POLY VDW THEOREM (Exposition)

William Gasarch-U of MD

VDW

Recall:

Theorem:
$$(\forall k, c)(\exists W = W(k, c))$$
 such that for all $COL: [W] \rightarrow [c] (\exists a, d)$ such that

$$COL(a) = COL(a+d) = COL(a+2d) = \cdots = COL(a+(k-1)d).$$

Recall:

$$W(1,c) = 1$$

 $W(2,c) = c + 1$ (this is PHP)
 $W(k,1) = k$

Let W(k,c) mean both the number and the STATEMENT.

We proved

```
Recall: W(2,32) \Longrightarrow W(3,2) W(2,10^{10}) \Longrightarrow W(3,3) (might not be big enough.) W(2,(10!^{10!})) \Longrightarrow W(3,4) (might not be big enough.) W(3,BLAH) \Longrightarrow W(4,2). W(3,BLAHBLAH) \Longrightarrow W(4,3).
```

So Whats Really Going On?

Order PAIRS of naturals (think (k, c)) via

$$(2,2) \leq (2,3) \leq (2,4) \leq \cdots \leq (3,2) \leq (3,3) \leq (3,4) \cdots$$

$$(4,2) \le (4,3) \le \cdots (5,2) \le (5,3) \le \cdots \le (6,2) \cdots$$

Formal proof of VDW is an induction on this ordering.

Induction on an ω^2 ordering.

So Whats Really Going On?

Order PAIRS of naturals (think (k, c)) via

$$(2,2) \le (2,3) \le (2,4) \le \cdots \le (3,2) \le (3,3) \le (3,4) \cdots$$

$$(4,2) \le (4,3) \le \cdots (5,2) \le (5,3) \le \cdots \le (6,2) \cdots$$

Formal proof of VDW is an induction on this ordering.

Induction on an ω^2 ordering.

(WARNING: Not a good example of induction for CMSC 250)

So Whats Really Going On?

Order PAIRS of naturals (think (k, c)) via

$$(2,2) \le (2,3) \le (2,4) \le \cdots \le (3,2) \le (3,3) \le (3,4) \cdots$$

$$(4,2) \le (4,3) \le \cdots (5,2) \le (5,3) \le \cdots \le (6,2) \cdots$$

Formal proof of VDW is an induction on this ordering.

Induction on an ω^2 ordering.

(WARNING: Not a good example of induction for CMSC 250)

(WEIRDNESS: Several HS students saw this as their FIRST proof by induction and went on to live productive lives.)

Poly VDW Theorem

Why $a, a + d, a + 2d, a + 3d, \ldots, a + (k - 1)d$? Replace $d, 2d, 3d, \ldots, (k - 1)d$ by some other funcof d? Is this true:

Theorem: $(\forall p_1, \dots, p_k \in \mathsf{Z}[x])(\forall c)(\exists W)$ for all $COL : [W] \to [c]$ $(\exists a, d)$

$$COL(a) = COL(a+p_1(d)) = COL(a+p_2(d)) = \cdots = COL(a+p_k(d)).$$

VOTE!

THE REAL KEY DIFFERENCE

FALSE for a DUMB reason:

- 1. k = 1
- 2. $p_1(x) = 1$
- 3. c = 2.

NEED W such that for all $COL : [W] \rightarrow [2]$ there exists a, d such that

$$COL(a) = COL(a+1)$$

Take RBRBRB · · · .

Poly VDW Theorem

Definition: $Z^*[x]$ are all polys with coeff in Z and zero constant term.

Theorem: $(\forall p_1, \dots, p_k \in Z^*[x])(\forall c)(\exists W)$ for all

 $COL: [W] \rightarrow [c] (\exists a, d)$

$$COL(a) = COL(a+p_1(d)) = COL(a+p_2(d)) = \cdots = COL(a+p_k(d)).$$

POLY VDW Theorem

RESTATE IT:

Theorem: For all finite $S \subseteq Z^*[x]$ $(\forall c)(\exists W)$ for all $COL : [W] \rightarrow [c]$ $(\exists a, d)$

$$\{a\} \cup \{a + p(d) \mid p \in S\}$$
 all the same color.

