# Cheat Sheet For $R^n \to (\ell_2, \ell_{2^{dn}})$ , $R^n \not\to (\ell_2, \ell_{d'n})$

# 1 Goal

- 1. (Szlam [5])  $\exists d, \, \mathsf{R}^n \to (\ell_2, \ell_{2^{dn}}).$
- 2. (Conlon & Fox [1]),  $\exists d' \ \mathsf{R}^n \not\to (\ell_2, \ell_{2^{d'n}})$ .

## 2 Frankl-Wilson Set Systems: OddTown

This is an Easy case of the next theorem.

**Theorem 2.1** (Oddtown Theorem) Let  $n \in \mathbb{N}$  such that  $k \leq n$ . Let  $F_1, \ldots, F_L \in 2^{[n]}$  be such that:

$$(\forall 1 \leq i \leq L)[|F_i| \ odd].$$

$$(\forall 1 \leq i < j \leq s)[|F_i \cap F_j| \ even ].$$

Then  $L \leq n$ .

**Proof:** For  $1 \le i \le L$  let  $f_i$  be the bit vector for  $F_i$ . Note that  $f_i$  is a vector of n bits, k of which are 1's. Let

$$f_i = (f_{i1}, \dots, f_{in}).$$

Note that  $f_{ij} = 1$  iff  $j \in F_i$ .

We view the  $f_i$ 's as n-dimensional vectors over  $F_2 = \{0,1\}$  so the arithmetic is mod 2.

We show that the  $f_i$ 's are linearly independent, hence there are at most n of them, so  $L \leq n$ . Claim The  $f_i$ 's are linearly independent (mod 2). Proof:

$$f_i \cdot f_j = f_{i1}f_{j1} + f_{i2}f_{j2} + \cdots + f_{in}f_{jn}$$
  
=  $|F_i \cap F_j|$ .

Since  $|F_i \cap F_j|$  is even, and  $|F_i|$  is odd, we have

$$f_i \cdot f_j \pmod{2} = \begin{cases} 0 \text{ if } i \neq j; \\ 1 \text{ if } i = j. \end{cases}$$
 (1)

Let  $\lambda_1, \ldots, \lambda_L$  be such that

$$\lambda_1 f_1 + \dots + \lambda_L f_L = 0.$$

Let  $1 \le i \le L$ . Dot both sides by  $f_i$  to get  $\lambda_i = 0$ 

Hence, for every  $1 \le i \le L$ ,  $\lambda_i = 0$ .

End of Proof of Claim

#### 3 FW Set Systems: What We Need

We will use, but not proof, the following, which is in the FW paper. The proof is similar but harder. I plan to have it written up.

**Theorem 3.1** Let  $k, n \in \mathbb{N}$ . Let q be a prime power.

1. Let  $F_1, \ldots, F_L \in \binom{[n]}{k}$  be such that:

$$(\forall 1 \le i < j \le s)[|F_i \cap F_j| \not\equiv k \pmod{q}].$$

Then  $L \leq \binom{n}{q-1}$ .

- 2. If  $F_1, \ldots, F_{\binom{[n]}{q-1}+1} \in \binom{[n]}{k}$  then there exists  $1 \le i < j \le \binom{[n]}{q-1} + 1$  with  $|F_i \cap F_j| \equiv k \pmod{q}$ . (This is the contrapositive of Part 1.)
- 3. If  $F_1, \ldots, F_{\binom{[n]}{q-1}+1} \in \binom{n}{2q-1}$  then there exists  $1 \le i < j \le \binom{[n]}{q-1} + 1$  with  $|F_i \cap F_j| = q-1$ . (This is Part 2 with k = 2q - 1 coupled with the observation that if  $|F_i \cap F_j| \equiv 2q - 1 \pmod{q}$ then  $|F_i \cap F_j| = q - 1$  since otherwise  $F_i = F_j$ .)

**Example 3.2** n = 10 and q = 3. Then Part 3 says. If  $F_1, \ldots, F_{\binom{[10]}{2}+1} \in \binom{[10]}{5}$  then there exists  $1 \le i < j \le \binom{10}{2}$  with  $|F_i \cap F_j| = 2$ . Lets use concrete numbers:

If  $F_1, \ldots, F_{46} \in {[10] \choose 5}$  then there exists  $1 \le i < j \le {10 \choose 2} = 45$  with  $|F_i \cap F_j| = 2$ .

