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Graphs G such that RAM(G) Holds

Questions
Is there a graph G w/o a K6-subgraph such that RAM(G )?
Last Lecture We showed Yes. The graph had 8 vertices.

Is there a graph G w/o a K5-subgraph such that RAM(G )?
Vote: YES or NO or UNKNOWN TO SCIENCE.
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between 103 and 1010.

Over A(10, 10) vertices where A is Ackerman’s function.
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The Size of G

The smallest known graph has

(Irving) 18 vertices! We show this.

(Shen) There is no such graph of size 10 vertices. We discuss this.
Closing that gap is open.
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G Such That
RAM(G),

G Has No K5 Subgraph,

G Has 18 Vertices



Detour:
Vertex Ramsey Theory



We Have Been Studying Edge Ramsey Theory

Recall For all k there exists n such that

for all COL :
([n]
2

)
→ [2]

there exists homog set size k .

We are coloring edges.

We could also look at coloring vertices.
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Vertex Ramsey Theory

Convention If there are k vertices that have the same color and
form a clique we call that a mono k-clique.

So mono k-clique is our goal rather than mono homog.

Is the following true?
For all k there exists n such that
for all 2-colorings of the vertices of Kn

there exists a mono k-clique.
Discuss
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First Theorem in Vertex Ramsey Theory

Thm For all k there exists n such that for all colorings of the
vertices of Kn there exists a mono k-clique.

Take n = 2k − 1. k of the vertices are the same color. They form
a mono k-clique.
Note that this is tight: n = 2k − 2 does not work (easy).

The field seems like a dead end. Nothing to see here, move on.

Not so fast! What if we start a graph other than Kn?



First Theorem in Vertex Ramsey Theory

Thm For all k there exists n such that for all colorings of the
vertices of Kn there exists a mono k-clique.
Take n = 2k − 1. k of the vertices are the same color. They form
a mono k-clique.

Note that this is tight: n = 2k − 2 does not work (easy).

The field seems like a dead end. Nothing to see here, move on.

Not so fast! What if we start a graph other than Kn?



First Theorem in Vertex Ramsey Theory

Thm For all k there exists n such that for all colorings of the
vertices of Kn there exists a mono k-clique.
Take n = 2k − 1. k of the vertices are the same color. They form
a mono k-clique.
Note that this is tight: n = 2k − 2 does not work (easy).

The field seems like a dead end. Nothing to see here, move on.

Not so fast! What if we start a graph other than Kn?



First Theorem in Vertex Ramsey Theory

Thm For all k there exists n such that for all colorings of the
vertices of Kn there exists a mono k-clique.
Take n = 2k − 1. k of the vertices are the same color. They form
a mono k-clique.
Note that this is tight: n = 2k − 2 does not work (easy).

The field seems like a dead end.

Nothing to see here, move on.

Not so fast! What if we start a graph other than Kn?



First Theorem in Vertex Ramsey Theory

Thm For all k there exists n such that for all colorings of the
vertices of Kn there exists a mono k-clique.
Take n = 2k − 1. k of the vertices are the same color. They form
a mono k-clique.
Note that this is tight: n = 2k − 2 does not work (easy).

The field seems like a dead end. Nothing to see here, move on.

Not so fast! What if we start a graph other than Kn?



First Theorem in Vertex Ramsey Theory

Thm For all k there exists n such that for all colorings of the
vertices of Kn there exists a mono k-clique.
Take n = 2k − 1. k of the vertices are the same color. They form
a mono k-clique.
Note that this is tight: n = 2k − 2 does not work (easy).

The field seems like a dead end. Nothing to see here, move on.

Not so fast!

What if we start a graph other than Kn?



First Theorem in Vertex Ramsey Theory

Thm For all k there exists n such that for all colorings of the
vertices of Kn there exists a mono k-clique.
Take n = 2k − 1. k of the vertices are the same color. They form
a mono k-clique.
Note that this is tight: n = 2k − 2 does not work (easy).

The field seems like a dead end. Nothing to see here, move on.

Not so fast! What if we start a graph other than Kn?



Driving Question in Vertex Ramsey Theory

Let k ∈ N, k ≥ 3.

Want a graph G = (V ,E ) such that
∀ COL : V → [2] ∃ mono k-clique.
G does not contain a clique of size 2k − 1.

We may put other restrictions on the G

G does not contain a clique of size 2k − 2. 2k − 3. How low
can you go!

Try to minimize the number of vertices in G .
Similar to our study of G where 2-coloring edges yields 3-homog
set.
We will use a result in Vertex-Ramsey to help Graph Ramsey.
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First Interesting Result in Vertex Ramsey

Thm There exists a graphH = (V ,E ) such that

K4 is not a subgraph of H.
|V | = 17.
∀ COL : V → [2], ∃ mono 3-clique.

Use the graph
V = {0, . . . , 16} (view as Z17).
E = {(x , y) : x − y is a square mod 17}}.
Familiar! This is the R edges of the graph that showed
R(4) ≥ 18. Hence K4 is not a subgraph.

