
Cheat Sheet For Rn → (`2, `2dn), Rn 6→ (`2, `d′n)

1 Goal

1. (Szlam [5]) ∃d, Rn → (`2, `2dn).

2. (Conlon & Fox [1]), ∃d′ Rn 6→ (`2, `2d′n).
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2 Frankl-Wilson Set Systems: OddTown

This is an Easy case of the next theorem.

Theorem 2.1 (Oddtown Theorem) Let n ∈ N such that k ≤ n. Let F1, . . . , FL ∈ 2[n] be such that:

(∀1 ≤ i ≤ L)[|Fi| odd ].

(∀1 ≤ i < j ≤ s)[|Fi ∩ Fj | even ].

Then L ≤ n.

Proof: For 1 ≤ i ≤ L let fi be the bit vector for Fi. Note that fi is a vector of n bits, k of
which are 1’s. Let

fi = (fi1, . . . , fin).

Note that fij = 1 iff j ∈ Fi.
We view the fi’s as n-dimensional vectors over F2 = {0, 1} so the arithmetic is mod 2.
We show that the fi’s are linearly independent, hence there are at most n of them, so L ≤ n.

Claim The fi’s are linearly independent (mod 2).
Proof:

fi · fj = fi1fj1 + fi2fj2 + · · · finfjn
= |Fi ∩ Fj |.

Since |Fi ∩ Fj | is even, and |Fi| is odd, we have

fi · fj (mod 2) =

{
0 if i 6= j;

1 if i = j.
(1)

Let λ1, . . . , λL be such that

λ1f1 + · · ·+ λLfL = 0.

Let 1 ≤ i ≤ L. Dot both sides by fi to get λi = 0
Hence, for every 1 ≤ i ≤ L, λi = 0.

End of Proof of Claim
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3 FW Set Systems: What We Need

We will use, but not proof, the following, which is in the FW paper. The proof is similar but
harder. I plan to have it written up.

Theorem 3.1 Let k, n ∈ N. Let q be a prime power.

1. Let F1, . . . , FL ∈
([n]
k

)
be such that:

(∀1 ≤ i < j ≤ s)[|Fi ∩ Fj | 6≡ k (mod q)].

Then L ≤
(
n
q−1
)
.

2. If F1, . . . , F( [n]
q−1)+1

∈
([n]
k

)
then there exists 1 ≤ i < j ≤

(
[n]
q−1
)

+ 1 with |Fi ∩ Fj | ≡ k (mod q).

(This is the contrapositive of Part 1.)

3. If F1, . . . , F( [n]
q−1)+1

∈
(

n
2q−1

)
then there exists 1 ≤ i < j ≤

(
[n]
q−1
)

+ 1 with |Fi ∩ Fj | = q − 1.

(This is Part 2 with k = 2q−1 coupled with the observation that if |Fi∩Fj | ≡ 2q−1 (mod q)
then |Fi ∩ Fj | = q − 1 since otherwise Fi = Fj.)

Example 3.2 n = 10 and q = 3. Then Part 3 says.
If F1, . . . , F([10]2 )+1

∈
(
[10]
5

)
then there exists 1 ≤ i < j ≤

(
10
2

)
with |Fi ∩ Fj | = 2.

Lets use concrete numbers:
If F1, . . . , F46 ∈

(
[10]
5

)
then there exists 1 ≤ i < j ≤

(
10
2

)
= 45 with |Fi ∩ Fj | = 2.

Lets use concrete numbers:
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4 A Bound on the Chromatic Number of R10

We will derive a value of c, which we make as large as possible, so that for all COL: R10 → [c] there
exists u, v ∈ R10 with d(u, v) = 1.

We restrict COL to the following set S of vectors such that:

• 5 of the coordinates are 0

• 5 of the coordinates are 1√
6
.

• Note that |S| =
(
10
5

)
= 252.

