
Notes For CMSC 650- COMPUTABILITY
by A.Amir and W.I. Gasarch

1 Introduction

We take our model of computation to be Java Programs. Traditionally one
defines Turing Machines and we will use that terminology, but they are really
java programs. One thing to note: When we say something like

M1, M2, . . . , is a standard list of Turing Machines
we mean that this includes ALL programs and that, from the index i,

you can extract code for i. In particular there is a Turing Machine M that
takes as input (i, x) and outputs Mi(x).

2 Computable and Computably Enumerable

Sets

Def 2.1 A set A is computable if there exists a Turing Machine M that
behaves as follows:

M(x) =
{

1 if x ∈ A,
0 if x /∈ A.

Computable sets are also called decidable or solvable. A machine such as M
above is said to decide A.

Some examples of computable sets.

1. The primes.

2. The Fibaonoacci numbers (any number in the set 1, 2, 3, 5, 8, 13, ...
where every number is the sum of the previous number). If you want
to know if a number x is a Fib number, just calculate the Fib num-
bers until you either spot x or surpass it. If you spot it then its a Fib
number, if you surpass it, its not.

3. (x, y, s) such that Mx(y) halts within s steps.

4. Most sets you can think of are computable.

1

Are there any noncomputable sets? Cheap answer: The number of SETS
is uncountable, the number of COMPUTABLE SETS is countable, hence
there must be some noncomputable sets. In fact, there are an uncountable
number of them. I find this answer rather unenlightening.

3 The HALTING Problem

In this section we exhibit a concrete example of a set that is r.e. but not
computable. Recall that Mx is the xth Turing Machine in the Godelization
defined earlier.

Def 3.1 The HALTING set is the set

K0 = {〈x, y〉 | Mx(y) halts }.

Let us ponder how we would TRY to determine if a number 〈x, y〉 is in
the halting set. Well, we could try RUNNING Mx on y. If the computation
halts, then GOOD, we know that 〈x, y〉 ∈ K0. And if it doesn’t halt then –
WHOOPS– if it never halts we won’t know that!! It seems hard to determine
with certainty that the machine will NOT halt EVER.

Theorem 3.2 The set K0 is not computable.

Proof:
We show that K0 is NOT computable, by using diagonalization. Assume

that K0 is computable. Let M be the Turing Machine that decides K0. Using
M we can easily create a machine M ′ that operates as follows:

M ′(x) =
{

0 if Mx(x) does not halt,
↑ if Mx(x) does halt.

Since M ′ is a Turing Machine, it has a Godel number, say e, so Me = M ′.
We derive a contradiction by seeing what Me does on e.

If M ′(e) ↓ then by the definition of M ′, we know that Me(e) does not
halt, but since M ′ = Me, we know that Me(e) does halt. Hence the scenario
that M ′(e) ↓ cannot happen. (This is not a contradiction yet)

If M ′(e) ↑ then by the definition of M ′, we know that Me(e) does halt’;
but since M ′ = Me, we know that Me(e) does not halt. Hence the scenario
that M ′(e) ↑ cannot happen. (This alone is not a contradiction)

By combining the two above statements we get that M ′(e) can neither
converge, nor diverge, which is a contradiction.

2

This proof may look unmotivated— why define M ′ as we did? We now
look at how one might have come up with the halting set if one’s goal was
to come up with an explicit set that is not decidable:

We want to come up with a set A that is not decidable. So we want that
M1 does not decide A, M2 does not decide A, etc. Let’s make A and machine
Mi differ on their value of i. So we can DEFINE A to be

A = {i | Mi(i) 6= 1}.

This set can easily be shown undecidable— for any i, Mi fails to decide it
since A and Mi will differ on i. But looking at what makes A hard intuitively,
we note that the “6= 1” is a red herring, and the set

B = {i | Mi(i) ↓}

would do just as well. This is essentially the Halting problem.

Corollary 3.3 The set K = {e | Me(e) ↓} is undecidable.

