BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Extended VDWs Theorem

Exposition by William Gasarch

January 23, 2025

VDW and Extended VDW

Recall VDW's Theorem

VDW's Theorem For all k, c there exists W = W(k, c) such that for every c-coloring of [W] there exists a, d such that

$$a, a + d, a + 2d, \dots, a + (k - 1)d$$

VDW and Extended VDW

Recall VDW's Theorem

VDW's Theorem For all k, c there exists W = W(k, c) such that for every c-coloring of [W] there exists a, d such that

$$a, a + d, a + 2d, \dots, a + (k-1)d$$

are all the same color.

What about d itself? Can it be the same colors as $a, a+d, \ldots, a+(k-1)d$?

VDW and Extended VDW

Recall VDW's Theorem

VDW's Theorem For all k, c there exists W = W(k, c) such that for every c-coloring of [W] there exists a, d such that

$$a, a + d, a + 2d, \dots, a + (k-1)d$$

are all the same color.

What about d itself? Can it be the same colors as $a, a + d, \dots, a + (k - 1)d$?

Extended VDW's Theorem

EVDW Theorem For all k, c there exists E = E(k, c) such that for every c-coloring of [E] there exists a, d such that

$$a, a + d, a + 2d, \dots, a + (k - 1)d, d$$

EVDW Theorem For all k, c there exists E = E(k, c) such that for every c-coloring of [E] there exists a, d such that

$$a, a + d, a + 2d, \dots, a + (k - 1)d, d$$

EVDW Theorem For all k, c there exists E = E(k, c) such that for every c-coloring of [E] there exists a, d such that

$$a, a + d, a + 2d, \dots, a + (k-1)d, d$$

are all the same color.

Pf. Induction on c. E(k,1) = k. We show $E(k,c) \le W(X+1,c)$.

EVDW Theorem For all k, c there exists E = E(k, c) such that for every c-coloring of [E] there exists a, d such that

$$a, a + d, a + 2d, \dots, a + (k - 1)d, d$$

are all the same color.

Pf. Induction on c. E(k,1) = k. We show $E(k,c) \le W(X+1,c)$. COL: $[W(X+1,c)] \rightarrow [c]$. By VDW there exists A, D. $A, A+D, \ldots, A+XD$ is color CCC.

EVDW Theorem For all k, c there exists E = E(k, c) such that for every c-coloring of [E] there exists a, d such that

$$a, a + d, a + 2d, \dots, a + (k - 1)d, d$$

Pf. Induction on
$$c$$
. $E(k,1) = k$. We show $E(k,c) \le W(X+1,c)$. COL: $[W(X+1,c)] \rightarrow [c]$. By VDW there exists A,D $A,A+D,\ldots,A+XD$ is color CCC . $A,A+D,\ldots,A+(k-1)D$ are color CCC . So $COL(D) \ne CCC$. $A,A+2D,\ldots,A+2(k-1)D$ are CCC . So $COL(2D) \ne CCC$. CCC .

EVDW Theorem For all k, c there exists E = E(k, c) such that for every c-coloring of [E] there exists a, d such that

$$a, a + d, a + 2d, \dots, a + (k-1)d, d$$

 $D, 2D, \ldots, \frac{X}{k-1}D$ not colored *CCC*, only use c-1 colors.

 $D, 2D, \ldots, \frac{X}{k-1}D$ not colored *CCC*, only use c-1 colors.

Set X = E(k, c - 1)(k - 1). This is where we use Ind. Hyp.

 $D,2D,\ldots,\frac{X}{k-1}D$ not colored CCC, only use c-1 colors. Set X=E(k,c-1)(k-1). This is where we use Ind. Hyp. $D,2D,\ldots,E(k,c-1)D$ only use c-1 colors (not CCC).

 $D, 2D, \ldots, \frac{X}{k-1}D$ not colored CCC, only use c-1 colors. Set X = E(k, c-1)(k-1). This is where we use Ind. Hyp. $D, 2D, \ldots, E(k, c-1)D$ only use c-1 colors (not CCC). Define $\mathrm{COL}'(i) = \mathrm{COL}(iD)$, a (c-1)-coloring, so there exists a', d'

 $D, 2D, \ldots, \frac{X}{k-1}D$ not colored *CCC*, only use c-1 colors.

