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Abstract

Ramsey, Erdős-Rado, and Conlon-Fox-Sudakov have given proofs of the 3-hypergraph

Ramsey Theorem with better and better upper bounds on the 3-hypergraph Ramsey numbers.

Ramsey and Erdős-Rado also prove the a-hypergraph Ramsey Theorem. Conlon-Fox-Sudakov

note that their upper bounds on the 3-hypergraph Ramsey Numbers, together with a recurrence

of Erdős-Rado (which was the key to the Erdős-Rado proof), yield improved bounds on the

a-hypergraph Ramsey numbers. We present all of these proofs and state explicit bounds for

the 2-color case and the c-color case. We give a more detailed analysis of the construction of

Conlon-Fox-Sudakov and hence obtain a slightly better bound.

1 Introduction

The 3-hypergraph Ramsey numbers R(3, k) were first shown to exist by Ramsey [8]. His upper

bounds on them were enormous. Erdős-Rado [3] obtained much better bounds, namely R(3, k) ≤
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224k . Recently Conlon-Fox-Sudakov [2] have obtained R(3, k) ≤ 22(2+o(1))k . We present all three

proofs. For the Conlon-Fox-Sudakov proof we give a more detailed analysis that required a non-

trivial lemma, and hence we obtain slightly better bounds. Before starting the second and third

proofs we will discuss why they improve the prior ones.

We also present extensions of all three proofs to the a-hypergraph case. The first two are known

proofs and bounds. The Erdős-Rado proof gives a recurrence to obtain a-hypergraph Ramsey Num-

bers from (a − 1)-hypergraph Ramsey Numbers. As Conlon-Fox-Sudakov note, this recurrence

together with their improved bound on R(3, k), yield better upper bounds on the a-hypergraph

Ramsey Numbers. Can the Conlon-Fox-Sudakov method itself be extended to a proof of the a-

hypergraph Ramsey Theorem? It can; however (alas), this does not seem to lead to better upper

bounds. We include this proof in the appendix in the hope that someone may improve either the

construction or the analysis to obtain better bounds on the a-hypergraph Ramsey Numbers.

For all of the proofs, the extension to c colors is routine. We present the results as notes;

however, we leave the proofs as easy exercises for the reader.

2 Notation and Ramsey’s Theorem

Def 2.1 Let X be a set and a ∈ N. Then
(
X
a

)
is the set of all subsets of X of size a.

Def 2.2 Let a, n ∈ N. The complete a-hypergraph on n vertices, denoted Ka
n, is the hypergraph

with vertex set V = [n] and edge set E =
(

[n]
a

)

Notation 2.3 In this paper a coloring of a graph or hypergraph always means a coloring of the

edges. We will abbreviate COL({x1, . . . , xa}) by COL(x1, . . . , xa). We will refer to a c-coloring

of the edges of the complete hypergraph Ka
n as a c-coloring of

(
[n]
a

)
.
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Def 2.4 Let a ≥ 1. Let COL be a c-coloring of
(

[n]
a

)
. A set of vertices H is a-homogeneous for

COL if every edge in
(
H
a

)
is the same color. We will drop the for COL when it is understood. We

will drop the a when it is understood.

Convention 2.5 When talking about 2-colorings will often denote the colors by RED and BLUE.

Note 2.6 In Definition 2.4 we allow a = 1. Note that a c-coloring of
(

[n]
1

)
is just a coloring of the

numbers in [n]. A homogenous subset H is a subset of points that are all colored the same. Note

that in this case the edges are 1-subsets of the points and hence are identified with the points.

Def 2.7 Let a, c, k ∈ N. Let R(a, k, c) be the least n such that, for all c-colorings of
(

[n]
a

)
there

exists an a-homogeneous set H ∈
(

[n]
k

)
. We denote R(a, k, 2) by R(a, k). We have not shown that

R(a, k, c) exists; however, we will.

We state Ramsey’s theorem for 1-hypergraphs (which is trivial) and for 2-hypergraphs (just

graphs). The 2-hypergraph case (and the a-hypergraph case) is due to Ramsey [8] (see also [4, 6,

7]). The bound we give on R(2, k) seems to be folklore (see [6]).

Def 2.8 The expression ω(1) means a function that goes to infinity monotonically. For example,

blg lg nc.

The following are well known.

