Computability Theory and Ramsey Theory
An Exposition by William Gasarch

All of the results in this document are due to Jockusch [1].
1 A Computable Coloring with NO Infinite c.e. Homog Sets

All of the results in this

Notation 1.1
1. My, Ms, ... is astandard list of Turing Machines.
2. Note that from e we can extract the code for M..

3. M. s(z) means that we run M, for s steps.

4. W, is the domain of M., that is,
We = {z | (3s)[Me,s(x) 1.

Note that W, W5, ... 1s alist of ALL c.e. sets.

We,s = {1: | Me,s(x) i}

N

Theorem 1.2 There exists a computable COL : (3

) — [2] such that there is NO infinite c.e.

homog set.

Proof: = We construct COL : (]; ) — [2] to satisfy the following requirements (NOTE- require-

ments is the most important word in computability theory.)



R, : W, infinite = W, NOT a homog set .

CONSTRUCTION OF COLORING
Stage 0: C'OL is not defined on anything.
Stage s: We define COL(0, s),...,COL(s —1,s). Fore =0,1,...,s:

If this occurs:

(Fz,y <s—1)x,y € Wes NCOL(z,s), COL(y, s) undefined |

then take the LEAST two x, y for which this is the case and do the following:
e COL(x,s) = RED
e COL(y,s) = BLUE.

(Note that IF s € T, (which we do not know at this time) then 1, would be satisfied.)

After you to through all of the 0 < e < s define all other COL(z,y) where 0 < z < y < s that
have not been defined by COL(z,y) = RED. This is arbitrary. The important things is that ALL
COL(z,s) where 0 < z < s — 1 are now defined. This is why COL is computable— at stage s
we have defined all COL(z,y) with0 < z < y < s.

END OF CONSTRUCTION

We show that each requirement is eventually satisfied.

For pedagogue we first look at R;.

If W is finite then R; is satisfied.

Assume W is infinite. We show that R, is satisfied. Let x < y be the least two elements in
W. Let sy be the least number such that z, y € W ;, Note that, for ALL s > s, you will have

COL(z,s) = RED



COL(y,s) = BLUE

Since W is infinite there is SOME s > sy with s € W,. Hence x,y, s € W; and show that W,
is NOT homogenous.

Can we show R, is satisfied the same way? Yes but with a caveat- we won’t use the least two
elements of W,. We’ll use the least two elements of W, that are bigger than the least two elements
of ;. We now do this rigorously and more generally.

Claim: For all e, R, is satisfied:
Proof: Fix e. If WV, is finite then R, is satisfied.
Assume W, is infinite. We show that R, is satisfied. Let x; < 29 < --- < x9. be the first

(numerically) 2e elements of W,. Let sy be the least number such that
® Ty,..., %o € Wy, and
o Forall z € {xy,..., x5}, foralll1 <i<e—1,ifx € W;thenxz € W, .

KEY: for all s > sg, during stage s, the requirements R, ..., R._; may define COL(z, s) for
some of the x € {xy,..., 2. }. But they will NOT define COL(z, s) for ALL of those z. Why?
Because R; only defines COL(x, s) for at most TWO of those x’s, and there are e — 1 such i, so at
most 2e — 2 of those z’s have COL(z, s) defined. Hence there will exist x, y such that R, gets to
define COL(z, s) and COL(y, s). Furthermore, they will always be the SAME z, y since the R;
with i < e have already made up their minds about the z in {z1, ..., o }.

UPSHOT: There exists x,y € W, such that, for all s > s,

COL(z,s) = RED

COL(y,s) = BLUE

Since W, is infinite there is SOME s > s with s € W,. Hence z, y, s € W, and show that IV,
is NOT homogenous.



2 A Computable Coloring with NO c.e.-in- X' Homog Sets
Notation 2.1

1. If Aisac.e. set, say A is the domain of M, then A, is {x < s | M. (x) |}. Note that, given

s, one can compute A,.
2. Ml(), M2(), ... 1s a standard list of oracle Turing Machines.
3. Note that from e we can extract the code for M.
4. If Aisac.e. set then M, ef‘; () means that we run MY for s steps and using A for the oracle.

5. If Ais c.e. then WA is the domain of MA.
Wi = {a | (3s)[M; () 4.

Note that W[ W .. isalist of ALL c.e-in-K sets.

W ={x| M () |

Theorem 2.2 There exists COL : (];[ ) — [2] such that there is NO infinite c.e-in-K. homog set.

Proof sketch:  This will be a HW. But note that its very similar to the proof of Theorem 1.2— if

WX is infinite then eventually Wefi will settle down on its first 2e elements. |
3 A Computable Coloring with NO > Homog Sets
We state equivalences of both c.e. and c.e.-in-K. We leave the proofs to the reader.

Theorem 3.1 Ler A be a set. The following are equivalent:
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1. There exists e such that A = W.. (Ais c.e.)

2. There exists a decidable R such that

A={z|@Yl(z,y) € R].

(A is 21)

3. There exists e such that

A={z|(3y,s)[Mcs(y) =z}

(This is the origin of the phrase ‘computably ENUMERABLE.)

Theorem 3.2 Let A be a set. The following are equivalent:

1. There exists e such that A = WX, (Ais c.e.-in-K.)

2. There exists a decidable-in-K R such that

A={z|@Yl(z,y) € R].