Lets use concrete numbers:

## 4 A Bound on the Chromatic Number of R<sup>10</sup>

We will derive a value of c, which we make as large as possible, so that for all COL:  $\mathsf{R}^{10} \to [c]$  there exists  $u, v \in \mathsf{R}^{10}$  with d(u, v) = 1.

We restrict COL to the following set S of vectors such that:

- 5 of the coordinates are 0
- 5 of the coordinates are  $\frac{1}{\sqrt{6}}$ .
- Note that  $|S| = \binom{10}{5} = 252$ .

Let T map S to  $\binom{[10]}{5}$  by using bit vectors with  $\frac{1}{\sqrt{6}}$  instead of 1. For example  $T(\frac{1}{\sqrt{6}},0,\frac{1}{\sqrt{6}},0,\frac{1}{\sqrt{6}},0,0,0,\frac{1}{\sqrt{6}},)=\{1,3,4,6,10\}.$  Let  $u,v\in S$  such that they have  $|S(u)\cap S(v)|=2$ . Then

- There are 2 coordinates where u and v both have  $\sqrt{\frac{1}{sqrt6}}$ .
- There are 3 coordinates where u is  $\frac{1}{\sqrt{6}}$  and v is 0.
- There are 3 coordinates where v is  $\frac{1}{\sqrt{6}}$  and u is 0.
- There are 2 coordinates where v is 0 and u is 0.

Hence

$$d(u,v) = \sqrt{\left(\frac{1}{\sqrt{6}}\right)^2 + \left(\frac{1}{\sqrt{6}}\right)^2 + \left(\frac{1}{\sqrt{6}}\right)^2 + \left(\frac{1}{\sqrt{6}}\right)^2 + \left(\frac{1}{\sqrt{6}}\right)^2 + \left(\frac{1}{\sqrt{6}}\right)^2} = 1.$$

Hence we need to show that two of the elements in the image of T intersect in two positions. Note that this is now a problem about set systems!

Let the image of T be  $F_1, \ldots, F_{252}$ . By Example 3.2 within any set of 46 of these there are two that intersect in 2 places. Now we look at the number of colors. If there are c colors then there will be some set of  $\left\lceil \frac{252}{c} \right\rceil$  that are the same color. So we need the max c such that  $\lceil 252 \rceil$   $c \ge 46$ . We take c = 5.

## 5 The Chromatic Number of $R^n$

**Definition 5.1** For  $n \geq 2$ , c(n) is the chromatic number of  $\mathbb{R}^n$ 

### Theorem 5.2

- 1.  $\forall n, c(n) > \max_{q \ prime \ power \frac{\binom{n}{2q-1}}{\binom{n}{q-1}+1}}$ .
- 2.  $\exists d \ \forall n, \ c(n) \geq 2^{dn}$ . Follows from Part 1.

### **Proof:**

- 1) Let  $S \subseteq \mathbb{R}^n$  be all of the vectors such that
  - n-2q-1 of the components are 0.
  - 2q-1 of the components are  $\frac{1}{\sqrt{2q}}$ .

Let  $F: S \to \binom{[n]}{2q-1}$  by viewing each vector in S as a bit vector though with  $\frac{1}{\sqrt{2q}}$  instead of 1. Claim Let  $u, v \in S$ . If  $|F(u) \cap F(v)| = f$  then  $d(u, v) = 2 - \frac{f+1}{q}$ . Hence d(u, v) = 1 iff  $|F(u) \cap F(v)| = q-1$ .

**Proof of Claim:** Assume  $|F(u) \cap F(v)| = f$  then:

- There are f coordinates where u and v both have  $\frac{1}{\sqrt{2q}}$ .
- There are 2q-1-f coordinates where u has  $\frac{1}{2q}$  and v has 0.
- There are 2q 1 f coordinates where v has  $\frac{1}{2q}$  and u has 0.
- There are n-4q+f+2 coordinates where u and v are both 0.

