BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Van Der Warden's (VDW) Thm

Exposition by William Gasarch

April 10, 2025

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

VDW's Thm

Def Let $W, k, c \in \mathbb{N}$. Let COL: $[W] \rightarrow [c]$. A mono k-**AP** is an arithmetic progression of length k where every elements has the same color. We often say

 $a, a + d, \ldots, a + (k - 1)d$ are all the same color

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

VDW's Thm

Def Let $W, k, c \in \mathbb{N}$. Let COL: $[W] \rightarrow [c]$. A mono *k*-**AP** is an arithmetic progression of length *k* where every elements has the same color. We often say

 $a, a + d, \ldots, a + (k - 1)d$ are all the same color

VDW's Thm For all k, c there exists W = W(k, c) such that for all COL: $[W] \rightarrow [c]$ there exists a mono k-AP.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

VDW's Thm For all k, c there exists W = W(k, c) such that for all COL: $[W] \rightarrow [c]$ there exists a mono k-AP. W(1, c)=1. A mono 1-AP is just 1 number.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

VDW's Thm For all k, c there exists W = W(k, c) such that for all COL: $[W] \rightarrow [c]$ there exists a mono k-AP. W(1, c)=1. A mono 1-AP is just 1 number. W(2, c)=

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

VDW's Thm For all k, c there exists W = W(k, c) such that for all COL: $[W] \rightarrow [c]$ there exists a mono k-AP. W(1, c)=1. A mono 1-AP is just 1 number. W(2, c)=c+1.

W(1, c) = 1. A mono 1-AP is just 1 number.

W(2, c) = c + 1. By Pigeon Hole Principle.

W(1, c) = 1. A mono 1-AP is just 1 number.

W(2, c) = c + 1. By Pigeon Hole Principle. W(k, 1) =

W(1, c) = 1. A mono 1-AP is just 1 number.

W(2, c) = c + 1. By Pigeon Hole Principle. W(k, 1) = k.

W(1, c) = 1. A mono 1-AP is just 1 number.

W(2, c) = c + 1. By Pigeon Hole Principle.

W(k,1) = k. The mono k-AP is $1, 2, \ldots, k$.

W(1, c) = 1. A mono 1-AP is just 1 number.

W(2, c) = c + 1. By Pigeon Hole Principle.

W(k,1) = k. The mono k-AP is 1, 2, ..., k.

W(3,2) =

W(1, c) = 1. A mono 1-AP is just 1 number.

W(2, c) = c + 1. By Pigeon Hole Principle.

W(k,1) = k. The mono k-AP is $1, 2, \ldots, k$.

W(3,2) = Hmmm,

W(1, c) = 1. A mono 1-AP is just 1 number.

W(2, c) = c + 1. By Pigeon Hole Principle.

W(k,1) = k. The mono k-AP is $1, 2, \ldots, k$.

W(3,2) =Hmmm, this is the first non-trivial one.

We will determine W later. Let $COL: [W] \rightarrow [2]$.

We will determine W later. Let $COL: [W] \rightarrow [2]$. We break [W] into blocks of 5: $B_1, \ldots, B_{|W|/5}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

We will determine W later. Let $COL: [W] \rightarrow [2]$.

We break [W] into blocks of 5: $B_1, \ldots, B_{|W|/5}$.

We view the 2-coloring of [W] as a 2⁵-coloring of the B_i 's The next two slides are about what happens

We will determine W later.

Let $COL: [W] \rightarrow [2]$.

We break [W] into blocks of 5: $B_1, \ldots, B_{|W|/5}$.

We view the 2-coloring of [W] as a 2⁵-coloring of the B_i 's The next two slides are about what happens

1. Within one block.

We will determine W later.

Let $COL: [W] \rightarrow [2]$.

We break [W] into blocks of 5: $B_1, \ldots, B_{|W|/5}$.

We view the 2-coloring of [W] as a 2⁵-coloring of the B_i 's The next two slides are about what happens

ション ふゆ アメリア メリア しょうくしゃ

- 1. Within one block.
- 2. If we take enough blocks, how they relate.

Def: a, a + d, a + 2d is an **almost mono 3AP** if $COL(a) = COL(a+d) \neq COL(a+2d)$. The color of an almost **mono 3AP** is COL(a) = COL(a+d).