Need to show that ∀ COL : V → [2] ∃ mono 3-clique.
That will be a HW. Irving’s paper may help:
http://www.cs.umd.edu/~gasarch/TOPICS/grt/irving.pdf

http://www.cs.umd.edu/~gasarch/TOPICS/grt/irving.pdf
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G , RAM(G), No K5 Subgraph

Informal G is H with one more vertex added and an edge from
every vertex in H to the new vertex.
Thm There exists a graph G = (V ,E ) such that

K5 is not a subgraph of H.
|V | = 18.
∀ COL : V → [2], ∃ mono 4.
Construction G is H with one more vertex and all edges to it.
Formally:

H = (V ,E ). Let v0 /∈ V . G = (V ′,E ′) where
V ′ = V ∪ {v0}
E ′ = E ∪ {(v , v0) : v ∈ V ′}



G , RAM(G), No K5 Subgraph

Informal G is H with one more vertex added and an edge from
every vertex in H to the new vertex.
Thm There exists a graph G = (V ,E ) such that
K5 is not a subgraph of H.

|V | = 18.
∀ COL : V → [2], ∃ mono 4.
Construction G is H with one more vertex and all edges to it.
Formally:

H = (V ,E ). Let v0 /∈ V . G = (V ′,E ′) where
V ′ = V ∪ {v0}
E ′ = E ∪ {(v , v0) : v ∈ V ′}



G , RAM(G), No K5 Subgraph

Informal G is H with one more vertex added and an edge from
every vertex in H to the new vertex.
Thm There exists a graph G = (V ,E ) such that
K5 is not a subgraph of H.
|V | = 18.

∀ COL : V → [2], ∃ mono 4.
Construction G is H with one more vertex and all edges to it.
Formally:

H = (V ,E ). Let v0 /∈ V . G = (V ′,E ′) where
V ′ = V ∪ {v0}
E ′ = E ∪ {(v , v0) : v ∈ V ′}



G , RAM(G), No K5 Subgraph

Informal G is H with one more vertex added and an edge from
every vertex in H to the new vertex.
Thm There exists a graph G = (V ,E ) such that
K5 is not a subgraph of H.
|V | = 18.
∀ COL : V → [2], ∃ mono 4.

Construction G is H with one more vertex and all edges to it.
Formally:

H = (V ,E ). Let v0 /∈ V . G = (V ′,E ′) where
V ′ = V ∪ {v0}
E ′ = E ∪ {(v , v0) : v ∈ V ′}



G , RAM(G), No K5 Subgraph

Informal G is H with one more vertex added and an edge from
every vertex in H to the new vertex.
Thm There exists a graph G = (V ,E ) such that
K5 is not a subgraph of H.
|V | = 18.
∀ COL : V → [2], ∃ mono 4.
Construction G is H with one more vertex and all edges to it.
Formally:

H = (V ,E ). Let v0 /∈ V . G = (V ′,E ′) where
V ′ = V ∪ {v0}
E ′ = E ∪ {(v , v0) : v ∈ V ′}



G , RAM(G), No K5 Subgraph

Informal G is H with one more vertex added and an edge from
every vertex in H to the new vertex.
Thm There exists a graph G = (V ,E ) such that
K5 is not a subgraph of H.
|V | = 18.
∀ COL : V → [2], ∃ mono 4.
Construction G is H with one more vertex and all edges to it.
Formally:

H = (V ,E ). Let v0 /∈ V . G = (V ′,E ′) where

V ′ = V ∪ {v0}
E ′ = E ∪ {(v , v0) : v ∈ V ′}



G , RAM(G), No K5 Subgraph

Informal G is H with one more vertex added and an edge from
every vertex in H to the new vertex.
Thm There exists a graph G = (V ,E ) such that
K5 is not a subgraph of H.
|V | = 18.
∀ COL : V → [2], ∃ mono 4.
Construction G is H with one more vertex and all edges to it.
Formally:

H = (V ,E ). Let v0 /∈ V . G = (V ′,E ′) where
V ′ = V ∪ {v0}

E ′ = E ∪ {(v , v0) : v ∈ V ′}



G , RAM(G), No K5 Subgraph

Informal G is H with one more vertex added and an edge from
every vertex in H to the new vertex.
Thm There exists a graph G = (V ,E ) such that
K5 is not a subgraph of H.
|V | = 18.
∀ COL : V → [2], ∃ mono 4.
Construction G is H with one more vertex and all edges to it.
Formally:

H = (V ,E ). Let v0 /∈ V . G = (V ′,E ′) where
V ′ = V ∪ {v0}
E ′ = E ∪ {(v , v0) : v ∈ V ′}



G Has No K5 Subgraph

G does not have K5 as a subgraph:
Assume, BWOC, that G has K5 as a subgraph.

If the K5 does not have v0 then K5 is a subgraph of H,
contradiction.

If the K5 does have v0 then remove v0 and you have that K4 is
a subgraph of H, contradiction.
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RAM(G ):
Let COL : E ′ → [2].

We create a coloring of the vertices of H.

COL∗ : V → [2] is defined by
COL∗(v) = COL(v , v0).

By First Interesting Theorem on Vertex-Ramsey have ∃ mono
3-clique.

See next slide for pictures and grand finale!
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Focus on the Three R Edges
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If all of (1, 2), (1, 3), (2, 3) are B then have B4.

Done!
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Recall General Theorem

Thm Let G = (V ,E ). If V can be partitioned into 5 ind. sets
then ∃ COL : E → [2] with no mono 4.



Every Graph on 9 Vertices. . .

Thm Let G be a graph on 9 vertices that does not have a K5

subgraph. Then

a) V can be partitioned into 5 ind. sets.
b) (Using Theorem) ∃ COL : E → [2] with no mono 4s.

V = {1, 2, 3, 4, 5, 6, 7, 8, 9}.
5, 6, 7, 8, 9: Since NOT K5 can assume {8, 9} is Ind Set.
3, 4, 5, 6, 7: Since NOT K5 can assume {6, 7} is Ind Set.
1, 2, 3, 4, 5: Since NOT K5 can assume {4, 5} is Ind Set.
Case 1 ∃i , j ∈ {1, 2, 3}, {i , j} is Ind Set. Can assume
{i , j} = {2, 3}.
Use {1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}.
Case 2 ∀i , j ∈ {1, 2, 3}, {i , j} ∈ E .
So {1, 2, 3} is a K3. cont on next slide.
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