Hence  $d(u, v) = 2 \times (2q - 1 - f) \times \frac{1}{2q} = \frac{2q - 1 - f}{q} = 2 - \frac{f + 1}{q}$ .

## **End of Proof of Claim**

Restrict COL to S. Since  $|S| = \binom{n}{2q-1}$  and there are c colors, some color must occur  $\geq \binom{n}{2q-1}/c = \binom{n}{q-1}+1$  times. Let S' be the subset of S that has that color. Since  $S' \subseteq \binom{[n]}{2q-1}$  and  $|S'| \geq \binom{n}{q-1}+1$ , by Theorem 3.1.3, there exists two elements of S with intersection of size q-1. Let those two elements be F(u) and F(v). Since  $|F(u) \cap F(v)| = q-1$ , by the Claim, d(u,v) = 1.

## 6 There exists d Such That $R^n \to (\ell_2, \ell_{2^{dn}})$

**Theorem 6.1** (Szlam [5]) There exists d such that  $\mathbb{R}^n \to (\ell_2, \ell_{2^{dn}})$ .

**Proof:** By Theorem 5.2 there exists d such that  $c(n) > 2^{dn}$ . Thats the d that we use. Let  $m = 2^{dn}$ .

We will need the following notation:  $\vec{1}$  is the vector (1, 0, ..., 0) in  $\mathbb{R}^n$ . Let COL:  $\mathbb{R}^n \to [2]$ .

Case 1 There is a BLUE  $\ell_m$ . Done

Case 2 There is no BLUE  $\ell_m$ . We form a coloring COL:  $\mathbb{R}^n \to [m]$  as follows: Given point  $p \in \mathbb{R}^n$  look at

$$p + \vec{1}, p + 2\vec{1}, \dots, p + m\vec{1}.$$

Since there is no BLUE  $\ell_m$ , there exists i such that  $COL(p+i\vec{1})$  is RED. Color p with the least such i.

By Theorem 5.2 there exists points  $u,v\in\mathbb{R}^n$  and  $1\leq i\leq m$  such that d(u,v)=1 and u,v are the same color. Hence  $u+i\vec{1}$  and  $v+i\vec{1}$  are both RED. Since d(u,v)=1,  $d(u+i\vec{1},v+i\vec{1})=1$ . Hence  $u+i\vec{1}$  and  $v+i\vec{1}$  form a RED  $\ell_2$ .

# Lemmas Needed for $\exists d, \, \mathsf{R}^n \not\to (\ell_2, \ell_{2^{dn}})$ :t-Separated

We will be 2-coloring the  $m \times m$  square and then use that to form a periodic coloring of  $\mathbb{R}^2$ . Hence we think of coloring the  $m \times m$  square with the two horizontal sides identified and the new vertical sides identified. We denote this  $T_m^2$ . (The T is for Taurus.) (TO BILL: this should be torus)

We need several lemmas.

## **Definition 7.1** Let $t \in \mathbb{R}^+$ . Let $P \subseteq T_m^2$ .

- 1. P is t-separated if, for all  $p, q \in P$ ,  $d(p, q) \ge t$ .
- 2. P is maximally t-separated (1) if P is t-separated and (2) for all  $r \notin P$ ,  $P \cup \{r\}$  is not t-separated.

### **Lemma 7.2** Let $t \in \mathbb{R}^+$ and $m \in \mathbb{N}$ .

- 1. There exists  $P \subseteq T_m^2$  that is maximally t-separated.
- 2. If  $P \subseteq T_m^2$  is maximally t-separated then  $|P| \leq \frac{(m/t)^2}{\pi}$ .
- 3. If  $P \subseteq T_m^2$  is maximally  $\frac{1}{3}$ -separated then  $|P| \leq (1.7m)^2$ . This follows from Part 2.

### **Proof:**

- 1) A greedy algorithm forms a maximally t-seperated set.
- 2) Let  $p \in P$ . Then there is no element of P inside the circle centered at p of radius t. This circle has area  $\pi t^2$ . The set  $T_m^2$  has area  $m^2$ . Hence  $|P| \times \pi t^2 \le m^2$ , so  $|P| \le \frac{(m/t)^2}{\pi}$ .

$$|P| \times \pi t^2 \le m^2$$
, so  $|P| \le \frac{(m/t)^2}{\pi}$ .

