
Computability Theory and Ramsey Theory

An Exposition by William Gasarch

All of the results in this document are due to Jockusch [1].

1 A Computable Coloring with NO Infinite c.e. Homog Sets

All of the results in this

Notation 1.1

1. M1,M2, . . . is a standard list of Turing Machines.

2. Note that from e we can extract the code for Me.

3. Me,s(x) means that we run Me for s steps.

4. We is the domain of Me, that is,

We = {x | (∃s)[Me,s(x) ↓].

Note that W1,W2, . . . is a list of ALL c.e. sets.

5.

We,s = {x |Me,s(x) ↓}.

Theorem 1.2 There exists a computable COL :
(
N
2

)
→ [2] such that there is NO infinite c.e.

homog set.

Proof: We construct COL :
(
N
2

)
→ [2] to satisfy the following requirements (NOTE- require-

ments is the most important word in computability theory.)
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Re : We infinite =⇒ We NOT a homog set .

CONSTRUCTION OF COLORING

Stage 0: COL is not defined on anything.

Stage s: We define COL(0, s), . . . , COL(s− 1, s). For e = 0, 1, . . . , s:

If this occurs:

(∃x, y ≤ s− 1)[x, y ∈ We,s ∧ COL(x, s), COL(y, s) undefined ]

then take the LEAST two x, y for which this is the case and do the following:

• COL(x, s) = RED

• COL(y, s) = BLUE.

(Note that IF s ∈ We (which we do not know at this time) then Re would be satisfied.)

After you to through all of the 0 ≤ e ≤ s define all other COL(x, y) where 0 ≤ x < y ≤ s that

have not been defined by COL(x, y) = RED. This is arbitrary. The important things is that ALL

COL(x, s) where 0 ≤ x ≤ s − 1 are now defined. This is why COL is computable— at stage s

we have defined all COL(x, y) with 0 ≤ x < y ≤ s.

END OF CONSTRUCTION

We show that each requirement is eventually satisfied.

For pedagogue we first look at R1.

If W1 is finite then R1 is satisfied.

Assume W1 is infinite. We show that R1 is satisfied. Let x < y be the least two elements in

W1. Let s0 be the least number such that x, y ∈ W1,s0 Note that, for ALL s ≥ s0 you will have

COL(x, s) = RED
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COL(y, s) = BLUE

Since W1 is infinite there is SOME s ≥ s0 with s ∈ We. Hence x, y, s ∈ W1 and show that W1

is NOT homogenous.

Can we show R2 is satisfied the same way? Yes but with a caveat- we won’t use the least two

elements of W2. We’ll use the least two elements of W2 that are bigger than the least two elements

of W1. We now do this rigorously and more generally.

Claim: For all e, Re is satisfied:

Proof: Fix e. If We is finite then Re is satisfied.

Assume We is infinite. We show that Re is satisfied. Let x1 < x2 < · · · < x2e be the first

(numerically) 2e elements of We. Let s0 be the least number such that

• x1, . . . , x2e ∈ We,s0 , and

• For all x ∈ {x1, . . . , x2e}, for all 1 ≤ i ≤ e− 1, if x ∈ Wi then x ∈ Wi,s0 .

KEY: for all s ≥ s0, during stage s, the requirements R1, . . . , Re−1 may define COL(x, s) for

some of the x ∈ {x1, . . . , x2e}. But they will NOT define COL(x, s) for ALL of those x. Why?

Because Ri only defines COL(x, s) for at most TWO of those x’s, and there are e− 1 such i, so at

most 2e− 2 of those x’s have COL(x, s) defined. Hence there will exist x, y such that Re gets to

define COL(x, s) and COL(y, s). Furthermore, they will always be the SAME x, y since the Ri

with i < e have already made up their minds about the x in {x1, . . . , x2e}.