Def: a, a + d, a + 2d is an **almost mono 3AP** if $COL(a) = COL(a + d) \neq COL(a + 2d)$. The color of an almost **mono 3AP** is COL(a) = COL(a + d).

Look at the first three elements of a block of 5:

- 1. RRR or BBB. 1-2-3 is mono 3AP.
- 2. RBR or BRB. 1-3-5 is mono 3AP or almost mono 3AP.
- 3. RBB or BRR. 2-3-4 is mono 3AP or almost mono 3AP.

ション ふゆ アメリア メリア しょうくしゃ

- 4. BBR or RRB. 1-2-3 is almost mono 3AP.
- 5. BRB. 1-3-5 is a mono 3AP or an almost mono 3AP.
- 6. BRR. 2-3-4 is mono 3AP or almost mono 3AP.

Def: a, a + d, a + 2d is an **almost mono 3AP** if $COL(a) = COL(a + d) \neq COL(a + 2d)$. The color of an almost **mono 3AP** is COL(a) = COL(a + d).

Look at the first three elements of a block of 5:

- 1. RRR or BBB. 1-2-3 is mono 3AP.
- 2. RBR or BRB. 1-3-5 is mono 3AP or almost mono 3AP.
- 3. RBB or BRR. 2-3-4 is mono 3AP or almost mono 3AP.
- 4. BBR or RRB. 1-2-3 is almost mono 3AP.
- 5. BRB. 1-3-5 is a mono 3AP or an almost mono 3AP.
- 6. BRR. 2-3-4 is mono 3AP or almost mono 3AP.

So always get a mono 3AP or an almost mono 3AP. Can assume its almost mono 3AP and its R.

ション ふゆ アメリア メリア しょうくしゃ

Def: a, a + d, a + 2d is an **almost mono 3AP** if $COL(a) = COL(a + d) \neq COL(a + 2d)$. The color of an almost **mono 3AP** is COL(a) = COL(a + d).

Look at the first three elements of a block of 5:

- 1. RRR or BBB. 1-2-3 is mono 3AP.
- 2. RBR or BRB. 1-3-5 is mono 3AP or almost mono 3AP.
- 3. RBB or BRR. 2-3-4 is mono 3AP or almost mono 3AP.
- 4. BBR or RRB. 1-2-3 is almost mono 3AP.
- 5. BRB. 1-3-5 is a mono 3AP or an almost mono 3AP.
- 6. BRR. 2-3-4 is mono 3AP or almost mono 3AP.

So always get a mono 3AP or an almost mono 3AP. Can assume its almost mono 3AP and its R.

We take enough blocks so that for all 2-colorings:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We take enough blocks so that for all 2-colorings:

• Two of the blocks are the same color, say B_i and B_j .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

We take enough blocks so that for all 2-colorings:

- Two of the blocks are the same color, say B_i and B_j .
- ▶ $\exists k \ B_i B_j B_k$ is either mono 3AP or almost mono 3AP.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

We take enough blocks so that for all 2-colorings:

- Two of the blocks are the same color, say B_i and B_j .
- ► $\exists k \ B_i B_j B_k$ is either mono 3AP or almost mono 3AP. If there are 33 blocks then 2 are the same color.

We take enough blocks so that for all 2-colorings:

Two of the blocks are the same color, say B_i and B_i.

► $\exists k \ B_i - B_j - B_k$ is either mono 3AP or almost mono 3AP. If there are 33 blocks then 2 are the same color. Worst Case B_1 and B_{33} same color. So need B_{65} to exist. Hence need to take $W = 5 \times 65 = 365$.

ション ふゆ アメリア メリア しょうくしゃ

We take enough blocks so that for all 2-colorings:

- Two of the blocks are the same color, say B_i and B_j .
- ▶ $\exists k \ B_i B_j B_k$ is either mono 3AP or almost mono 3AP.

If there are 33 blocks then 2 are the same color.

Worst Case B_1 and B_{33} same color. So need B_{65} to exist.

Hence need to take $W = 5 \times 65 = 365$.

We can get by with LESS blocks- we will consider this point after the proof.

ション ふゆ アメリア メリア しょうくしゃ

$\textit{W}(3,2) \leq 365$

Let $COL \colon [W] \to [2]$.

