, m). So TABLE-NI is possible
($n, m; n_1, n_2, n_3, n_4, n_5$).

*m*WORKS? PROGRAM

Input(n, m)

TABLE-NI = GEN-NI(n, m). So TABLE-NI is possible
($n, m; n_1, n_2, n_3, n_4, n_5$).

For all ($n, m; n_1, n_2, n_3, n_4, n_5$) \in TABLE-NI

*m*WORKS? PROGRAM

Input(n, m)

TABLE-NI = GEN-NI(n, m). So TABLE-NI is possible
($n, m; n_1, n_2, n_3, n_4, n_5$).

For all ($n, m; n_1, n_2, n_3, n_4, n_5$) \in TABLE-NI

TABLE-BT = GEN-BT($n, m; n_1, n_2, n_3, n_4, n_5$)

*m*WORKS? PROGRAM

Input(n, m)

TABLE-NI = GEN-NI(n, m). So TABLE-NI is possible
($n, m; n_1, n_2, n_3, n_4, n_5$).

For all ($n, m; n_1, n_2, n_3, n_4, n_5$) \in TABLE-NI

TABLE-BT = GEN-BT($n, m; n_1, n_2, n_3, n_4, n_5$)

For all $[[bt_1], \dots, [bt_e]]$ in TABLE-BT

*m*WORKS? PROGRAM

Input(n, m)

TABLE-NI = GEN-NI(n, m). So TABLE-NI is possible
($n, m; n_1, n_2, n_3, n_4, n_5$).

For all ($n, m; n_1, n_2, n_3, n_4, n_5$) \in TABLE-NI

TABLE-BT = GEN-BT($n, m; n_1, n_2, n_3, n_4, n_5$)

For all $[[bt_1], \dots, [bt_e]]$ in TABLE-BT

TABLE-EQ = GEN-EQ($[[bt_1], \dots, [bt_e]]$)

For all $\langle eq_1, \dots, eq_6 \rangle$ \in TABLE-EQ

*m*WORKS? PROGRAM

Input(n, m)

TABLE-NI = GEN-NI(n, m). So TABLE-NI is possible
($n, m; n_1, n_2, n_3, n_4, n_5$).

For all ($n, m; n_1, n_2, n_3, n_4, n_5$) \in TABLE-NI

TABLE-BT = GEN-BT($n, m; n_1, n_2, n_3, n_4, n_5$)

For all $[[bt_1], \dots, [bt_e]]$ in TABLE-BT

TABLE-EQ = GEN-EQ($[[bt_1], \dots, [bt_e]]$)

For all $\langle eq_1, \dots, eq_6 \rangle$ \in TABLE-EQ

TABLE-SOL = GEN-SOL($\langle eq_1, \dots, eq_6 \rangle$)

For all $\langle x_1, \dots, x_e \rangle$ \in TABLE-SOL

SOL-GOOD =

SOL-BAD($n, m; n_1, n_2, n_3, n_4, n_5$), $[[bt_1], \dots, [bt_e]]$, $\langle x_1, \dots, x_e \rangle$

If SOL-GOOD \neq FALSE then output

*m*WORKS? PROGRAM

Input(n, m)

TABLE-NI = GEN-NI(n, m). So TABLE-NI is possible
($n, m; n_1, n_2, n_3, n_4, n_5$).

For all ($n, m; n_1, n_2, n_3, n_4, n_5$) \in TABLE-NI

TABLE-BT = GEN-BT($n, m; n_1, n_2, n_3, n_4, n_5$)

For all $[[bt_1], \dots, [bt_e]]$ in TABLE-BT

TABLE-EQ = GEN-EQ($[[bt_1], \dots, [bt_e]]$)

For all $\langle eq_1, \dots, eq_6 \rangle \in$ TABLE-EQ

TABLE-SOL = GEN-SOL($\langle eq_1, \dots, eq_6 \rangle$)

For all $\langle x_1, \dots, x_e \rangle \in$ TABLE-SOL

SOL-GOOD =

SOL-BAD($n, m; n_1, n_2, n_3, n_4, n_5$), $[[bt_1], \dots, [bt_e]]$, $\langle x_1, \dots, x_e \rangle$

If SOL-GOOD \neq FALSE then output

($n, m; n_1, n_2, n_3, n_4, n_5$)

$[[bt_1], \dots, [bt_e]]$

$\langle x_1, \dots, x_e \rangle$

*m*WORKS? PROGRAM

Input(n, m)

TABLE-NI = GEN-NI(n, m). So TABLE-NI is possible
($n, m; n_1, n_2, n_3, n_4, n_5$).