UPSHOT: There exists x, y ∈ We such that, for all s ≥ s0,

COL(x, s) = RED

COL(y, s) = BLUE

Since We is infinite there is SOME s ≥ s0 with s ∈ We. Hence x, y, s ∈ We and show that We

is NOT homogenous.
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2 A Computable Coloring with NO c.e.-in-K Homog Sets

Notation 2.1

1. If A is a c.e. set, say A is the domain of M , then As is {x ≤ s |Me,s(x) ↓}. Note that, given

s, one can compute As.

2. M
()
1 ,M

()
2 , . . . is a standard list of oracle Turing Machines.

3. Note that from e we can extract the code for M ()
e .

4. If A is a c.e. set then MAs
e,s (x) means that we run M

()
e for s steps and using As for the oracle.

5. If A is c.e. then WA
e is the domain of MA

e .

WA
e = {x | (∃s)[MAs

e,s (x) ↓].

Note that WK
1 ,WK

2 , . . . is a list of ALL c.e-in-K sets.

6.

WAs
e,s = {x |MAs

e,s (x) ↓ .

Theorem 2.2 There exists COL :
(
N
2

)
→ [2] such that there is NO infinite c.e-in-K. homog set.

Proof sketch: This will be a HW. But note that its very similar to the proof of Theorem 1.2— if

WK
e is infinite then eventually WKs

e,s will settle down on its first 2e elements.

3 A Computable Coloring with NO Σ2 Homog Sets

We state equivalences of both c.e. and c.e.-in-K. We leave the proofs to the reader.

Theorem 3.1 Let A be a set. The following are equivalent:
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1. There exists e such that A = We. (A is c.e.)

2. There exists a decidable R such that

A = {x | (∃y)[(x, y) ∈ R].

(A is Σ1.)

3. There exists e such that

A = {x | (∃y, s)[Me,s(y) = x}.

(This is the origin of the phrase ‘computably ENUMERABLE.)

Theorem 3.2 Let A be a set. The following are equivalent:

1. There exists e such that A = WK
e . (A is c.e.-in-K.)

2. There exists a decidable-in-K R such that

A = {x | (∃y)[(x, y) ∈ R].

(A is ΣK
1 .)

3. There exists e such that

A = {x | (∃y, s)[MK
e,s(y) = x}.

(This is the origin of the phrase ‘computably ENUMERABLE-in-K.)

We also need to know that K is quite powerful:

Def 3.3 If A,B are sets then A ≤m B means that there exists a computable f such that

x ∈ A ⇐⇒ f(x) ∈ B.
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We leave the proof of the following to the reader.

Theorem 3.4 If A is c.e. then A ≤m K.

The key use of the above theorem is that we can phrase Σ1 questions as queries to K.

Theorem 3.5 A ∈ Σ2 iff A is c.e.-in-K.

Proof:

1) A ∈ Σ2 implies A is c.e.-in-K:

If A ∈ Σ2 then there exists a TM R that always converges such that

A = {x | (∃y)(∀z)[R(x, y, z) = 1]}.

Let MK be the TM that does the following:

1. Input(x, y).

2. Ask K (∀z)[R(x, y, z) = 1]. (Can rephrase as (∃z)[R(x, y, z) = 0].)

3. If YES answer YES, if NO then answer NO.

A = {x | (∃y)[MK(x, y) = 1]}.

Hence A is c.e.-in-K.

2) A c.e.-in-K implies A ∈ Σ2.

A is c.e.-in-K. So

A = WK
e = {x | (∃s)(∀t)[t ≥ s =⇒ x ∈ WKt

e,t ]}.

So A is Σ2.
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Theorem 3.6 There exists COL :
(
N
2

)
→ [2] such that there is NO infinite Σ2 homog set.

Proof: Combine Theorems 2.2 and 3.5. Note that we only need one part of the implication in

Theorem 3.5.

4 Every Computable Coloring has an Infinite Π2 Homog set

We obtain this with a modification of the usual proof of Ramsey’s theorem. the key is that we don’t

really toss things out- we guess on what the colors are and change our mind.

