Cheat Sheet For R" — (£2,£2dn), R" 7L> (fg,ﬂd/n)

1 Goal
1. (Szlam [5]) 3d, R™ — (L2, lyan).
2. (Conlon & Fox [1]), 3d' R™ £ (l2,lyarn ).



2 Frankl-Wilson Set Systems: OddTown

This is an Easy case of the next theorem.

Theorem 2.1 (Oddtown Theorem) Let n € N such that k < n. Let Fy,...,Fy € 2" be such that:

(V1< i< L)[|F| odd].

(V1 <i<j<s)[|FiNF;| even|.
Then L <n.

Proof: For 1 < i < L let f; be the bit vector for F;. Note that f; is a vector of n bits, k of
which are 1’s. Let

fi = (f’ilv . 7fm)

Note that f;; = 1iff j € F;.
We view the f;’s as n-dimensional vectors over F» = {0, 1} so the arithmetic is mod 2.
We show that the f;’s are linearly independent, hence there are at most n of them, so L < n.

Claim The f;’s are linearly independent (mod 2).
Proof:

fiofi= fafpn+ fiefip+- finfin
= |FNFj.
Since |F; N F}| is even, and |F;| is odd, we have
0 if 7 # 7;
fi-fj (mod2)=4" "~
1ifi=j.
Let Aq,..., Az be such that

AMfi+-+Anfr =0.

Let 1 <4 < L. Dot both sides by f; to get A\; =0
Hence, for every 1 <¢ < L, \; =0.
End of Proof of Claim |



3 FW Set Systems: What We Need

We will use, but not proof, the following, which is in the FW paper. The proof is similar but
harder. I plan to have it written up.

Theorem 3.1 Let k,n € N. Let q be a prime power.
1. Let IY,...,F € ([Z]) be such that:
(VI<i<j<s)RENEIZk (modg).
Then L < (qfl).

2. If Fu,... ,F(q[ﬁ]l)+1 € ([z}) then there exists 1 <1 < j < (q[ﬁ]l) + 1 with |[F;NFj| =k (mod q).
(This is the contrapositive of Part 1.)
q—1

-
(This is Part 2 with k = 2q —1 coupled with the observation that if |F; N F;| = 2¢—1 (mod q)
then |F; N Fj| = q — 1 since otherwise F; = F.)

3. IfFl,...,F( i) )41 € (2q"_1) then there exists 1 < i < j < ([n}) + 1 with |F; N Fj| = ¢ — 1.

Example 3.2 n =10 and ¢ = 3. Then Part 3 says.
IR, Fuoy,, € ("90) then there exists 1 < i < j < (V) with |F; N Fy| = 2.

Lets use concrete numbers:
If Fi,...,Fye € ([150]) then there exists 1 <1i < j < (120) =45 with |F; N F;| = 2.
Lets use concrete numbers:



4 A Bound on the Chromatic Number of R!?

We will derive a value of ¢, which we make as large as possible, so that for all COL: R'® — [¢] there
exists u,v € R with d(u,v) = 1.
We restrict COL to the following set S of vectors such that:

e 5 of the coordinates are 0

. 1
e 5 of the coordinates are 7

e Note that |S| = (') = 252.

Let T map S to ([150]) by using bit vectors with % instead of 1.

1 1 1 1 _
7%7 %707 %aoaovov 76’) - {1a374767 10}
Let u,v € S such that they have |S(u) N S(v)| = 2. Then

For example T(%, 0
e There are 2 coordinates where u and v both have , /5q+t6‘
e There are 3 coordinates where w is % and v is 0.

e There are 3 coordinates where v is % and u is 0.

e There are 2 coordinates where v is 0 and w is 0.

Hence

1 .9 1 .9 1 .9 1 .2 1 (2 2

d(0) = | ()2 4 ()2 ()2 4 (=) (=) 4+ (=) =1

)= [+ (G () g+ () + (g

Hence we need to show that two of the elements in the image of T intersect in two positions. Note
that this is now a problem about set systems!

Let the image of T be F1, ..., Fss0. By Example 3.2 within any set of 46 of these there are two

that intersect in 2 places. Now we look at the number of colors. If there are ¢ colors then there

will be some set of [2—?2] that are the same color. So we need the max ¢ such that [252] ¢ > 46.
We take ¢ = 5.



5 The Chromatic Number of R"

Definition 5.1 For n > 2, ¢(n) is the chromatic number of R™

Theorem 5.2
(Qqn— 1)

1.n, c(n) > max, yrime power )

2. 3d Vn, c(n) > 2%, Follows from Part 1.