Theorem 2.9 Let k ∈ N and c ≥ 2.

1. R(1, k) = 2k − 1.

2. R(1, k, c) = ck − c+ 1.

3. R(2, k) ≤
(

2k−2
k−1

)
≤ 22k−0.5 lg(k−1)−Ω(1).
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4. R(2, k, c) ≤ (c(k−1))!
(k−1)!)c

≤ cck−0.5 logc(k−1)+O(c).

5. For all n, for every 2-coloring of
(

[n]
2

)
, there exists a 2-homogenous set H of size at least

1
2

lg n+ ω(1). (This follows from Part 3 easily. In fact, all you need is R(2, k) ≤ 22k−Ω(1).)

Note 2.10 Theorem 2.9.2 has an elementary proof. A more sophisticated proof, by David Con-

lon [1] yields R(2, k) ≤ k−E
log k

log log k
(

2k
k

)
, where E is some constant. A simple probabilistic argu-

ment shows that R(2, k) ≥ (1 + o(1)) 1
e
√

2
k2k/2. A more sophisticated argument by Spencer [9]

(see [6]), that uses the Lovasz Local Lemma, shows R(2, k) ≥ (1 + o(1))
√

2
e
k2k/2.

We state Ramsey’s theorem on a-hypergraphs [8] (see also [6, 7]).

Theorem 2.11 Let a, k, c ∈ N. For all k ∈ N, R(a, k, c) exists.

3 Summary of Results

We will need both the tower function and Knuth’s arrow notation to state the results.

Notation 3.1

c ↑a k =



ck if a = 0,

ck, if a = 1,

1, if k = 0,

c ↑a−1 (c ↑a (k − 1)), otherwise.

Def 3.2 We define TOW which takes on a variable number of arguments.

1. TOWc(b) = cb.

2. TOWc(b1, . . . , bL) = cb1TOWc(b2,...,bL).

When c is not stated it is assumed to be 2.
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Example 3.3

1. TOW(2k) = 22k.

2. TOW(1, 4k) = 224k .

3. TOW(1) = 2, TOW(1, 1) = 22, TOW(1, 1, 1) = 222 .

The list below contains both who proved what bounds and the results we will prove in this

paper.

1. Ramsey’s proof [8] yields:

(a) R(3, k) ≤ 2 ↑2 (2k − 1) = TOW(1, . . . , 1) where the number of 1’s is 2k − 1.

(b) R(a, k) ≤ 2 ↑a−1 (2k − 1).

2. The Erdős-Rado [3] proof yields:

(a) R(3, k) ≤ 224k−lg(k−2) .

(b) R(a, k) ≤ 2(R(a−1,k−1)+1
a−1 ) + a− 2.

(c) Using the recurrence they obtain the following: For all a ≥ 4, R(a, k) ≤ TOW(1, a−

1, a− 2, . . . , 3, 4k − lg(k − a+ 1)− 4(a− 3))).

3. The Conlon-Fox-Sudakov [2] proof yields:

(a) R(3, k) ≤ 2B(k−1)1/222k where B =
(

e√
2π

)3 ∼ 1.28.

(b) If you combine this with the recurrence obtained by Erdős-Rado then one obtains:

i. R(3, k) ≤ TOW(B(k − 1)1/2, 22k).

ii. R(4, k) ≤ TOW(1, 3B(k − 2)1/2, 22k−2).

iii. R(5, k) ≤ TOW(1, 4, 3B(k − 3)1/2, 22k−4).
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iv. For all a ≥ 6, for almost all k,

R(a, k) ≤ TOW(1, a− 1, a− 2, . . . , 4, 3B(k − a+ 2)1/2, 22k−2a+6).

4. The Appendix contains an alternative proof of the a-hypergraph Ramsey Theorem based on

the ideas of Conlon-Fox-Sudakov. Since it does not yield better bounds we do not state the

bounds here.

Notation 3.4 PHP stands for Pigeon Hole Principle.

We will need the following lemma whose easy proof we leave to the reader.

Lemma 3.5 For all b, b1, . . . , bL ∈ N the following hold.

