

- 1. (0 points) What is your name? Write it clearly. Staple this.
- 2. (20 points)
 - (a) Prove the following. There exists a function f such that the following holds:

If $T_1, T_2, \ldots, T_{f(k)}$ is a FINITE sequence of trees, where T_i has at most k(i+1) nodes, there is an uptick.

For this problem the trees are ordered as $T_1 \leq T_2$ if T_1 is a minor of T_2 .

- (b) (Was there anything special about k(i+1)?) Is there some function g(i, k) such that if you replace the k(i + 1) in the first question with g(i, k). the theorem is now false?
- (c) (Think About) Back to the first question: can you find bounds on f(k)?
- 3. (20 points) Find a function f(c, k) such that the following is true, and prove it:

There exists a c-coloring of $[f(c,k)] \times [f(c,k)]$ with no monochromatic $k \times k$ regular grids.

A regular grid is a square grid with the points equally spaced.

Note: for full credit you will have to provide a decent bound; answering f(c, k) = 0 is technically correct but will receive no points.

GO TO THE NEXT PAGE

- 4. (20 points) (You may use Ramsey's theorem and the known bounds on it from this class, in this problem.)
 - (a) Show that the following holds:

Bill gives you a 2-coloring of N AND $\binom{N}{2}$. Show there exists an infinite $X \subseteq \mathbb{N}$ such that it is BOTH 1-homog (so all the vertices are the same color) and 2-homog (all of the pairs are the same color). It need NOT be the case that these two colors are the same.

(b) find a function f(k) such that the following holds:

Bill gives you a 2-coloring of [f(k)] AND $\binom{[f(k)]}{2}$. Show there exists a set $X \subseteq [f(k)]$ of size k such that it is BOTH 1-homog (so all the vertices are the same color) and 2-homog (all of the pairs are the same color). It need NOT be the case that these two colors are the same.

5. (20 points) Find a function f(c) such that the following is true, and prove it:

For all $c \geq 2$,

- (a) There is a *c*-coloring of the $[c+1] \times [f(c)-1]$ with NO monochromatic rectangles. (There are no four points that form the corners of a rectangle that are the same color.)
- (b) Every c-coloring of the $[c+1] \times [f(c)]$ has a monochromatic rectangle.

6. (20 points)

Definition: Let e and $f_1 < \cdots < f_n$ are all in N. Then

$$METZ(e; f_1, \dots, f_n) = \{d + f_1b_1 + f_2b_2 + \dots + f_nb_n : b_1, \dots, b_n \in \{0, 1\}\}$$

We call such a set an *n*-METZ. Example:

 $METZ(5; 1, 3, 4) = \{5, 5+1, 5+3, 5+4, 5+1+3, 5+1+4, 5+3+4, 5+1+3+4\}$

$$= \{5, 6, 8, 9, 10, 12, 13\}$$

(It might not have 2^n elements since some sums are the same.)

Let H(n, c) be the least H such that for all c-colorings of [H(n, c)] there exists a monochromatic n-METZ. In this problem you will show, in two ways, that H(n, c) exists.

- (a) Show USING VDW's theorem that, for all c, n, there exists H = H(n, c) such that every c-coloring of [H] has a monochromatic n-METZ. In particular bound H(n, c) using VDW numbers.
- (b) Show that for all c, n, there exists H = H(n, c) such that every c-coloring of [H] has a monochromatic n-METZ WITHOUT using VDW's theorem. More precisely- find a recurrence that enables one to compute a bound for H(m, c) that does not involve VDW numbers.
- 7. (0 points- but you MUST ANSWER THIS. If you do not then I will DEDUCT 10 points) Name two things that could be done to improve the course. If you have more than two thats fine. They should be either constructive (so I really can use them next time I teach) or funny (so Erik and I can have a laugh while grading).