**Lemma 7.3** Let  $t \in \mathbb{R}^+$ . Let  $S \subseteq \mathbb{R}^2$  be t-separated. Let  $\vec{p} \in \mathbb{R}^2$ . Let  $s \geq 0$ . The number of points of S within s of  $\vec{p}$  is at most  $(2s/t+1)^2$ .

Let T be the set of points within t of  $\vec{p}$ . For every  $\vec{q} \in T$  we look at the circle centered at  $\vec{q}$  of radius t/2 (we can't use radius t since then the circles would not be disjoint). These circles have no other points of T in them and are disjoint. These circles have area  $\pi(t/2)^2$ . The union of these circles is contained in the circle around  $\vec{p}$  of radius s + t/2 which has area  $\pi(s + t/2)^2$ . Hence

$$|T| \times \pi t^2 / 4 \le \pi (s + t/2)^2$$

$$|T| \times (t/2)^2 \le (s+t/2)^2$$

$$\begin{split} |T| \times \pi t^2 / 4 & \leq \pi (s + t/2)^2 \\ |T| \times (t/2)^2 & \leq (s + t/2)^2 \\ |T| & \leq (\frac{s + t/2}{t/2})^2 = (2s/t + 1)^2. \end{split}$$

## 8 Lemmas Needed for $\exists d, \, \mathsf{R}^n \not\to (\ell_2, \ell_{2^{dn}})$ :Vornoi

**Definition 8.1** Assume  $S \subseteq \mathbb{R}^2$  or  $S \subseteq T_2^m$ . If  $p \in S$  then  $V_p$  is the set of points of  $\mathbb{R}^2$  or  $T_2^m$  that are closer (or tied) to p then to any other point of S. The *Voronoi Diagram of* S is the set of all the  $V_p$ 's.

**Note 8.2** There exists  $S \subseteq \mathbb{R}^n$  and an  $s \in S$  such that  $V_p$  is a convex |S|-gon.

**Lemma 8.3** Let  $S \subseteq \mathbb{R}^2$  be a maximal t-separated set. We form the Voronoi diagram of S. The Voronoi cells are  $\{V_p\}_{p\in S}$ .

- 1. If  $x \in V_p$  then  $d(x, p) \leq t$ .
- 2. If  $p, p' \in V_p$  then  $d(p, p') \leq 2t$ . (This follows from Part 1.)
- 3. If  $p, p' \in S$  and  $V_p$ ,  $V_p$ , share a boundary then  $d(p, p') \leq 2t$ .
- 4.  $V_p$  is convex polygon with  $\leq 25$  sides.

#### **Proof:**

- 1) Assume, by way of contradiction, that there is an  $x \in V_p$  and d(x,p) > t. Since  $x \in V_p$ , d(x,p) is the smallest distance from x to a point of S. Hence x is greater than t away from any point in S. Since S is maximal,  $x \in S$  which is a contradiction.
- 3) Draw a line from p to p'. It will hit a point x that is on both the boundary of  $V_p$  and the boundary of  $V_{p'}$ . By Part 1

$$d(p, p') = d(p, x) + d(x, p') \le t + t = 2t.$$

4)  $V_p$  is a convex polygon. Map each side of  $V_p$  to the p' such that  $V_p$  and  $V_{p'}$  share that side. Using Part 2 we get that the number of sides is bounded above by the number of points of  $p' \in S$  such that  $d(p, p') \leq 2t$ . By Lemma 7.3 the number of such points is  $\leq ((2 \times 2t)/t + 1)^2 = 5^2 = 25$ .

**Lemma 8.4** Let K be a 1-separated set. Let  $s \ge 1$ . There is a set  $K' \subseteq K$  that is s-separated such that  $|K'| \ge |K|/(2s+1)^2$ .