1. TOW(b1, . . . , bi, bi+1, bi+2 . . . , bL) ≤ TOW(b1, . . . , 1, bi+1 + lg(bi), bi+2, . . . , bL).

2. TOW(b1, . . . , bL)b = TOW(bb1, b2, . . . , bL).

3. (1 + δ)TOW(b1, . . . , bL) ≤ TOW(b1, b2, . . . , bL + δ).

4. (1 + δ)TOW(b1, . . . , bL)b ≤ TOW(bb1, b2, . . . , bL + δ). (This follows from 1 and 2.)

5. 2TOW(b1,...,bL) = TOW(1, b1, . . . , bL).

6. 2(1+δ)TOW(b1,...,bL)b ≤ TOW(1, bb1, b2, . . . , bL + δ). (This follows from 4 and 5.)

7. lg(c)(TOW(1, . . . , 1)) = 1 (there are c 1’s).

4 Ramsey’s Proof

Theorem 4.1 For almost k R(3, k) ≤ 2 ↑2 (2k − 1) = TOW(1, . . . , 1) where there are 2k − 1

1’s.
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Proof:

Let n be a number to be determined. Let COL be a 2-coloring of
(

[n]
3

)
. We define a sequence

of vertices,

x1, x2, . . . , x2k−1.

Here is the basic idea: Let x1 = 1. This induces the following coloring of
(

[n]−{1}
2

)
:

COL∗(x, y) = COL(x1, x, y).

By Theorem 2.9 there exists a 2-homogeneous set for COL∗ of size 1
2

lg n + ω(1). Keep that 2-

homogeneous set and ignore the remaining points. Let x2 be the least vertex that has been kept

(bigger than x1). Repeat the process.

We describe the construction formally.

CONSTRUCTION

V0 = [n]

Assume 1 ≤ i ≤ 2k − 1 and that Vi−1, x1, x2, . . . , xi−1, c1, . . . , ci−1 are all defined. We define

xi, COL∗, Vi, and ci:

xi = the least number in Vi−1

Vi = Vi−1 − {xi} (We will change this set without changing its name.)

COL∗(x, y) = COL(xi, x, y) for all {x, y} ∈
(
Vi
2

)
Vi = the largest 2-homogeneous set for COL∗

ci = the color of Vi

KEY: for all y, z ∈ Vi, COL(xi, y, z) = ci.

END OF CONSTRUCTION
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When we derive upper bounds on n we will show that the construction can be carried out for

2k − 1 stages. For now assume the construction ends.

We have vertices

x1, x2, . . . , x2k−1

and associated colors

c1, c2, . . . , c2k−1.

There are only two colors, hence, by PHP, there exists i1, . . . , ik such that i1 < · · · < ik and

ci1 = ci2 = · · · = cik

We take this color to be RED. We show that

H = {xi1 , xi2 , . . . , xik}.

is 3-homogenous for COL. For notational convenience we show that COL(xi1 , xi2 , xi3) = RED.

The proof for any 3-set of H is similar. By the definition of ci1 (∀A ∈
(
Vi1−{xi1}

2

)
)[COL(A ∪

{xi1)}) = ci] In particular

COL(xi1 , xi2 , xi3) = ci1 = RED.

We now see how large n must be so that the construction can be carried out. By Theorem 2.9,

if k is large, at every iteration Vi gets reduced by a logarithm, cut in half, and then an ω(1) is added.

Using this it is easy to show that, for almost all k,

|Vj| ≥
1

2
(lg(j) n) + ω(1).
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We want to run this iteration 2k − 1 times Hence we need

|V2k−1| ≥
1

2
log

(2k−1)
2 n+ ω(1) ≥ 1.

We can take n = TOW(1, . . . , 1) where 1 appears 2k − 1 times, and use Lemma 3.5.

Note 4.2 The proof of Theorem 4.1 generalizes to c-colors to yield

R(3, k, c) ≤ c ↑2 (ck − c+ 1) = TOWc(1, . . . , 1)

where the number of 1’s is ck − c+ 1.

We now prove Ramsey’s Theorem for a-hypergraphs.

Theorem 4.3 For all a ≥ 1, for all k ≥ 1, R(a, k) ≤ 2 ↑a−1 (2k − 1).

Proof:

We prove this by induction on a. Note that when we have the theorem for a we have it for a

and for all k ≥ 1.

Base Case: If a = 1 then, for all k ≥ 1, R(1, k) = 2k − 1 ≤ 2 ↑0 (2k − 1) = 4k − 2.