Proof:
1) Let S C R™ be all of the vectors such that

e n — 2q — 1 of the components are 0.

e 2q — 1 of the components are \/%—q.

Let F: § — (2c[1n—]1) by viewing each vector in S as a bit vector though with \/%fq instead of 1.
Claim Let u,v € S. If |F(u)NF(v)| = f then d(u,v) = 2—%. Hence d(u,v) = 1iff |F(u)NF(v)| =
q— 1.

Proof of Claim: Assume |F'(u) N F(v)| = f then:

: 1
e There are f coordinates where u and v both have ok

e There are 2q — 1 — f coordinates where u has 5- and v has 0.

e There are 2¢g — 1 — f coordinates where v has % and u has 0.
e There are n — 4q + f + 2 coordinates where u and v are both 0.

Hence d(u,v) =2 x (2g—1— f) x 5. = 2—=L =2 - 2L,
End of Proof of Claim

Restrict COL to S. Since |S| = (2q"_1) and there are c colors, some color must occur >
(Zq"_l)/c = (qfl) + 1 times. Let S’ be the subset of S that has that color. Since S’ C (2[[1"_]1) and
|S'| > (qfl) + 1, by Theorem 3.1.3, there exists two elements of S with intersection of size ¢ — 1.
Let those two elements be F'(u) and F'(v). Since |F(u) N F(v)| = g — 1, by the Claim, d(u,v) = 1.
|



6 There exists d Such That R" — ({5, {5a))
Theorem 6.1 (Szlam [5]) There exists d such that R™ — (L2, lgan).

Proof: By Theorem 5.2 there exists d such that c(n) > 2%. Thats the d that we use. Let
m = 24",
We will need the following notation: 1 is the vector (1,0, ...,0) in R™.
Let COL: R™ — [2].
Case 1 There is a BLUE /,,. Done
Case 2 There is no BLUE /4,,,. We form a coloring COL: R" — [m] as follows:
Given point p € R" look at

p+1,p+21,....p+ml.

Since there is no BLUE /,,,, there exists i such that COL(p+11) is RED. Color p with the least
such 1.

By Theorem 5.2 there exists points u,v € R" and 1 < ¢ < m such that d(u,v) = 1 and u,v are
the same color. Hence u + il and v 4 41 are both RED. Since d(u,v) = 1, d(u + il,v +il) = 1.
Hence u + 41 and v + i1 form a RED ¢5. |



7 Lemmas Needed for 3d, R" 4 ({s, {41 ):t-Separated

We will be 2-coloring the m x m square and then use that to form a periodic coloring of R2. Hence
we think of coloring the m x m square with the two horizontal sides identified and the new vertical
sides identified. We denote this 72,. (The T is for Taurus.) (TO BILL: this should be torus)

We need several lemmas.

Definition 7.1 Let t € R*. Let P C T2.
1. P is t-separated if, for all p,q € P, d(p,q) > t.

2. P is mazimally t-separated (1) if P is t-separated and (2) for all » ¢ P, P U {r} is not
t-separated.

Lemma 7.2 Lett € R and m € N.

1. There exists P C T2 that is mazximally t-seperated.
2. If P C T2 is mazimally t-seperated then |P| < @

3. If P C T2 is mazimally %-sepemted then |P| < (1.7m)%. This follows from Part 2.

Proof:

1) A greedy algorithm forms a maximally ¢-seperated set.

2) Let p € P. Then there is no element of P inside the circle centered at p of radius ¢. This circle
has area mt?. The set T2 has area m?. Hence

|P| x wt? < m?, so |P| < % |

Lemma 7.3 Lett € RT. Let S C R? be t-seperated. Let p € R?. Let s > 0. The number of points
of S within s of P is at most (2s/t + 1)2.

Proof: Let T be the set of points within ¢ of . For every ¢ € T we look at the circle centered
at ¢ of radius ¢/2 (we can’t use radius ¢ since then the circles would not be disjoint). These circles
have no other points of 7" in them and are disjoint. These circles have area m(¢/2)?. The union of
these circles is contained in the circle around j of radius s + /2 which has area 7(s +t/2)%. Hence
IT| x 7t2/4 < (s +t/2)?
T x (£/2)* < (s +t/2)?

T < (S5 = (2s/t+1)% 1



8 Lemmas Needed for 3d, R" /4 ({5, {5a:):Vornoi

Definition 8.1 Assume S C R? or S C 73", If p € S then V,, is the set of points of R? or 73" that
are closer (or tied) to p then to any other point of S. The Voronoi Diagram of S is the set of all
the V,’s.