Let T map S to
(
[10]
5

)
by using bit vectors with 1√

6
instead of 1.

For example T ( 1√
6
, 0, 1√

6
, 1√

6
, 0, 1√

6
, 0, 0, 0, 1√

6
, ) = {1, 3, 4, 6, 10}.

Let u, v ∈ S such that they have |S(u) ∩ S(v)| = 2. Then

• There are 2 coordinates where u and v both have
√

1
sqrt6 .

• There are 3 coordinates where u is 1√
6

and v is 0.

• There are 3 coordinates where v is 1√
6

and u is 0.

• There are 2 coordinates where v is 0 and u is 0.

Hence

d(u, v) =

√( 1√
6

)2
+
( 1√

6

)2
+
( 1√

6

)2
+
( 1√

6

)2
+
( 1√

6

)2
+
( 1√

6

)2
= 1.

Hence we need to show that two of the elements in the image of T intersect in two positions. Note
that this is now a problem about set systems!

Let the image of T be F1, . . . , F252. By Example 3.2 within any set of 46 of these there are two
that intersect in 2 places. Now we look at the number of colors. If there are c colors then there
will be some set of

⌈
252
c

⌉
that are the same color. So we need the max c such that d252e c ≥ 46.

We take c = 5.
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5 The Chromatic Number of Rn

Definition 5.1 For n ≥ 2, c(n) is the chromatic number of Rn

Theorem 5.2

1. ∀n, c(n) > maxq prime power
( n
2q−1)

( n
q−1)+1

.

2. ∃d ∀n, c(n) ≥ 2dn. Follows from Part 1.

Proof:
1) Let S ⊆ Rn be all of the vectors such that

• n− 2q − 1 of the components are 0.

• 2q − 1 of the components are 1√
2q

.

Let F : S →
(

[n]
2q−1

)
by viewing each vector in S as a bit vector though with 1√

2q
instead of 1.

Claim Let u, v ∈ S. If |F (u)∩F (v)| = f then d(u, v) = 2− f+1
q . Hence d(u, v) = 1 iff |F (u)∩F (v)| =

q − 1.
Proof of Claim: Assume |F (u) ∩ F (v)| = f then:

• There are f coordinates where u and v both have 1√
2q

.

• There are 2q − 1− f coordinates where u has 1
2q and v has 0.

• There are 2q − 1− f coordinates where v has 1
2q and u has 0.

• There are n− 4q + f + 2 coordinates where u and v are both 0.

Hence d(u, v) = 2× (2q − 1− f)× 1
2q = 2q−1−f

q = 2− f+1
q .

End of Proof of Claim
Restrict COL to S. Since |S| =

(
n

2q−1
)

and there are c colors, some color must occur ≥(
n

2q−1
)
/c =

(
n
q−1
)

+ 1 times. Let S′ be the subset of S that has that color. Since S′ ⊆
(

[n]
2q−1

)
and

|S′| ≥
(
n
q−1
)

+ 1, by Theorem 3.1.3, there exists two elements of S with intersection of size q − 1.
Let those two elements be F (u) and F (v). Since |F (u) ∩ F (v)| = q − 1, by the Claim, d(u, v) = 1.
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6 There exists d Such That Rn → (`2, `2dn))

Theorem 6.1 (Szlam [5]) There exists d such that Rn → (`2, `2dn).

Proof: By Theorem 5.2 there exists d such that c(n) > 2dn. Thats the d that we use. Let
m = 2dn.

We will need the following notation: ~1 is the vector (1, 0, . . . , 0) in Rn.
Let COL: Rn → [2].

Case 1 There is a BLUE `m. Done
Case 2 There is no BLUE `m. We form a coloring COL: Rn → [m] as follows:

Given point p ∈ Rn look at

p+~1, p+ 2~1, . . . , p+m~1.

Since there is no BLUE `m, there exists i such that COL(p+ i~1) is RED. Color p with the least
such i.