Induction Step: We assume that, for all k, R(a− 1, k) ≤ 2 ↑a−2 (2k − 1).

Let k ≥ 1. Let n be a number to be determined later. Let COL be a 2-coloring of
(

[n]
a

)
. We

show that there is an a-homogenous set for COL of size k.

CONSTRUCTION

V0 =]n].

Assume 1 ≤ i ≤ 2k − 1 and that Vi−1, x1, x2, . . . , xi−1, c1, . . . , ci−1 are all defined. We define

xi, COL∗, Vi, and ci:
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xi = the least number in Vi−1

Vi = Vi−1 − {xi} (We will change this set without changing its name.)

COL∗(A) = COL(xi ∪ A) for all A ∈
(
Vi
a−1

)
)

Vi = the largest a− 1-homogeneous set for COL∗

ci = the color of Vi

KEY: For all 1 ≤ i ≤ 2k − 1, (∀A ∈
(
Vi
a−1

)
)[COL(A ∪ xi) = ci]

END OF CONSTRUCTION

When we derive upper bounds on n we will show that the construction can be carried out for

2k − 1 stages. For now assume the construction ends.

We have vertices

x1, x2, . . . , x2k−1

and associated colors

c1, c2, . . . , c2k−1.

There are only two colors, hence, by PHP, there exists i1, . . . , ik such that i1 < · · · < ik and

ci1 = ci2 = · · · = cik

We take this color to be RED. We show that

H = {xi1 , xi2 , . . . , xik}.
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is a-homogenous for COL. For notational convenience we show that COL(xi1 , . . . , xia) = RED.

The proof for any a-set of H is similar. By the definition of ci1 (∀A ∈
(
Vi1
a−1

)
)[COL(A∪ xi1) = ci]

In particular

COL(xi1 , . . . , xia) = ci1 = RED.

We show that if n = 2 ↑a−1 (2k− 1) then the construction can be carried out for 2k− 1 stages.

Claim 1: For all 0 ≤ i ≤ 2k − 1, |Vi| ≥ 2 ↑a−1 (2k − (i+ 1)).

Proof of Claim 1: We prove this claim by induction on i. For the base case note that

|V0| = n = 2 ↑a−1 (2k − 1).

Assume |Vi−1| ≥ 2 ↑a−1 (2k−i). By the definition of the uparrow function and by the inductive

hypothesis of the theorem,

|Vi−1| ≥ 2 ↑a−1 (2k − i) = 2 ↑a−2 (2 ↑a−1 (2k − (i+ 1))) ≥ R(a− 1, 2 ↑a−1 (2k − (i+ 1))).

By the construction Vi is the result of applying the (a−1)-ary Ramsey Theorem to a 2-coloring

of
(
Vi−1

a

)
. Hence |Vi| ≥ 2 ↑a−1 (2k − (i+ 1)).

End of Proof of Claim 1

By Claim 1 if n = 2 ↑a−1 (2k − 1) then the construction can be carried out for 2k − 1 stages.

Hence R(a, k) ≤ 2 ↑a−1 (2k − 1).

The proof of Theorem 4.1 is actually an ω2-induction that is similar in structure to the original

proof of van der Warden’s theorem [5, 6, 10].

Note 4.4 The proof of Theorem 4.3 generalizes to c colors yielding

R(a, k, c) ≤ c ↑a−1 (ck − c+ 1).
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5 The Erdős-Rado Proof

Why does Ramsey’s proof yield such large upper bounds? Recall that in Ramsey’s proof we do

the following:

• Color a node by using Ramsey’s theorem (on graphs). This cuts the number of nodes down

by a log (from m to Θ(logm)). This is done 2k − 1 times.

• After the nodes are colored we use PHP once. This will cut the number of nodes in half.

The key to the large bounds is the number of times we use Ramsey’s theorem. The key insight

of the proof by Erdős and Rado [3] is that they use PHP many times but Ramsey’s theorem only

once. In summary they do the following:

• Color an edge by using PHP. This cuts the number of nodes in half. This is done R(2, k −

1) + 1 times.

• After all the edges of a complete graph are colored we use Ramsey’s theorem. This will cut

the number of nodes down by a log.

We now proceed formally.

Theorem 5.1 For almost all k, R(3, k) ≤ 224k−lg(k−2)
.