▲□▶▲□▶▲目▶▲目▶ 目 のへで

$\textit{W}(\textbf{3},\textbf{2}) \leq \textbf{365}$

Let $COL: [W] \rightarrow [2]$.

Break [W] into 65 blocks of size 5 which we think of as being 32-colored.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$\textit{W}(\textbf{3},\textbf{2}) \leq \textbf{365}$

Let $COL \colon [W] \to [2]$.

Break [W] into 65 blocks of size 5 which we think of as being 32-colored.

► $\exists i, j, k$ such that $B_i - B_j - B_k$ form mono 3AP or almost mono 3AP.

$W(3,2) \leq 365$

Let $COL \colon [W] \to [2]$.

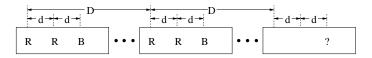
Break [W] into 65 blocks of size 5 which we think of as being 32-colored.

- ► $\exists i, j, k$ such that $B_i B_j B_k$ form mono 3AP or almost mono 3AP.
- In each block there is a mono 3AP or an almost mono 3AP. (This is why blocks-of-5.)

Let $COL \colon [W] \to [2]$.

Break [W] into 65 blocks of size 5 which we think of as being 32-colored.

- ► $\exists i, j, k$ such that $B_i B_j B_k$ form mono 3AP or almost mono 3AP.
- In each block there is a mono 3AP or an almost mono 3AP. (This is why blocks-of-5.)

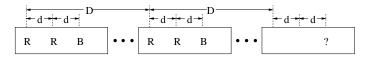


ション ふゆ アメリア メリア しょうくしゃ

Let $COL \colon [W] \to [2]$.

Break [W] into 65 blocks of size 5 which we think of as being 32-colored.

- ► $\exists i, j, k$ such that $B_i B_j B_k$ form mono 3AP or almost mono 3AP.
- In each block there is a mono 3AP or an almost mono 3AP. (This is why blocks-of-5.)



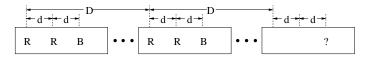
▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

If ? is B then get B 3-AP.

Let $COL: [W] \rightarrow [2]$.

Break [W] into 65 blocks of size 5 which we think of as being 32-colored.

- ► $\exists i, j, k$ such that $B_i B_j B_k$ form mono 3AP or almost mono 3AP.
- In each block there is a mono 3AP or an almost mono 3AP. (This is why blocks-of-5.)

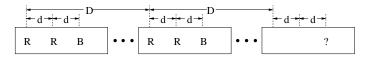


If ? is B then get B 3-AP. If ? is R then get R 3-AP.

Let $COL \colon [W] \to [2]$.

Break [W] into 65 blocks of size 5 which we think of as being 32-colored.

- ► $\exists i, j, k$ such that $B_i B_j B_k$ form mono 3AP or almost mono 3AP.
- In each block there is a mono 3AP or an almost mono 3AP. (This is why blocks-of-5.)



▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

If ? is B then get B 3-AP. If ? is R then get R 3-AP. Done!

Side Note: Can Get By With Less Blocks

Warning This Slide is NOT important.

Side Note: Can Get By With Less Blocks

Warning This Slide is NOT important. However, whenever I give this talk someone bring it up.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Side Note: Can Get By With Less Blocks

Warning This Slide is NOT important.

However, whenever I give this talk someone bring it up. So I will be proactive.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Warning This Slide is NOT important.

However, whenever I give this talk someone bring it up. So I will be proactive.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

If a block is colored **RRRBB** we are done.

Warning This Slide is NOT important.

However, whenever I give this talk someone bring it up. So I will be proactive.

If a block is colored **RRRBB** we are done.

So we don't really have to look at 32 colorings.

Warning This Slide is NOT important.

However, whenever I give this talk someone bring it up. So I will be proactive.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

If a block is colored **RRRBB** we are done.

So we don't really have to look at 32 colorings.

How many colorings of a block already have a mono 3AP.