(Ais XK.)

3. There exists e such that

A={x | (3y,8)[ME(y) = o}.
(This is the origin of the phrase ‘computably ENUMERABLE-in-K.)

We also need to know that K is quite powerful:

Def 3.3 If A, B are sets then A <,,, B means that there exists a computable f such that

r€A < f(x)€ B,
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We leave the proof of the following to the reader.
Theorem 3.4 If Aisc.e. then A <,, K.

The key use of the above theorem is that we can phrase >.; questions as queries to K.
Theorem 3.5 A € X, iff Ais c.e.-in-K.

Proof:
1) A € 35 implies A is c.e.-in-K:

If A € 35 then there exists a TM R that always converges such that

A={zr|By)(v2)[R(z,y,z) = 1]}.
Let M¥ be the TM that does the following:
1. Input(z, y).
2. Ask K (Vz)[R(z,y, z) = 1]. (Can rephrase as (3z)[R(z,y, z) = 0].)

3. If YES answer YES, if NO then answer NO.

A={z| @) M"(z,y) =1]}.
Hence A is c.e.-in-K.
2) A c.e.-in-K implies A € Y.
Aisc.e.-in-K. So
A=WE={z|@s)(V)[t >s = z e W]}

So A is Y.



Theorem 3.6 There exists COL : (%)) — [2] such that there is NO infinite $o homog set.

Proof: = Combine Theorems 2.2 and 3.5. Note that we only need one part of the implication in

Theorem 3.5. |

4 Every Computable Coloring has an Infinite [I, Homog set

We obtain this with a modification of the usual proof of Ramsey’s theorem. the key is that we don’t

really toss things out- we guess on what the colors are and change our mind.
Theorem 4.1 For every computable coloring COL : (g] ) — [2] there is an infinite Ty homog set.

Proof:

We are given computable COL : () — [2].
CONSTRUCTION of x1,x3,...and ¢y, ca, . . ..

NOTE: at the end of stage s we might have z1, ..., z; defined where ©+ < s. We will not try to
keep track of how big 7 is. Also, we may have at stage (say) 1000 a sequence of length 50, and
then at stage 1001 have a sequence of length only 25. The sequence will grow eventually but do

so in fits and starts.

T = 1
c1 = RED We are guessing. We might change our mind later
Let s > 2, and assume that x1,...,x, 1 and ¢y, ..., cs_ are defined.

1. Ask K Does there exists x > xs_q such that, forall 1 <i < s—1, COL(x;,x) = ¢;)?



2. If YES then (using that COL is computable) find the least such .

c¢; = RED We are guessing. We might change our mind later

We have implicitly tossed out all of the numbers between z;_; and x;.

3. If NO then we ask K how far back we can go. More rigorously we ask the following

sequence of questions until we get a YES.

e Does there exists x > w51 such that, forall 1 <i < s—2, COL(x;,x) = ¢;)?

e Does there exists x > xs_1 such that, forall 1 <i < s—3, COL(x;,x) = ¢;)?

Does there exists © > x5 such that, forall 1 < i < 2, COL(x;,x) = ¢;)?

Does there exists x > xs_1 such that, forall 1 <i <1, COL(z;,x) = ¢;)?

(One of these must be a YES since (1) if c; = RE'D and there are NO red edges coming out
of x; then there must be an infinite number of BLU E edges, and (2) if ¢c;=BLUE its because
there are only a finite number of RE D edges coming out of x; so there are an infinite number
of BLUFE edges. Let iy be such that There exists x > xs_1 such that, for all 1 < i < 1,

COL(x;,x) = ¢;) Do the following:
(a) Change the color of ¢; ;. (We will later see that this change must have been from RED
to BLUE.
(b) Wipeout z;49,...,25_1.
(c) Search for the x > x,_ that the question asked says exist.

(d) x;101s now x.



(e) ciioisnow RED.

END OF CONSTRUCTION of z, x5 ... and ¢, ca, . . ..

We need to show that there is a II, homog set.

Let X be the set of z; that are put on the board and stay on the board.

Let R be the set of ; € X whose final color is RED.

Claim 1: Once a number turns from RED to BLUE it can’t go back to RE D again.
Proof:

If a number is turned BLU E its because there are only a finite number of RE D edges coming
out of it. Hence there must be an infinite number of BLU E edges coming out of it. Hence it will
never change color (though it may be tossed out).

End of Proof
Claim 1: X R € Ils.
Proof:
We show that X € 3. In order to NOT be in X you must have, at some point in the construc-

tion, been tossed out.

X = {x | (3x)[ at stage s of the construction x was tossed out |}.

Note that the condition is computable-in- /. Hence X is c.e.-in-K . By Theorem 3.5 X € %,.
We show that R € ¥. In order to NOT be in R you must have to either NOT be in X or have

been turned blue. Note that once you turn at some point in the construction, been tossed out.

R = X U{x | (3z)] at stage s of the construction  was turned BLUE] }.

Recall that 3’5 is closed under complementation. So we only need to show that the other unio-

nand is in 5. Note that the condition is computable-in-/ . Hence R is c.e.-in-K. By Theorem 3.5



R e,
End of Proof

There are two cases:
1. If R is infinite then R is an infinite homog set that is II5.

2. If R is finite then B is X minus a finite number of elements. Since X is Iy, B is Ils.
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