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1 Introduction

Definition 1.1 If n ∈ N then [n] = {1, . . . , n}.

The following is Schur’s Theorem which is an early result (1916) in Ramsey theory:

Theorem 1.2 For all c ∈ N there exists n ∈ N such that, for all COL: [n]→ [c] there exists x, y, z
all the same color such that x + y = z.

In Schur’s theorem the goal is a solution to x + y = z where x, y, z are the same color. What if
you want a solution where x, y, z are different colors?

Definition 1.3 Let c, n ∈ N and COL: [n] → [c]. A triple x, y, z ∈ [n] is rainbow if x, y, z are all
different colors.

If COL colors all the numbers R then there is no rainbow solution. Our main theorem deals
with this issue.

2 The Main Theorem

The following theorem was proven in 1987 by NEED AUTHORS NAMES.

Theorem 2.1 Let n ∈ N. Let COL: [3n] → [3]. Assume that every color appears in the image n
times. Then there exists rainbow x, y, z ∈ [3n] such x + y = z

Proof:
We let the colors be R,B,G. We can assume COL(1) = R. Let k be such that

COL(1) = · · · = COL(k − 1) 6= COL(k).

We can assume COL(k) = B.
We do an example: n = 7, k = 5, and COL(13) = G. (When we generalize the example we will

have a instead of 13). So we have:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
R R R R B G

We will show that either we get our rainbow solution or COL(12) = R. When we generalize
this example (1) we will have a− 1 instead of 12, and (2) we will see how getting COL(a− 1) = R
helps prove the theorem.
Case 1: COL(12) = B. So we have:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
R R R R B B G

Then (1, 12, 13) is a rainbow solution. (In generalization, 12 is replaced with a− 1.)

Case 2: COL(12) = G. So we have:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
R R R R B G G

Case 2.1: COL(8) = R. So we have:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
R R R R B R G G

Then (5, 8, 13) is a rainbow solution. (This case did not use COL(12) = G.) (In generalization,
8 is replaced with a− k.)

Case 2.2: COL(8) = B. So we have:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
R R R R B B G G

Then (4, 8, 12) is a rainbow solution.

Case 2.3: COL(8) = G. (We will go through cases that look odd; however, they are similar to
what happens when we generalize this example.) So we have:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
R R R R B G G G

Case 2.3.1: COL(3) = B. NOT TRUE. (When we generalize this example we will have a − 2k
instead of 3.)

Case 2.3.2: COL(3) = R. TRUE. Rainbow solution (2, 5, 8).

Case 2.3.2.1: COL(3) = G. NOT TRUE.

Case 3: COL(12) = R. This must be what happens.
We generalize this example.

Case 1: ∃a ≥ k + 1, COL(a) = G and COL(a− 1) = B. Then (1, a− 1, a) is a rainbow solution.

Case 2: ∃a ≥ k + 1, COL(a) = G and COL(a− 1) = G.

Case 2.1: COL(a− k) = R. (a− k ∈ [n] since a ≥ k + 1.)
Then (k, a− k, a) is a rainbow solution. (This case did not use that COL(a− 1) = G. )

Case 2.2: COL(a− k) = B.
Then (k − 1, a− k, a− 1) is a rainbow solution.

Case 2.3: COL(a−k) = G. Replicate the reasoning from Case 1,2,2.1,2.2 with a replaced by a−k.
There is either a rainbow solution or COL(a− 2k) = G. If COL(a− 2k) = G then (1) a− 2k ∈ [k]:
contradiction, or (2) repeat the argument again. Keep doing this. Eventually there is a rainbow
solution since otherwise ∃i, a− ik ∈ [k] and hence cannot be green.

Case 3: ∀a if COL(a) = G then COL(a− 1) = R. We map every green number a to a− 1. This
is an injection and everything in the image is red. The number 1 is not in the image since either
COL(2) = R or COL(2) = B. Hence there is at least one more green number than red number.
But the number of green numbers is the same as the number of red numbers (both numbers are
n). Hence this case cannot occur.
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