Side Note: Can Get By With Less Blocks (cont)

```
RRRXY with X, Y \in \{R, B\}. 4 colorings.

BBBXY with X, Y \in \{R, B\}. 4 colorings.

RBRRR

RBRBR

BRBBB

BRBBB

RBBBX with X \in \{R, B\}. 2 colorings.

BRRRX with X \in \{R, B\}. 2 colorings.

RRBBB

BBRRR
```

・ロト・西ト・ヨト・ヨー シック

Side Note: Can Get By With Less Blocks (cont)

```
RRRXY with X, Y \in \{R, B\}. 4 colorings.
BBBXY with X, Y \in \{R, B\}. 4 colorings.
RBRRR
RBRBR
BRBBB
BRBRB
RBBBX with X \in \{R, B\}. 2 colorings.
BRRRX with X \in \{R, B\}. 2 colorings.
RRBBB
BBRRR
```

There are 16 blocks which already have a mono 3AP. Hence can use 32 - 16 = 16 blocks.

Side Note: Can Get By With Less Blocks (cont)

```
RRRXY with X, Y \in \{R, B\}. 4 colorings.
BBBXY with X, Y \in \{R, B\}. 4 colorings.
RBRRR
RBRBR
BRBBB
BRBRB
RBBBX with X \in \{R, B\}. 2 colorings.
BRRRX with X \in \{R, B\}. 2 colorings.
RRBBB
BBRRR
There are 16 blocks which already have a mono 3AP. Hence can
use 32 - 16 = 16 blocks.
```

I really do not care.

Is W(3,2) = 365?

No What is W(3,2)?

Is W(3,2) = 365?

No What is W(3,2)?

One can work out by hand that

W(3,2) = 9.

We will later say which VDW numbers are know and how they compare to the bounds given by the proof of VDW's Thm.

Is W(3,2) = 365?

No What is W(3,2)?

One can work out by hand that

W(3,2)=9.

We will later say which VDW numbers are know and how they compare to the bounds given by the proof of VDW's Thm.

Spoiler Alert The few known VDW numbers are **much smaller** than the bounds given by the proof of VDW's Thm.

$\mathrm{COL}\colon [W]\to [3].$

▲□▶▲□▶▲目▶▲目▶ 目 のへで

COL: $[W] \rightarrow [3]$. How big should the blocks be?

COL: $[W] \rightarrow [3]$. How big should the blocks be? 7.

 $\begin{aligned} & \mathrm{COL}\colon [\mathcal{W}] \to [3]. \\ & \text{How big should the blocks be? 7.} \\ & \text{Then } \forall \text{ 3-coloring of block } \exists \text{ mono 3AP or almost mono 3AP.} \end{aligned}$

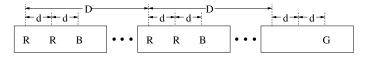
▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

COL: $[W] \rightarrow [3]$. How big should the blocks be? 7. Then \forall 3-coloring of block \exists mono 3AP or almost mono 3AP. **The 3-coloring of** [W] is a 3⁷-coloring of the B_i 's

COL: $[W] \rightarrow [3]$. How big should the blocks be? 7. Then \forall 3-coloring of block \exists mono 3AP or almost mono 3AP. **The 3-coloring of** [W] is a 3⁷-coloring of the B_i 's Need for all 3⁷ colorings of blocks get a mono 3AP or an almost mono 3AP. Need $2 \times 3^+1$ blocks.

COL: $[W] \rightarrow [3]$. How big should the blocks be? 7. Then \forall 3-coloring of block \exists mono 3AP or almost mono 3AP. **The 3-coloring of** [W] is a 3⁷-coloring of the B_i 's Need for all 3⁷ colorings of blocks get a mono 3AP or an almost mono 3AP.

Need $2 \times 3^+1$ blocks.

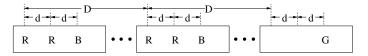


▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

COL: $[W] \rightarrow [3]$. How big should the blocks be? 7. Then \forall 3-coloring of block \exists mono 3AP or almost mono 3AP. **The 3-coloring of** [W] is a 3⁷-coloring of the B_i 's

Need for all 3⁷ colorings of blocks get a mono 3AP or an almost mono 3AP.

Need $2 \times 3^+1$ blocks.



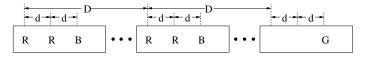
▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Darn. Now what? Discuss

COL: $[W] \rightarrow [3]$. How big should the blocks be? 7. Then \forall 3-coloring of block \exists mono 3AP or almost mono 3AP. **The 3-coloring of** [W] is a 3⁷-coloring of the B_i 's

Need for all 3⁷ colorings of blocks get a mono 3AP or an almost mono 3AP.