By Theorem 5.2 there exists points u, v ∈ Rn and 1 ≤ i ≤ m such that d(u, v) = 1 and u, v are
the same color. Hence u + i~1 and v + i~1 are both RED. Since d(u, v) = 1, d(u + i~1, v + i~1) = 1.
Hence u+ i~1 and v + i~1 form a RED `2.
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7 Lemmas Needed for ∃d, Rn 6→ (`2, `2dn):t-Separated

We will be 2-coloring the m×m square and then use that to form a periodic coloring of R2. Hence
we think of coloring the m×m square with the two horizontal sides identified and the new vertical
sides identified. We denote this T 2

m. (The T is for Taurus.) (TO BILL: this should be torus)
We need several lemmas.

Definition 7.1 Let t ∈ R+. Let P ⊆ T 2
m.

1. P is t-separated if, for all p, q ∈ P , d(p, q) ≥ t.

2. P is maximally t-separated (1) if P is t-separated and (2) for all r /∈ P , P ∪ {r} is not
t-separated.

Lemma 7.2 Let t ∈ R+ and m ∈ N.

1. There exists P ⊆ T 2
m that is maximally t-seperated.

2. If P ⊆ T 2
m is maximally t-seperated then |P | ≤ (m/t)2

π .

3. If P ⊆ T 2
m is maximally 1

3 -seperated then |P | ≤ (1.7m)2. This follows from Part 2.

Proof:
1) A greedy algorithm forms a maximally t-seperated set.
2) Let p ∈ P . Then there is no element of P inside the circle centered at p of radius t. This circle
has area πt2. The set T 2

m has area m2. Hence

|P | × πt2 ≤ m2, so |P | ≤ (m/t)2

π .

Lemma 7.3 Let t ∈ R+. Let S ⊆ R2 be t-seperated. Let ~p ∈ R2. Let s ≥ 0. The number of points
of S within s of ~p is at most (2s/t+ 1)2.

Proof: Let T be the set of points within t of ~p. For every ~q ∈ T we look at the circle centered
at ~q of radius t/2 (we can’t use radius t since then the circles would not be disjoint). These circles
have no other points of T in them and are disjoint. These circles have area π(t/2)2. The union of
these circles is contained in the circle around ~p of radius s+ t/2 which has area π(s+ t/2)2. Hence
|T | × πt2/4 ≤ π(s+ t/2)2

|T | × (t/2)2 ≤ (s+ t/2)2

|T | ≤ ( s+t/2t/2 )2 = (2s/t+ 1)2.
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8 Lemmas Needed for ∃d, Rn 6→ (`2, `2dn):Vornoi

Definition 8.1 Assume S ⊆ R2 or S ⊆ Tm2 . If p ∈ S then Vp is the set of points of R2 or Tm2 that
are closer (or tied) to p then to any other point of S. The Voronoi Diagram of S is the set of all
the Vp’s.

Note 8.2 There exists S ⊆ Rn and an s ∈ S such that Vp is a convex |S|-gon.

Lemma 8.3 Let S ⊆ R2 be a maximal t-separated set. We form the Voronoi diagram of S. The
Voronoi cells are {Vp}p∈S.

1. If x ∈ Vp then d(x, p) ≤ t.

2. If p, p′ ∈ Vp then d(p, p′) ≤ 2t. (This follows from Part 1.)

3. If p, p′ ∈ S and Vp, Vp; share a boundary then d(p, p′) ≤ 2t.

4. Vp is convex polygon with ≤ 25 sides.

Proof:
1) Assume, by way of contradiction, that there is an x ∈ Vp and d(x, p) > t. Since x ∈ Vp, d(x, p)
is the smallest distance from x to a point of S. Hence x is greater than t away from any point in
S. Since S is maximal, x ∈ S which is a contradiction.
3) Draw a line from p to p′. It will hit a point x that is on both the boundary of Vp and the
boundary of Vp′ . By Part 1

d(p, p′) = d(p, x) + d(x, p′) ≤ t+ t = 2t.
4) Vp is a convex polygon. Map each side of Vp to the p′ such that Vp and Vp′ share that side. Using
Part 2 we get that the number of sides is bounded above by the number of points of p′ ∈ S such
that d(p, p′) ≤ 2t. By Lemma 7.3 the number of such points is ≤ ((2× 2t)/t+ 1)2 = 52 = 25.