Proof: In the proof of Theorem 3.2, we actually proved that K is unde-
cidable.

Note 3.4 In some texts, the set we denote as K is called the Halting set.
We shall later see that these two sets are identical in computational power,
so the one you care to dub THE halting problem is not important. We chose
the one we did since it seems like a more natural problem. Henceforth, we
will be using K as our main workhorse, as you will see in a later section.

4 Computablely Enumerable Sets

K0 and K are not decidable. Well, what CAN we say about K0 that is
positive. Lets look back at our feeble attempt to solve K0. The algorithm
was: on input x, y, run Mx(y) until it halts. The problem was that if 〈x, y〉 /∈
K0 then the algorithm diverges. But note that if (x, y) ∈ K0 then this
algorithm converges. SO, this algorithm DOES distinguish K0 from K0.
But not quite in the way we’d like. The following definition pins this down

3

Def 4.1 A set A is computablely enumerable (henceforth “r.e.”) if there
exists a Turing Machine M that behaves as follows:

M(x) =
{ ↓ if x ∈ A,
↑ if x /∈ A.

Exercise 1 Show that K and K0 are r.e.

Exercise 2 Show that if A and B are computable then A ∩ B, A ∪ B, and
A are computable. Which of these are true for r.e. sets?

There is a definition of r.e. that is equivalent to the one given, and is
more in the spirit of the words “computablely enumerable.”

Theorem 4.2 Let A be any set. The following are equivalent:

1. A is the domain of a partial computable function (i.e. A is r.e.)

2. A is the range of a total computable function or A = ∅ (this definition
is more like enumerating a set).

Proof: We show 1) → 2) → 1).
1) → 2): Let A be the domain of a partial computable function f . Let M

be a Turing Machine whose domain is A. If A is empty, then 2) is established.
Assume that A is nonempty and let a ∈ A. Let g be the (total) computable
function computed by the following algorithm:

1. Input(n).

2. If n = 0 then output a.

3. Compute X = {g(0), g(1), g(2), . . . , g(n− 1)}.

4. Let Y = {0, 1, 2, . . . , n}. If Y −X is empty then output a. If Y −X is
not empty then run M on every element of Y −X for n steps. If there
is some y ∈ Y − X such that M(y) halts within n steps then output
the least such y. Else output a.

4

We show that range(g) =domain(f). If y is in the range of g then it must be
the case that M(y) halted, so y is in the domain of f . If y is in the domain of
f then let n be the least number such that M(y) halts in n steps and y ≤ n.
If there is some m < n such that g(m) = y then we are done. Otherwise
consider the computation of g(n). In that computation y ∈ Y but might
not be output if there is some smaller element of Y . The same applies to
g(n + 1), g(n + 2), If there are z elements smaller than y in A then one
of g(n), g(n + 1), . . . , g(n + z) must be y.

2) → 1). Assume that A is either empty or the range of a total computable
function. If A is empty then A is the domain of the partial computable
function that always diverges, and we are done. Assume A is the range of
a total computable function f . Let g be the partial computable function
computed by the following algorithm:

1. Input(n).

2. Compute f(0), f(1), . . . until (if it happens) you discover that there is
an i such that f(i) = n. If this happens then halt. (if it does not, then
the function will end up diverging, which is okay by us).

We show that an element n is in the range of f iff g(n) halts. If n is in the
range of f then there exists an i such that f(i) = n; this i will be discovered
in the computation of g on n, so g(n) will be 1. If g(n) halts then an i was
discovered such that f(i) = n, so n is in the range of f .

Several questions arise at this point:

• Are there any sets that are r.e. but not computable?

• Are there any sets that are NOT r.e.?

• If a set is r.e., then is its complement r.e. ?

The second question can be answered in a cheap way: since there are an
uncountable number of sets and a countable number of r.e. sets (since there
are only a countable number of Turing Machines), there are an uncountable
number non-r.e. sets. While this is true, it is not a satisfying answer. We
will give more concrete answers to all these questions.