For all ($n, m; n_1, n_2, n_3, n_4, n_5$) \in TABLE-NI

TABLE-BT = GEN-BT($n, m; n_1, n_2, n_3, n_4, n_5$)

For all $[[bt_1], \dots, [bt_e]]$ in TABLE-BT

TABLE-EQ = GEN-EQ($[[bt_1], \dots, [bt_e]]$)

For all $\langle eq_1, \dots, eq_6 \rangle$ \in TABLE-EQ

TABLE-SOL = GEN-SOL($\langle eq_1, \dots, eq_6 \rangle$)

For all $\langle x_1, \dots, x_e \rangle$ \in TABLE-SOL

SOL-GOOD =

SOL-BAD($n, m; n_1, n_2, n_3, n_4, n_5$), $[[bt_1], \dots, [bt_e]]$, $\langle x_1, \dots, x_e \rangle$

If SOL-GOOD \neq FALSE then output

($n, m; n_1, n_2, n_3, n_4, n_5$)

$[[bt_1], \dots, [bt_e]]$

$\langle x_1, \dots, x_e \rangle$

else output FALSE

FINAL PROGRAM

FINAL PROGRAM

Input n

FINAL PROGRAM

Input n

if $n \geq 34$ and $n \equiv 1 \pmod{4}$ then output $(n, \frac{n-1}{4})$ and STOP.

FINAL PROGRAM

Input n

if $n \geq 34$ and $n \equiv 1 \pmod{4}$ then output $(n, \frac{n-1}{4})$ and STOP.

if $n \geq 34$ and $n \not\equiv 1 \pmod{4}$ then output \emptyset and STOP.

FINAL PROGRAM

Input n

if $n \geq 34$ and $n \equiv 1 \pmod{4}$ then output $(n, \frac{n-1}{4})$ and STOP.

if $n \geq 34$ and $n \not\equiv 1 \pmod{4}$ then output \emptyset and STOP.

(If you get this far then $5 \leq n \leq 33$.)

FINAL PROGRAM

Input n

if $n \geq 34$ and $n \equiv 1 \pmod{4}$ then output $(n, \frac{n-1}{4})$ and STOP.

if $n \geq 34$ and $n \not\equiv 1 \pmod{4}$ then output \emptyset and STOP.

(If you get this far then $5 \leq n \leq 33$.)

If $n \equiv 1 \pmod{4}$ then output $(n, \frac{n-1}{4})$ (but do not stop).

FINAL PROGRAM

Input n

if $n \geq 34$ and $n \equiv 1 \pmod{4}$ then output $(n, \frac{n-1}{4})$ and STOP.

if $n \geq 34$ and $n \not\equiv 1 \pmod{4}$ then output \emptyset and STOP.

(If you get this far then $5 \leq n \leq 33$.)

If $n \equiv 1 \pmod{4}$ then output $(n, \frac{n-1}{4})$ (but do not stop).

FINAL PROGRAM

Input n

if $n \geq 34$ and $n \equiv 1 \pmod{4}$ then output $(n, \frac{n-1}{4})$ and STOP.

if $n \geq 34$ and $n \not\equiv 1 \pmod{4}$ then output \emptyset and STOP.

(If you get this far then $5 \leq n \leq 33$.)

If $n \equiv 1 \pmod{4}$ then output $(n, \frac{n-1}{4})$ (but do not stop).

For $m = 1$ to 21

FINAL PROGRAM

Input n

if $n \geq 34$ and $n \equiv 1 \pmod{4}$ then output $(n, \frac{n-1}{4})$ and STOP.

if $n \geq 34$ and $n \not\equiv 1 \pmod{4}$ then output \emptyset and STOP.