Lemma 8.4 Let K be a 1-seperated set. Let s ≥ 1. There is a set K ′ ⊆ K that is s-separated such
that |K ′| ≥ |K|/(2s+ 1)2.
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9 There exists d′, Rn 6→ (`2, `2d′n)

Theorem 9.1 There exists d′ such that R2 6→ (`2, `2d′n).

Proof: Let P be a maximal 1
3 -separated subset of Tm2 . We create the Voronoi diagram of P .

Let Q ⊆ P be formed by, for each p ∈ P , choose it with probability x (we will determine x
later).

Let S ⊆ Q be the set of points s ∈ Q such that, for all s′ ∈ Q, d(s, s′) > 5/3.
Recall that we have a Voronoi diagram formed by the points in P . Let the Voronoi cells that

have a point of S in them be denoted V1, . . . , V|S|.
We will color each Vi, including boundary, RED. We will color every other point in Tm2 BLUE.

We will then use this to periodically color R2. We view this as tiling the plane with m ×m tiles
and coloring all the tiles the same.

We will show that if you take a nine tiles arrange 3 × 3 then there is no RED `2 or BLUE `m
with a point in the middle tile. This will suffice.
No RED `2 This part does not use probability.

Let q, q′ both be RED.
Case 1: q, q′ are in the same Voronoi cell. By Lemma 8.3.2 d(q, q′) ≤ 1/3.
Case 2: q, q′ are in the same tile but in different Voronoi cells. Let the Voronoi cells have centers
p, p′. Then

d(p, p′) ≤ d(p, q) + d(q, q′) + d(q′, p′) ≤ 1

3
+ 1 +

1

3
=

5

3
.

But by definition of S, d(p, p′) > 5
3 .

Case 3: q, q′ are in different tiles but in the analogous Voronoi cells. Let the Voronoi cells have
centers p, p′. Since d(p, p′) = m, d(q, q′) ≥ m− 1

3 > 1.
Case 4: q, q′ are in different tiles and non-analogous Voronoi cells. Since the Voronoi diagram was
on a Taurus this is identical to Case 2.

No BLUE `m
Let L = (q1, . . . , qm) be an `m. We bound the probability that L is BLUE.
Let {pi}m

′−1
i=0 be such that, for 0 ≤ i ≤ m′ − 1, qi ∈ Vpi . We need to bound the probability that

Vpi is BLUE. Not so fast! We need to show that all of the Vpi are distinct.
Let q, q′ ∈ {q0, . . . , qm′−1}. Let {p, p′} be such that q ∈ Vp and q′ ∈ Vp′ .

Case 1 q, q′ are in the same tile and in the same Voronoi cell. This cannot happen since d(q, q′) ≥ 1
and by Lemma 8.3.2 the diameter of these cells is 2/3.
Case 2 q, q′ are in the different tiles but in analogous Voronoi cells. Two points in analogous cells
are at least m− 2

3 apart. Since d(q, q′) ≤ m− 1, q, q′ cannot be in different tiles but in analogous
Voronoi cells.

The probability that L is BLUE is the prob that Vp1 , Vp2 , . . ., Vpm are all BLUE.
Let p ∈ P . We determine a lower bound on the probability that Vp is RED. Recall that Vp is

RED iff p ∈ S.
BILL TO BILL- I NEED TO FINISH THIS. IT REQUIRES THAT LEMMA ABOUT SIGN

PATTERNS.
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