Set X = E(k, c - 1)(k - 1). This is where we use Ind. Hyp.

 $D, 2D, \ldots, E(k, c-1)D$ only use c-1 colors (not CCC).

Define COL'(i) = COL(iD), a (c-1)-coloring, so there exists a',d'

 $a', a' + d', \dots, a' + (k-1)d', d'$ same COL' color.

 $D, 2D, \ldots, \frac{X}{k-1}D$ not colored *CCC*, only use c-1 colors.

Set X = E(k, c - 1)(k - 1). This is where we use Ind. Hyp.

 $D, 2D, \ldots, E(k, c-1)D$ only use c-1 colors (not CCC).

Define $\mathrm{COL}'(i) = \mathrm{COL}(iD)$, a (c-1)-coloring, so there exists a',d'

 $a', a' + d', \dots, a' + (k-1)d', d'$ same COL' color.

 $a'D, (a'+d')D, \ldots, (a'+(k-1)d')D, d'D$ same COL color.

 $D, 2D, \ldots, \frac{X}{k-1}D$ not colored *CCC*, only use c-1 colors.

Set X = E(k, c - 1)(k - 1). This is where we use Ind. Hyp.

 $D, 2D, \ldots, E(k, c-1)D$ only use c-1 colors (not CCC).

Define $\mathrm{COL}'(i) = \mathrm{COL}(iD)$, a (c-1)-coloring, so there exists a',d'

 $a', a' + d', \dots, a' + (k-1)d', d'$ same COL' color.

 $a'D, (a'+d')D, \dots, (a'+(k-1)d')D, d'D$ same COL color.

 $a'D, a'D + d'D, \dots, a'D + (k-1)d'D, d'D$ same COL color.

 $D, 2D, \ldots, \frac{X}{L-1}D$ not colored CCC, only use c-1 colors. Set X = E(k, c-1)(k-1). This is where we use Ind. Hyp. $D, 2D, \ldots, E(k, c-1)D$ only use c-1 colors (not CCC). Define COL'(i) = COL(iD), a (c-1)-coloring, so there exists a', d' $a', a' + d', \ldots, a' + (k-1)d', d'$ same COL' color. $a'D, (a'+d')D, \ldots, (a'+(k-1)d')D, d'D$ same COL color. $a'D, a'D + d'D, \dots, a'D + (k-1)d'D, d'D$ same COL color. a = a'D, d = d'D

 $a, a + d, \dots, a + (k-1)d, d$ same COL color.

$$D, 2D, \ldots, \frac{X}{k-1}D$$
 not colored CCC , only use $c-1$ colors. Set $X = E(k, c-1)(k-1)$. This is where we use Ind. Hyp. $D, 2D, \ldots, E(k, c-1)D$ only use $c-1$ colors (not CCC). Define $\mathrm{COL}'(i) = \mathrm{COL}(iD)$, a $(c-1)$ -coloring, so there exists a', d' $a', a' + d', \ldots, a' + (k-1)d', d'$ same COL' color. $a'D, (a'+d')D, \ldots, (a'+(k-1)d')D, d'D$ same COL color. $a'D, a'D + d'D, \ldots, a'D + (k-1)d'D, d'D$ same COL color. $a = a'D, d = d'D$

Real EVDW

What I presented above is NOT the EVDW. This is: **EVDW Theorem** For all k, c, e there exists E = E(k, e, c) such that for every c-coloring of [E] there exists a, d such that

$$a, a + d, a + 2d, \dots, a + (k - 1)d, de$$

Real EVDW

What I presented above is NOT the EVDW. This is: **EVDW Theorem** For all k, c, e there exists E = E(k, e, c) such that for every c-coloring of [E] there exists a, d such that

$$a, a + d, a + 2d, \dots, a + (k - 1)d, de$$

are all the same color.

This is an exercise.