(If you get this far then $5 \leq n \leq 33$.)

If $n \equiv 1 \pmod{4}$ then output $(n, \frac{n-1}{4})$ (but do not stop).

For $m = 1$ to 21

$x = m\text{WORKS?}(n, m)$

FINAL PROGRAM

Input n

if $n \geq 34$ and $n \equiv 1 \pmod{4}$ then output $(n, \frac{n-1}{4})$ and STOP.

if $n \geq 34$ and $n \not\equiv 1 \pmod{4}$ then output \emptyset and STOP.

(If you get this far then $5 \leq n \leq 33$.)

If $n \equiv 1 \pmod{4}$ then output $(n, \frac{n-1}{4})$ (but do not stop).

For $m = 1$ to 21

$x = m\text{WORKS?}(n, m)$

If x is not FALSE then output all of the information x had.

FINAL PROGRAM

Input n

if $n \geq 34$ and $n \equiv 1 \pmod{4}$ then output $(n, \frac{n-1}{4})$ and STOP.

if $n \geq 34$ and $n \not\equiv 1 \pmod{4}$ then output \emptyset and STOP.

(If you get this far then $5 \leq n \leq 33$.)

If $n \equiv 1 \pmod{4}$ then output $(n, \frac{n-1}{4})$ (but do not stop).

For $m = 1$ to 21

$x = m\text{WORKS?}(n, m)$

If x is not FALSE then output all of the information x had.

We are not done yet. See Next Slide.

What Might Happen

What Might Happen

1) There are a few cases ≤ 20 that I've already worked out.
Sometimes (though rarely) there IS an awesome n -collection with
 $n \not\equiv 1 \pmod{4}$.

What Might Happen

- 1) There are a few cases ≤ 20 that I've already worked out.
Sometimes (though rarely) there IS an awesome n -collection with
 $n \not\equiv 1 \pmod{4}$.
- 2) We may find that the few that I have found are the only ones,
so we are DONE.

What Might Happen

- 1) There are a few cases ≤ 20 that I've already worked out. Sometimes (though rarely) there IS an awesome n -collection with $n \not\equiv 1 \pmod{4}$.
- 2) We may find that the few that I have found are the only ones, so we are DONE.
- 3) We may find a case where we have all of that information but do not have a contradiction. This may lead to more math of interest.

What Might Happen

- 1) There are a few cases ≤ 20 that I've already worked out. Sometimes (though rarely) there IS an awesome n -collection with $n \not\equiv 1 \pmod{4}$.
- 2) We may find that the few that I have found are the only ones, so we are DONE.
- 3) We may find a case where we have all of that information but do not have a contradiction. This may lead to more math of interest.

Which am I rooting for? I will be happy with either:

What Might Happen

- 1) There are a few cases ≤ 20 that I've already worked out. Sometimes (though rarely) there IS an awesome n -collection with $n \not\equiv 1 \pmod{4}$.
- 2) We may find that the few that I have found are the only ones, so we are DONE.
- 3) We may find a case where we have all of that information but do not have a contradiction. This may lead to more math of interest.

Which am I rooting for? I will be happy with either:

- a) We are DONE

What Might Happen

- 1) There are a few cases ≤ 20 that I've already worked out. Sometimes (though rarely) there IS an awesome n -collection with $n \not\equiv 1 \pmod{4}$.
- 2) We may find that the few that I have found are the only ones, so we are DONE.
- 3) We may find a case where we have all of that information but do not have a contradiction. This may lead to more math of interest.

Which am I rooting for? I will be happy with either:

- a) We are DONE
- b) We find some math of interest and THEN we are DONE.

What Might Happen

- 1) There are a few cases ≤ 20 that I've already worked out. Sometimes (though rarely) there IS an awesome n -collection with $n \not\equiv 1 \pmod{4}$.
- 2) We may find that the few that I have found are the only ones, so we are DONE.
- 3) We may find a case where we have all of that information but do not have a contradiction. This may lead to more math of interest.

Which am I rooting for? I will be happy with either:

- a) We are DONE
- b) We find some math of interest and THEN we are DONE.

I will be unhappy if we can't actually solve the problem.