Note 8.2 There exists S C R” and an s € S such that V), is a convex |S|-gon.

Lemma 8.3 Let S C R? be a maximal t-separated set. We form the Voronoi diagram of S. The
Voronoi cells are {Vp}pes.

1. If x € V), then d(x,p) < t.
2. If p,p’ € V,, then d(p,p’) < 2t. (This follows from Part 1.)
3. If p,p’ € S and V},, V,,. share a boundary then d(p,p’) < 2t.

4. Vp is convex polygon with < 25 sides.

Proof:
1) Assume, by way of contradiction, that there is an x € V}, and d(x,p) > t. Since z € V), d(z,p)
is the smallest distance from x to a point of S. Hence « is greater than ¢ away from any point in
S. Since S is maximal, z € S which is a contradiction.
3) Draw a line from p to p’. It will hit a point x that is on both the boundary of V, and the
boundary of V,,. By Part 1

d(p,p') =d(p,z) + d(x,p') <t+t =2t
4) V), is a convex polygon. Map each side of V,, to the p’ such that V}, and V}y share that side. Using
Part 2 we get that the number of sides is bounded above by the number of points of p’ € S such
that d(p,p’) < 2t. By Lemma 7.3 the number of such points is < ((2 x 2t)/t + 1) =52 =25. |

Lemma 8.4 Let K be a 1-seperated set. Let s > 1. There is a set K' C K that is s-separated such
that |K'| > |K|/(2s + 1)



9 There exists d', R" /4 ({3, (o)
Theorem 9.1 There exists d' such that R? /£ (b2, Loarn)-

Proof: Let P be a maximal %-separated subset of T5"". We create the Voronoi diagram of P.

Let @ C P be formed by, for each p € P, choose it with probability x (we will determine x
later).

Let S C @ be the set of points s € @ such that, for all s’ € Q, d(s,s’) > 5/3.

Recall that we have a Voronoi diagram formed by the points in P. Let the Voronoi cells that
have a point of S in them be denoted V1,...,Vg.

We will color each V;, including boundary, RED. We will color every other point in 75" BLUE.
We will then use this to periodically color R?. We view this as tiling the plane with m x m tiles
and coloring all the tiles the same.

We will show that if you take a nine tiles arrange 3 x 3 then there is no RED ¢» or BLUE ¢,
with a point in the middle tile. This will suffice.

No RED /5 This part does not use probability.
Let ¢, ¢ both be RED.
Case 1: ¢,¢ are in the same Voronoi cell. By Lemma 8.3.2 d(q,q’) < 1/3.
Case 2: ¢, ¢ are in the same tile but in different Voronoi cells. Let the Voronoi cells have centers
p,p’. Then

1 5

1
d(p,p) < d(p.q) +d(g,q) +d(d,p) < g +1+ 5 =2

But by definition of S, d(p,p’) > %

Case 3: ¢,q are in different tiles but in the analogous Voronoi cells. Let the Voronoi cells have
centers p,p’. Since d(p,p’) =m, d(q,q') >m —1 > 1.

Case 4: ¢, q are in different tiles and non-analogous Voronoi cells. Since the Voronoi diagram was
on a Taurus this is identical to Case 2.

No BLUE /¢,

Let L = (qi,...,qm) be an £,,. We bound the probability that L is BLUE.

Let {pi};nz/al be such that, for 0 <i <m' —1, ¢; € V,,,. We need to bound the probability that
Vp, is BLUE. Not so fast! We need to show that all of the V,, are distinct.

Let ¢,¢' € {qo,-..,qm'—1}. Let {p,p’} be such that ¢ € V,, and ¢’ € V},.
Case 1 ¢, ¢ are in the same tile and in the same Voronoi cell. This cannot happen since d(¢,q’) > 1
and by Lemma 8.3.2 the diameter of these cells is 2/3.
Case 2 ¢, ¢ are in the different tiles but in analogous Voronoi cells. Two points in analogous cells
are at least m — % apart. Since d(q,q") < m —1, ¢,q’ cannot be in different tiles but in analogous
Voronoi cells.

The probability that L is BLUE is the prob that V,,, V,, ..., V,, are all BLUE.

Let p € P. We determine a lower bound on the probability that V), is RED. Recall that V), is
RED iff p € S.

BILL TO BILL- I NEED TO FINISH THIS. IT REQUIRES THAT LEMMA ABOUT SIGN
PATTERNS. |
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