Proof:

Let n be a number to be determined. Let COL be a 2-coloring of
(

[n]
3

)
. We define a sequence

of vertices,

x1, x2, . . . , xR(2,k−1)+1.

Recall the definition of a 1-homogeneous set for a coloring of singletons from the note follow-

ing Definition 2.4. We will use it here.
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Here is the intuition: Let x1 = 1. Let x2 = 2. The vertices x1, x2 induces the following

coloring of {3, . . . , n}.

COL∗(y) = COL(x1, x2, y).

Let V1 be a 1-homogeneous for COL∗ of size at least n−2
2

. Let COL∗∗(x1, x2) be the color of V1.

Let x3 be the least vertex left (bigger than x2).

The number x3 induces two colorings of V1 − {x3}:

(∀y ∈ V1 − {x3})[COL∗1(y) = COL(x1, x3, y)]

(∀y ∈ V1 − {x3})[COL∗2(y) = COL(x2, x3, y)]

Let V2 be a 1-homogeneous for COL∗1 of size |V1|−1
2

. Let COL∗∗(x1, x3) be the color of V2.

Restrict COL∗2 to elements of V2, though still call it COL∗2. We reuse the variable name V2 to be

a 1-homogeneous for COL∗2 of size at least |V2|
2

. Let COL∗∗(x1, x3) be the color of V2. Let x4 be

the least element of V2. Repeat the process.

We describe the construction formally.

CONSTRUCTION

x1 = 1

V1 = [n]− {x1}

Let 2 ≤ i ≤ R(2, k − 1) + 1. Assume that x1, . . . , xi−1, Vi−1, and COL∗∗ :
({x1,...,xi−1}

2

)
→

{RED,BLUE} are defined.

xi = the least element of Vi−1

Vi = Vi−1 − {xi} (We will change this set without changing its name).

We define COL∗∗(x1, xi), COL∗∗(x2, xi), . . ., COL∗∗(xi−1, xi). We will also define smaller
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and smaller sets Vi. We will keep the variable name Vi throughout.

For j = 1 to i− 1

1. COL∗ : Vi → {RED,BLUE} is defined by COL∗(y) = COL(xj, xi, y).

2. Let Vi be redefined as the largest 1-homogeneous set for COL∗. Note that |Vi| decreases by

at most half.

3. COL∗∗(xj, xi) is the color of Vi.

KEY: For all 1 ≤ i1 < i2 ≤ i, for all y ∈ Vi, COL(xi1 , xi2 , y) = COL∗∗(xi1 , xi2).

END OF CONSTRUCTION

When we derive upper bounds on n we will show that the the construction can be carried out

for R(2, k − 1) + 1 stages. For now assume the construction ends.

We have vertices

X = {x1, x2, . . . , xR(2,k−1)+1}

and a 2-coloring COL∗∗ of
(
X
2

)
. By the definition of R(2, k − 1) + 1 there exists a set

H = {xi1 , . . . , xik}.

such that the first k − 1 elements of it are a 2-homogenous set for COL∗∗. Let the color of this

2-homogenous set be RED. We show that H (including xik) is a 3-homogenous set for COL. For

notational convenience we show that COL(xi1 , xi2 , xi3) = RED. The proof for any 3-set of H is

similar.

By the definition of COL∗∗ for all y ∈ Vi2 , COL(xi1 , xi2 , y) = COL∗∗(xi1 , xi2) = RED. In

particular COL(xi1 , xi2 , xi3) = RED.
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We now see how large n must be so that the construction be carried out. Note that in stage i

|Vi| be decreases by at most half, i times. Hence |Vi+1| ≥ |Vi|
2i

.

Therefore

|Vi| ≥
|V1|

21+2+···+(i−1)
≥ n− 1

2(i−1)2
.

We want |VR(2,k−1)+1| ≥ 1. It suffice so take n = 2R(2,k−1)2 + 1.

By Theorem 2.9

R(2, k − 1)2 + 1 ≤ (22k−0.5 lg(k−2))2 ≤ 24k−lg(k−2).

Hence

R(3, k) ≤ 224k−lg(k−2)

.

Note 5.2 A slightly better upper bound forR(3, k) can be obtained by using Conlon’s upper bound

on R(2, k) given in Note 2.10.
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