First we relate r.e. and computable sets.

5

Theorem 4.3 A set A is computable iff both A and A are r.e.

Proof: If A is computable then A is computable. Since any computable
set is r.e. both are r.e.

Assume A and A are r.e. Let Ma be a Turing Machine that has domain
A and Mb be a Turing Machine that has domain A. The set A is computable
via the following algorithm: on input x run both Ma(x) and Mb(x) simul-
taneously; if Ma(x) halts then output YES, if Mb(x) halts then output NO.
Since either x ∈ A or x ∈ A, one of these two events must happen.

This theorem links two of our questions: there exists an r.e. set that is
not computable iff r.e. sets are not closed under complementation.

5 Reductions

We want a notion of if you could compute B then you can compute A We
give two such notions.

Def 5.1 A ≤m B if there is a computable total f such that x ∈ A iff
f(x) ∈ B.

If A ≤m B and you somehow had access to B then you could compute
A. But not that your computing of A only asks ONE question to B and the
answer is the answer for A. We define a reduction where you get to ask B
lots of questions and even have what you ask depend on the prior answers.

Def 5.2 (Informal) Let A be any set. A set B is computable in A if there
is a Turing Machine that, together with a “subroutine” for A can decide B.
The set A is called an oracle. We denote the fact that B is computable in A
by B ≤T A, and say that “B is Turing-less than A”

It is easy to see that for all sets A, A× A ≤T A.

6 Sets that are even harder than HALT

Are there sets that are even “harder to decide” then HALT? We first say
what this means formally:

6

Def 6.1 If A ≤T B, but B 6≤T A, then B is harder than A.

In this section we exhibit sets that are harder than K but do not prove
this.

Recall that K can be written as

K = {e | (∃s)Me(e) halts in s steps }.

Note that we have one quantifier followed by a COMPUTABLE statement.
How can TOT be written:

TOT = {e | (∀x)(∃s)Me(x) halts in s steps}.

This is two quantifiers followed by a computable statements.
It turns out that TOT cannot be written with only one quantifier and

is harder than K. We can classify sets in terms of how many quantifiers it
takes to describe them. Adjacent quantifiers of the same type can always be
collapsed into one quantifier.

Def 6.2 Σn is the class of all sets A that can be written as

A = {x | (∃y1)(∀y2) · · · (Qyn)R(x, y1, y2, . . . , yn)},

where R is a computable relation and Q is ∃ if i is odd, and ∀ if i is even.

Def 6.3 Πn is the class of all sets A that can be written as

A = {x | (∀y1)(∃y2) · · · (Qyn)R(x, y1, y2, . . . , yn)},

where R is a computable relation and Q is ∀ is i is odd, and ∃ if i is even.

Def 6.4 A set is Σn-complete if A ∈ Σn and for all sets B ∈ Σn, B ≤m A.

We now state a theorem without proof.

Theorem 6.5 For every i there are sets in Σi−Πi, there are sets in Σi+1−Σi,
there are Σi-complete sets, and there are Πi-complete sets.

Exercise 3 (You may use the above Theorem.) Show that a Σi-complete
set cannot be in Πi.

7

Exercise 4 Show that K is Σ1-complete. Show that K is Π1-complete.

Exercise 5 Show that if A is Πi-complete then A is Σi-complete.

We show that FIN (the set of indices of Turing machines with finite
domain) is in Σ2 and that COF (the set of Turing machines with cofinite
domains) is in Σ3. It turns out that FIN is Σ2-complete, and COF is Σ3-
complete, though we will not prove this. As a general heuristic, whatever
you can get a set to be, it will probably be complete there.

FIN = {e | (∃x)(∀y, s)[If y > x then Me,s(y) ↑}

COF = {e | (∃x)(∀y)(∃s)[If y > x then Me,s(y) ↓}

8

