

Polynomials Mod 1

Exposition by William Gasarch

1 Pre Introduction

Everything in this document is a scaled down version of what is in Croot, Lyall, Rice [1].

Notation 1.1 Let $\alpha \in \mathbb{R}$.

1. $\alpha \pmod{1}$ is β such that $\beta \in [0, 1)$ and $\alpha - \beta \in \mathbb{N}$.

Examples:

$$10.2 \pmod{1} = 0.2.$$

$$\pi \pmod{1} = 0.1415\dots$$

$$10.9 \pmod{1} = 0.9.$$

$$e \pmod{1} = 0.7182\dots$$

2. If $\alpha \in \mathbb{R}$ then $\|\alpha\|$ is the distance from α to the nearest integer. This is not $\alpha \pmod{1}$

Examples:

$$\|10.2\| = 0.2$$

$$\|\pi\| = 0.1415\dots$$

$$\|10.9\| = 0.1$$

$$\|e\| = 0.2817\dots$$

3. $a \ll b$ means that a is less than a constant times b .

2 Introduction

The following theorem is a special case of the Kronecker Approx Theorem. We give a purely combinatorial proof that was due to Kronecker.

Theorem 2.1 *Let $\alpha \in \mathbb{R}$ and $N \in \mathbb{N}$, $N \geq 1$. Then there exists $1 \leq n \leq N$ such that*

$$\|n\alpha\| \ll \frac{1}{N}$$

Proof: View $[0, 1]$ as

$$\left[0, \frac{1}{N-1}\right) \cup \left[\frac{1}{N-1}, \frac{2}{N-1}\right) \cup \dots \cup \left[\frac{N-2}{N-1}, 1\right).$$

Map each $1 \leq i \leq N$ to the interval that $i\alpha \pmod{1}$ is in. We are mapping N numbers to $N-1$ intervals, hence two of them map to the same interval. Let them be $i\alpha$ and $j\alpha$. Hence

$$i\alpha = m_i + \epsilon_i$$

$$j\alpha = m_j + \epsilon_j$$