Need $2 \times 3^+1$ blocks.



Darn. Now what? Discuss We have 2 almost mono 3APs of diff colors that same last element.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Let *W* be LOTS of blocks of size $7 \times 2 \times (3^7 + 1)$.

・ロト・日本・ヨト・ヨト・ヨー つへぐ

Let W be LOTS of blocks of size $7 \times 2 \times (3^7 + 1)$. For any 2-coloring of [W] the following happens:

Let W be LOTS of blocks of size $7 \times 2 \times (3^7 + 1)$. For any 2-coloring of [W] the following happens:

1. Each block has a mono 3AP OR 2 almost mono 3AP of diff colors that have same last elt.

ション ふゆ アメビア メロア しょうくしゃ

Let W be LOTS of blocks of size $7 \times 2 \times (3^7 + 1)$. For any 2-coloring of [W] the following happens:

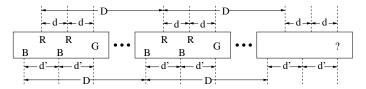
1. Each block has a mono 3AP OR 2 almost mono 3AP of diff colors that have same last elt.

ション ふゆ アメビア メロア しょうくしゃ

2. \exists either a mono 3AP or an almost mono 3AP of blocks.

Let W be LOTS of blocks of size $7 \times 2 \times (3^7 + 1)$. For any 2-coloring of [W] the following happens:

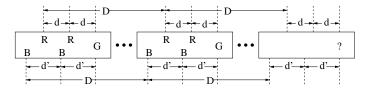
- Each block has a mono 3AP OR 2 almost mono 3AP of diff colors that have same last elt.
- 2. \exists either a mono 3AP or an almost mono 3AP of blocks.



<ロト < 同ト < 日ト < 日ト < 日 > 一日

Let W be LOTS of blocks of size $7 \times 2 \times (3^7 + 1)$. For any 2-coloring of [W] the following happens:

- Each block has a mono 3AP OR 2 almost mono 3AP of diff colors that have same last elt.
- 2. \exists either a mono 3AP or an almost mono 3AP of blocks.

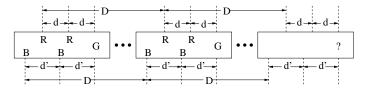


<ロト < 同ト < 日ト < 日ト < 日 > 一日

If ? is G get G 3AP.

Let W be LOTS of blocks of size $7 \times 2 \times (3^7 + 1)$. For any 2-coloring of [W] the following happens:

- Each block has a mono 3AP OR 2 almost mono 3AP of diff colors that have same last elt.
- 2. \exists either a mono 3AP or an almost mono 3AP of blocks.

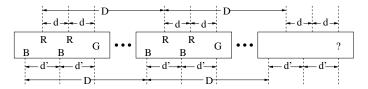


イロト 不得 トイヨト イヨト 二日

If ? is G get G 3AP. If ? is B get B 3AP.

Let W be LOTS of blocks of size $7 \times 2 \times (3^7 + 1)$. For any 2-coloring of [W] the following happens:

- Each block has a mono 3AP OR 2 almost mono 3AP of diff colors that have same last elt.
- 2. \exists either a mono 3AP or an almost mono 3AP of blocks.

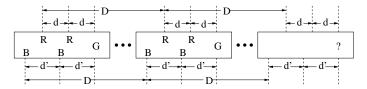


イロト 不得 トイヨト イヨト 二日

If ? is G get G 3AP. If ? is B get B 3AP. If ? is R get R 3AP.

Let W be LOTS of blocks of size $7 \times 2 \times (3^7 + 1)$. For any 2-coloring of [W] the following happens:

- Each block has a mono 3AP OR 2 almost mono 3AP of diff colors that have same last elt.
- 2. \exists either a mono 3AP or an almost mono 3AP of blocks.



<ロト < 同ト < 日ト < 日ト < 三 ト = 三 三 三

If ? is G get G 3AP. If ? is B get B 3AP. If ? is R get R 3AP. Done!