Notation: PVDW(S) means that Poly VDW theorem holds for the set $S \subseteq Z^*[x]$. Note that

$$PVDW(x, 2x, 3x) \implies (\forall c)[VDW(3, c)].$$

Notation for Induction

Definition: A finite set $S \subseteq Z^*[x]$ is of type $(n_e, n_{e-1}, \dots, n_1)$ if

- ▶ the number of diff lead coef of polys of degree e is $\leq n_e$.
- ▶ the number of diff lead coef of polys of degree e-1 is $\leq n_{e-1}$.

:

▶ the number of diff lead coef of polys of degree 1 is $\leq n_1$.

BILL DO EXAMPLES ON BOARD.

Better Notation

Definition: Let $(n_e, n_{e-1}, \ldots, n_1) \in \mathbb{N}^e$. $PVDW(n_e, \ldots, n_1)$ means that PVDW(S) holds for all S of type $(n_e, n_{e-1}, \ldots, n_1)$.

VDW's theorem is $PVDW(1) \land PVDW(2) \land \cdots$.

We showed

$$(\bigwedge_{i\in\mathbb{N}}PVDW(i))\implies PVDW(1,0).$$

Even Better Notation

Definition: Let $(n_e, n_{e-1}, \ldots, n_1) \in (\omega \cup \mathbb{N})^e$. $PVDW(n_e, \ldots, n_1)$ means that, for all $(m_e, \ldots, m_1) \leq (n_e, \ldots, n_1)$ (component wise) PVDW(S) holds for all S of type $(m_e, m_{e-1}, \ldots, m_1)$.

We showed

$$PVDW(\omega) \implies PVDW(1,0).$$

Poly SQ VDW

Theorem: $(\forall c)(\exists W)$ for all $COL: [W] \rightarrow [c] (\exists a, d)$

$$COL(a) = COL(a + d^2).$$

Proof by proving Lemma:

Lemma: $(\forall c)(\forall r)(\exists U)$ for all $COL: [U] \rightarrow [c]$ EITHER

- $ightharpoonup (\exists a,d)[COL(a)=COL(a+d^2)], OR$
- ▶ $(\exists a, d_1, d_2, \dots, d_r)[COL(a), COL(a + d_i^2)]$ all colored DIFFERENTLY.

BILL- REDO OR NOT IN CLASS.

PVDW(1,0)

Theorem: $(\forall c)(\forall k)(\forall A \in Z)(\forall B \subseteq Z, B \text{ finite})(\exists W)$ for all $COL: [W] \rightarrow [c] (\exists a, d)$ all elemenents of $\{a\} \cup \{a+d^2+id: i \in B\}$ are the same color. Proof by proving Lemma:

Lemma: $(\forall c)(\forall k)(\forall A \in Z)(\forall B \subseteq Z, B \text{ finite})(\exists U)$ for all $COL: [U] \rightarrow [c]$ EITHER

- ▶ $(\exists a, d)$ all elemenents of $\{a\} \cup \{a + d^2 + id : i \in B\}$ are the same color, OR
- \blacktriangleright $(\exists a, d_1, d_2, \ldots, d_r)$
 - ▶ $(\forall 1 \le j \le r \text{ the elements of } \{a + d_j^2 + id_j : i \in B\}$ are the same color. We call the *j*th one the *j*th BUBBLE.
 - ▶ All the bubbles are colored differently and all are a different color than *a*.

BILL- DO IN CLASS AND DO BASE CASE

$PVDW(x^2, x)$

Theorem: $(\forall c)$)($\exists W$) for all COL: $[W] \rightarrow [c]$ ($\exists a, d$) all elemenents of $\{a\} \cup \{a+d, a+d^2\}$ are the same color. Proof by proving Lemma:

Lemma: $(\forall c)(\exists U)$ for all $COL : [U] \rightarrow [c]$ EITHER

- ▶ $(\exists a, d)$ all elemenents of $\{a\} \cup \{a+d, a+d^2\}$ are the same color, OR
- \blacktriangleright $(\exists a, d_1, d_2, \ldots, d_r)$
 - ▶ $(\forall 1 \leq j \leq r \text{ the elements of } \{a + d_j, a + d_j^2\}$ are the same color. We call the *j*th one the *j*th BUBBLE.
 - ▶ All the bubbles are colored differently and all are a different color than *a*.

BILL- DO IN CLASS AND DO BASE CASE

