Homework 3, Morally Due Tue Feb 19, 2013 COURSE WEBSITE: http://www.cs.umd.edu/gasarch/858/S13.html (The symbol before gasarch is a tilde.)

- 1. (0 points) What is your name? Write it clearly. Staple your HW. When is the midterm (give Date and Time)? If you cannot make it in that day/time see me ASAP. Join the Piazza group for the course. The codename is cmsc858. Look at the link on the class webpage about projects. Come see me about a project. READ the note on the class webpage that say THIS YOU SHOULD READ that you haven't already read.
- 2. (50 points) Let (X, \preceq) be a set with an order on it. Let \preceq_{awesme} be the following order on X^*

$$x_1 x_2 \cdots x_n \preceq_{\text{awesme}} y_1 y_2 \cdots y_m$$

if there exists $i_1 < i_2 < \ldots < i_n$ (numeric order) such that

 $x_1 \preceq y_{i_1}$ $x_2 \preceq y_{i_2}$ \vdots $x_n \preceq y_{i_n}.$

Show that if (X, \preceq) is a wqo then $(X^*, \preceq_{\text{awesme}})$ is a wqo. (HINT: This is similar to the proof that Σ^* under subsequence is a wqo.)

- 3. (50 points) Find a function f(k) such that the following two statements are true:
 - (a) For all colorings of [f(k)] either there are k numbers colored the same or there are k numbers colored differently.
 - (b) There is a coloring of [f(k)-1] such that there are NO k numbers colored the same, NOR are there k numbers colored differently.
- 4. (Extra Credit- hand in to bill on sep sheet.) Let (X, \preceq) be a wqo. Let $\binom{X}{<\omega}$ be the set of all FINITE subsets of X. We order $\binom{X}{<\omega}$ by, if $A, B \in \binom{X}{<\omega}$, then $A \preceq' B$ if there is a 1-1 map f from A to B where, for all $x \in A, x \preceq f(x)$. Show that $\binom{X}{<\omega}, \preceq'$ is a wqo.