#### There exists d', $\mathbb{R}^n \not\to (\ell_2, \ell_{2d'n})$ 9

**Theorem 9.1** There exists d' such that  $R^2 \neq (\ell_2, \ell_{2d'n})$ .

Let P be a maximal  $\frac{1}{3}$ -separated subset of  $T_2^m$ . We create the Voronoi diagram of P. Let  $Q \subseteq P$  be formed by, for each  $p \in P$ , choose it with probability x (we will determine xlater).

Let  $S \subseteq Q$  be the set of points  $s \in Q$  such that, for all  $s' \in Q$ , d(s, s') > 5/3.

Recall that we have a Voronoi diagram formed by the points in P. Let the Voronoi cells that have a point of S in them be denoted  $V_1, \ldots, V_{|S|}$ .

We will color each  $V_i$ , including boundary, RED. We will color every other point in  $T_2^m$  BLUE. We will then use this to periodically color  $R^2$ . We view this as tiling the plane with  $m \times m$  tiles and coloring all the tiles the same.

We will show that if you take a nine tiles arrange  $3 \times 3$  then there is no RED  $\ell_2$  or BLUE  $\ell_m$ with a point in the middle tile. This will suffice.

**No RED**  $\ell_2$  This part does not use probability.

Let q, q' both be RED.

Case 1: q, q' are in the same Voronoi cell. By Lemma 8.3.2  $d(q, q') \le 1/3$ .

Case 2: q, q' are in the same tile but in different Voronoi cells. Let the Voronoi cells have centers p, p'. Then

$$d(p, p') \le d(p, q) + d(q, q') + d(q', p') \le \frac{1}{3} + 1 + \frac{1}{3} = \frac{5}{3}.$$

But by definition of S,  $d(p, p') > \frac{5}{3}$ .

Case 3: q, q' are in different tiles but in the analogous Voronoi cells. Let the Voronoi cells have centers p, p'. Since  $d(p, p') = m, d(q, q') \ge m - \frac{1}{3} > 1$ .

Case 4: q, q' are in different tiles and non-analogous Voronoi cells. Since the Voronoi diagram was on a Taurus this is identical to Case 2.

### No BLUE $\ell_m$

Let  $L=(q_1,\ldots,q_m)$  be an  $\ell_m$ . We bound the probability that L is BLUE. Let  $\{p_i\}_{i=0}^{m'-1}$  be such that, for  $0 \le i \le m'-1$ ,  $q_i \in V_{p_i}$ . We need to bound the probability that  $V_{p_i}$  is BLUE. Not so fast! We need to show that all of the  $V_{p_i}$  are distinct.

Let  $q, q' \in \{q_0, \dots, q_{m'-1}\}$ . Let  $\{p, p'\}$  be such that  $q \in V_p$  and  $q' \in V_{p'}$ .

Case 1 q, q' are in the same tile and in the same Voronoi cell. This cannot happen since  $d(q, q') \ge 1$ and by Lemma 8.3.2 the diameter of these cells is 2/3.

Case 2 q, q' are in the different tiles but in analogous Voronoi cells. Two points in analogous cells are at least  $m-\frac{2}{3}$  apart. Since  $d(q,q')\leq m-1, q,q'$  cannot be in different tiles but in analogous

The probability that L is BLUE is the prob that  $V_{p_1}, V_{p_2}, ..., V_{p_m}$  are all BLUE.

Let  $p \in P$ . We determine a lower bound on the probability that  $V_p$  is RED. Recall that  $V_p$  is RED iff  $p \in S$ .

BILL TO BILL- I NEED TO FINISH THIS. IT REQUIRES THAT LEMMA ABOUT SIGN PATTERNS.

## References

- [1] D. Conlon and J. Fox. Line in Euclidean Ramsey theory. *Discrete and Computational Geometry*, 5:218–225, 2017.
- [2] P. Frankl and R. Wilson. Intersection theorems with geometric consequences. *Combinatorica*, 1:357–368, 1981.
- [3] Larman and Rogers. The realization of distances within sets of Euclidean space. *Mathemaka*, 19:1–24, 1972.
- [4] Raigorodskii. On the chromatic number of space. Russian Math Surveys, 55(2):351–352, 2000.
- [5] A. Szlam. Monochromatic translates of configurations in the plane. *Journal of Combinatorial Theory-Series A*, 2001.