Constructions in Computable Ramsey Theory (An Exposition)

William Gasarch-U of MD

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Notation

Notation:

- 1. M_1, M_2, \ldots is a standard list of Turing Machines.
- 2. Note that from e we can extract the code for M_e .
- 3. $M_{e,s}(x)$ means that we run M_e for s steps.
- 4. W_e is the domain of M_e , that is,

$$W_e = \{x \mid (\exists s)[M_{e,s}(x) \downarrow].$$

Note that W_1, W_2, \ldots is a list of ALL c.e. sets. 5.

$$W_{e,s} = \{x \mid M_{e,s}(x) \downarrow .$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

There is a Comp Coloring with no Inf c.e.Homog Set

Theorem

There exists computable COL : $\binom{N}{2} \rightarrow [2]$ such that there is NO infinite c.e. homog set.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Construction of Comp Col w/o Inf Comp Homog Set

We construct $COL : \binom{N}{2} \rightarrow [2]$ to satisfy:

 $R_e: W_e ext{ infinite } \implies W_e ext{ NOT a homog set }.$

CONSTRUCTION OF COLORING

Stage 0: COL is not defined on anything. Stage s: We will define $COL(0, s), COL(1, s), \ldots, COL(s - 1, s)$. For all $0 \le e \le s$ do the following, starting with e = 0: If $(\exists x, y \le s - 1)[x, y \in W_{e,s} \land COL(x, s), COL(y, s)$ undefined] then define take LEAST such x, y and do: (1) COL(x, s) = RED, (2) COL(y, s) = BLUE. (Note that IF $s \in W_e$ then R_e would be satisfied.)

After all this, for all (x, s) not yet colored, COL(x, s) = RED. END OF CONSTRUCTION

There is a Comp Coloring with no Inf c.e.-in-HALT Homog Set

Theorem

There exists computable $COL : \binom{N}{2} \rightarrow [2]$ such that there is NO infinite c.e-in-HALT homog set.

This is on HW1.

Every Comp Coloring has inf Π_2 Homog Set

Theorem

For every computable coloring COL : $\binom{N}{2} \rightarrow [2]$ there is an infinite Π_2 homog set.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Construction of Inf Π_2 Homog Set

Given computable $COL : \binom{N}{2} \rightarrow [2]$. **CONSTRUCTION of** x_1, x_2, \ldots and c_1, c_2, \ldots . $x_1 = x$ and $c_1 = RED$ (We are guessing. Might change later) $s \ge 2$, assume x_1, \ldots, x_{s-1} and c_1, \ldots, c_{s-1} are defined. Ask HALT $((\exists x \ge x_{s-1})(\forall 1 \le i \le s - 1)[COL(x_i, x) = c_i]?$ **YES:** Find least such x.

- $\blacktriangleright x_i = x$
- $c_i = RED$ (Guessing.)

Construction of Inf Π_2 Homog Set: NO Case

NO: Ask HALT:

$$(\exists x \geq x_{s-1})(\forall 1 \leq i \leq s-2)[COL(x_i, x) = c_i])?$$

$$(\exists x \geq x_{s-1}) (\forall 1 \leq i \leq 1) [COL(x_i, x) = c_i])?$$

Let i_0 be largest such that $(\exists x \ge x_{s-1})(\forall 1 \le i \le i_0)[COL(x_i, x) = c_i])?$

- 1. Change color of c_{i+1} .
- 2. Wipe out $x_{i+2}, ..., x_{s-1}$.
- 3. Find $x \ge x_{s-1}$ such that $(\forall 1 \le i \le i_0)[COL(x_i, x) = c_i]$

4.
$$x_{i+2} = x$$
. $c_{i+2} = RED$ (Guessing)

END OF CONSTRUCTION of $x_1, x_2 \dots$ and c_1, c_2, \dots

Getting the Inf Π_2 Homog Set

$$X = \{x_1, x_2, \ldots\}. R \text{ is the set of red elts of } X$$
$$\overline{X} \in \Sigma_2 \text{ (so } X \in \Pi_2\text{)}.$$

 $\overline{X} = \{x \mid (\exists s) [\text{ at stage } s \text{ of the construction } x \text{ was tossed out }]\}.$ $\overline{R} \in \Sigma_2 \text{ (so } R \in \Pi_2).$

 $\overline{R} = \overline{X} \cup \{x \mid (\exists x) | \exists x \text{ stage } s \text{ of the construction } x \text{ was turned BLUE} \}.$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

1. If *R* is infinite then *R* is inf homog set in Π_2 .

2. If *R* is finite then B = X - R is inf homog set in Π_2 .