Theorem 4.1 For every computable coloring COL :
(
N
2

)
→ [2] there is an infinite Π2 homog set.

Proof:

We are given computable COL :
(
N
2

)
→ [2].

CONSTRUCTION of x1, x2, . . . and c1, c2, . . ..

NOTE: at the end of stage s we might have x1, . . . , xi defined where i < s. We will not try to

keep track of how big i is. Also, we may have at stage (say) 1000 a sequence of length 50, and

then at stage 1001 have a sequence of length only 25. The sequence will grow eventually but do

so in fits and starts.

x1 = 1

c1 = RED We are guessing. We might change our mind later

Let s ≥ 2, and assume that x1, . . . , xs−1 and c1, . . . , cs−1 are defined.

1. Ask K Does there exists x ≥ xs−1 such that, for all 1 ≤ i ≤ s− 1, COL(xi, x) = ci)?
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2. If YES then (using that COL is computable) find the least such x.

xi = x

ci = RED We are guessing. We might change our mind later

We have implicitly tossed out all of the numbers between xi−1 and xi.

3. If NO then we ask K how far back we can go. More rigorously we ask the following

sequence of questions until we get a YES.

• Does there exists x ≥ xs−1 such that, for all 1 ≤ i ≤ s− 2, COL(xi, x) = ci)?

• Does there exists x ≥ xs−1 such that, for all 1 ≤ i ≤ s− 3, COL(xi, x) = ci)?

•
...

• Does there exists x ≥ xs−1 such that, for all 1 ≤ i ≤ 2, COL(xi, x) = ci)?

• Does there exists x ≥ xs−1 such that, for all 1 ≤ i ≤ 1, COL(xi, x) = ci)?

(One of these must be a YES since (1) if c1 = RED and there are NO red edges coming out

of x1 then there must be an infinite number of BLUE edges, and (2) if c1=BLUE its because

there are only a finite number of RED edges coming out of x1 so there are an infinite number

of BLUE edges. Let i0 be such that There exists x ≥ xs−1 such that, for all 1 ≤ i ≤ i0,

COL(xi, x) = ci) Do the following:

(a) Change the color of ci+1. (We will later see that this change must have been from RED

to BLUE.

(b) Wipe out xi+2, . . . , xs−1.

(c) Search for the x ≥ xs−1 that the question asked says exist.

(d) xi+2 is now x.
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(e) ci+2 is now RED.

END OF CONSTRUCTION of x1, x2 . . . and c1, c2, . . ..

We need to show that there is a Π2 homog set.

Let X be the set of xi that are put on the board and stay on the board.

Let R be the set of xi ∈ X whose final color is RED.

Claim 1: Once a number turns from RED to BLUE it can’t go back to RED again.

Proof:

If a number is turned BLUE its because there are only a finite number of RED edges coming

out of it. Hence there must be an infinite number of BLUE edges coming out of it. Hence it will

never change color (though it may be tossed out).

End of Proof

Claim 1: X,R ∈ Π2.

Proof:

We show that X ∈ Σ2. In order to NOT be in X you must have, at some point in the construc-

tion, been tossed out.

X = {x | (∃x)[ at stage s of the construction x was tossed out ]}.

Note that the condition is computable-in-K. Hence X is c.e.-in-K. By Theorem 3.5 X ∈ Σ2.

We show that R ∈ Σ2. In order to NOT be in R you must have to either NOT be in X or have

been turned blue. Note that once you turn at some point in the construction, been tossed out.

R = X ∪ {x | (∃x)[ at stage s of the construction x was turned BLUE]}.

Recall that Σ2 is closed under complementation. So we only need to show that the other unio-

nand is in Σ2. Note that the condition is computable-in-K. Hence R is c.e.-in-K. By Theorem 3.5
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R ∈ Σ2.

End of Proof

There are two cases:

1. If R is infinite then R is an infinite homog set that is Π2.

2. If R is finite then B is X minus a finite number of elements. Since X is Π2, B is Π2.
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