Take Home Final. Given out Apr 23
Morally Due TUESDAY May 8. Sick Cat Day-Thursday May 10

1. (0 points) What is your name? Write it clearly. Staple this.
2. (20 points)

(a) Prove the following. There exists a function f such that the fol-
lowing holds:

If Ty, Ty, ..., Ty ts a FINITE sequence of trees, where T; has at
most k(i + 1) nodes, there is an uptick.

For this problem the trees are ordered as T7 < T5 if T} is a minor
of TQ.

(b) (Was there anything special about k(i+1)?) Is there some function
g(i, k) such that if you replace the k(i 4+ 1) in the first question
with ¢(i, k). the theorem is now false?

(c¢) (Think About) Back to the first question: can you find bounds on
fk)?
3. (20 points) Find a function f(c, k) such that the following is true, and
prove it:

There ezists a c-coloring of [f(c, k)] x [f(c, k)] with no monochromatic
k x k reqular grids.

A regular grid is a square grid with the points equally spaced.

Note: for full credit you will have to provide a decent bound; answering
f(e, k) = 0 is technically correct but will receive no points.
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4. (20 points) (You may use Ramsey’s theorem and the known bounds on
it from this class, in this problem.)

(a)

Show that the following holds:

Bill gives you a 2-coloring of N AND (';') Show there exists an
infinite X C N such that it is BOTH 1-homog (so all the vertices
are the same color) and 2-homog (all of the pairs are the same
color). It need NOT be the case that these two colors are the
same.

find a function f(k) such that the following holds:

Bill gives you a 2-coloring of [f(k)] AND ([f (21@)])' Show there exists
a set X C [f(k)] of size k such that it is BOTH 1-homog (so all
the vertices are the same color) and 2-homog (all of the pairs are
the same color). It need NOT be the case that these two colors
are the same.

5. (20 points) Find a function f(c) such that the following is true, and
prove it:

For all ¢ > 2,

(a)

There is a c-coloring of the [c+ 1] x [f(¢) — 1] with NO monochro-
matic rectangles. (There are no four points that form the corners
of a rectangle that are the same color.)

(b) Every c-coloring of the [¢ 4 1] x [f(c)] has a monochromatic rect-

angle.



6. (20 points)
Definition: Let e and f; < --- < f, are all in N. Then

METZ(G’ fla .- 7fn) = {d+f1b1+f2b2+ : +fnbn : b17 .- 'abn € {07 1}}

We call such a set an n-METZ.

Example:

METZ(5;1,3,4) = {5,5+1,5+3, 5+4, 5+1+3, 5+1+4, 5+3+4, 5+1+3+4}

= {5,6,8,9,10,12, 13}

(It might not have 2" elements since some sums are the same.)

Let H(n,c) be the least H such that for all c-colorings of [H (n, ¢)] there
exists a monochromatic n-METZ. In this problem you will show, in two
ways, that H(n,c) exists.

(a) Show USING VDW's theorem that, for all ¢, n, there exists H =
H(n,c) such that every c-coloring of [H| has a monochromatic
n-METZ. In particular bound H (n, c¢) using VDW numbers.

(b) Show that for all ¢,n, there exists H = H(n,c) such that every
c-coloring of [H] has a monochromatic n-METZ WITHOUT using
VDW’s theorem. More precisely- find a recurrence that enables
one to compute a bound for H(m,c) that does not involve VDW
numbers.

7. (0 points- but you MUST ANSWER THIS. If you do not then I will
DEDUCT 10 points) Name two things that could be done to improve
the course. If you have more than two thats fine. They should be either
constructive (so I really can use them next time I teach) or funny (so
Erik and I can have a laugh while grading).