From what you have seen:

From what you have seen:

You COULD do a proof that W(3,4) exists. You would need to iterate what I did twice.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$W(\mathbf{3}, c)$

From what you have seen:

- You COULD do a proof that W(3,4) exists. You would need to iterate what I did twice.
- ► You can BELIEVE that W(3, c) exists though might wonder how to prove it formally.

$W(\mathbf{3}, c)$

From what you have seen:

- You COULD do a proof that W(3,4) exists. You would need to iterate what I did twice.
- ► You can BELIEVE that W(3, c) exists though might wonder how to prove it formally.
- There are ways to formalize the proof; however, they are not enlightening.

$W(\mathbf{3}, c)$

From what you have seen:

- You COULD do a proof that W(3,4) exists. You would need to iterate what I did twice.
- You can BELIEVE that W(3, c) exists though might wonder how to prove it formally.
- There are ways to formalize the proof; however, they are not enlightening.
- The Hales-Jewitt Thm is a general theorem from which VDW is a corollary. We won't be doing that.

$$W(2,c) = c + 1$$
 is just PHP.

$$W(2,c) = c + 1$$
 is just PHP.
 $W(2,2^5) \implies W(3,2)$

$$W(2, c) = c + 1$$
 is just PHP.
 $W(2, 2^5) \Longrightarrow W(3, 2)$
 $W(2, 3^{2 \times 3^7} + 1) \Longrightarrow W(3, 3).$

$$\begin{split} & \mathcal{W}(2,c) = c+1 \text{ is just PHP.} \\ & \mathcal{W}(2,2^5) \implies \mathcal{W}(3,2) \\ & \mathcal{W}(2,3^{2\times 3^7}+1) \implies \mathcal{W}(3,3). \\ & \mathcal{W}(2,X) \implies \mathcal{W}(3,4) \text{ where } X \text{ is very large.} \end{split}$$

$$\begin{split} & \mathcal{W}(2,c) = c+1 \text{ is just PHP.} \\ & \mathcal{W}(2,2^5) \implies \mathcal{W}(3,2) \\ & \mathcal{W}(2,3^{2\times 3^7}+1) \implies \mathcal{W}(3,3). \\ & \mathcal{W}(2,X) \implies \mathcal{W}(3,4) \text{ where } X \text{ is very large.} \end{split}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Note that we **do not** do $W(3,2) \implies W(3,3).$

$\mathrm{COL}\colon [W]\to [4].$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

COL: $[W] \rightarrow [4]$. Key Take blocks of size 2W(3, 2).

*ロト *昼 * * ミ * ミ * ミ * のへぐ

 $\begin{array}{l} {\rm COL}\colon [W] \to [4]. \\ \\ \hbox{Key Take blocks of size $2W(3,2)$.} \\ \\ {\rm Within a block is mono $4AP$ or almost mono $4AP$.} \end{array}$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

COL: $[W] \rightarrow [4]$. Key Take blocks of size 2W(3, 2). Within a block is mono 4AP or almost mono 4AP. Key Take blocks of size 2W(3, 2).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

COL: $[W] \rightarrow [4]$. Key Take blocks of size 2W(3, 2). Within a block is mono 4AP or almost mono 4AP. Key Take blocks of size 2W(3, 2). How many blocks?

 $\operatorname{COL}: [W] \to [4].$

Key Take blocks of size 2W(3,2).

Within a block is mono 4AP or almost mono 4AP.

Key Take blocks of size 2W(3,2).

How many blocks? Want mono 3AP or almost mono 3AP of blocks.

 $\operatorname{COL}: [W] \to [4].$

Key Take blocks of size 2W(3,2).

Within a block is mono 4AP or almost mono 4AP.

Key Take blocks of size 2W(3,2).

How many blocks? Want mono 3AP or almost mono 3AP of blocks. $2W(3, 2^{2W(3,2)})$.

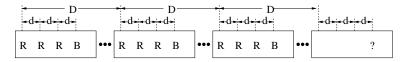
 $\operatorname{COL}: [W] \to [4].$

Key Take blocks of size 2W(3,2).

Within a block is mono 4AP or almost mono 4AP.

Key Take blocks of size 2W(3,2).

How many blocks? Want mono 3AP or almost mono 3AP of blocks. $2W(3, 2^{2W(3,2)})$.



▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

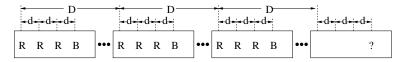
 $\operatorname{COL}: [W] \to [4].$

Key Take blocks of size 2W(3,2).

Within a block is mono 4AP or almost mono 4AP.

Key Take blocks of size 2W(3,2).

How many blocks? Want mono 3AP or almost mono 3AP of blocks. $2W(3, 2^{2W(3,2)})$.



▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

If ? is B get mono 4AP.

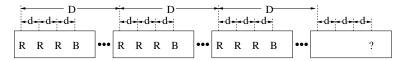
 $\operatorname{COL}: [W] \to [4].$

Key Take blocks of size 2W(3,2).

Within a block is mono 4AP or almost mono 4AP.

Key Take blocks of size 2W(3,2).

How many blocks? Want mono 3AP or almost mono 3AP of blocks. $2W(3, 2^{2W(3,2)})$.



▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

If ? is B get mono 4AP. If ? is R get mono 4AP.

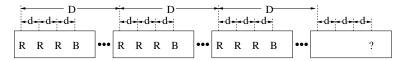
 $\operatorname{COL}: [W] \to [4].$

Key Take blocks of size 2W(3,2).

Within a block is mono 4AP or almost mono 4AP.

Key Take blocks of size 2W(3,2).

How many blocks? Want mono 3AP or almost mono 3AP of blocks. $2W(3, 2^{2W(3,2)})$.



▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

If ? is B get mono 4AP. If ? is R get mono 4AP. Done!

・ロト ・ 四ト ・ ヨト ・ ヨト ・ 白 ・ うへで

➤ You COULD do a proof that W(k, c). You would need to iterate what I did ... a lot.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- ➤ You COULD do a proof that W(k, c). You would need to iterate what I did ... a lot.
- You can BELIEVE that W(k, c) exists though might wonder how to prove it formally.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

- ➤ You COULD do a proof that W(k, c). You would need to iterate what I did ... a lot.
- You can BELIEVE that W(k, c) exists though might wonder how to prove it formally.
- There are ways to formalize the proof; however, the are not enlightening.

- ➤ You COULD do a proof that W(k, c). You would need to iterate what I did ... a lot.
- You can BELIEVE that W(k, c) exists though might wonder how to prove it formally.
- There are ways to formalize the proof; however, the are not enlightening.
- The Hales-Jewitt Thm is a general theorem from which VDW is a corollary. We won't be doing that.

ション ふゆ アメビア メロア しょうくり

$$(2,2) \prec (2,3) \prec \cdots \prec (3,2) \prec (3,3) \prec \cdots \prec (4,2) \cdots$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

$$(2,2) \prec (2,3) \prec \cdots \prec (3,2) \prec (3,3) \prec \cdots \prec (4,2) \cdots$$

This is an ω^2 induction. The ordering is well-founded so you can do induction.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$(2,2) \prec (2,3) \prec \cdots \prec (3,2) \prec (3,3) \prec \cdots \prec (4,2) \cdots$$

This is an ω^2 induction. The ordering is well-founded so you can do induction.

This is an ω^2 induction. Thats why the numbers are so large.

$$(2,2) \prec (2,3) \prec \cdots \prec (3,2) \prec (3,3) \prec \cdots \prec (4,2) \cdots$$

This is an ω^2 induction. The ordering is well-founded so you can do induction.

*ロト *昼 * * ミ * ミ * ミ * のへぐ

This is an ω^2 induction. Thats why the numbers are so large. How large?

$(2,2) \prec (2,3) \prec \cdots \prec (3,2) \prec (3,3) \prec \cdots \prec (4,2) \cdots$

This is an ω^2 induction. The ordering is well-founded so you can do induction.

This is an ω^2 induction. Thats why the numbers are so large.

How large? That takes another entire slide-deck to explain. (Unless you've already seen my slide packet on Primitive Recursive Functions,

$(2,2) \prec (2,3) \prec \cdots \prec (3,2) \prec (3,3) \prec \cdots \prec (4,2) \cdots$

This is an ω^2 induction. The ordering is well-founded so you can do induction.

This is an ω^2 induction. Thats why the numbers are so large.

How large? That takes another entire slide-deck to explain. (Unless you've already seen my slide packet on Primitive Recursive Functions,

in which case just know that the proof given gives bounds that are NOT prim rec.)