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Ramsey’s Theorem For Graphs

Theorem: For every COL :
(N
2

)
→ [c] there is an infinite

homogenous set.

What if the number of colors was infinite?

Do not necessarily get a homog set since could color EVERY edge
differently. But then get infinite rainbow set.



Attempt

Theorem: For every COL :
(N
2

)
→ ω there is an infinite

homogenous set OR an infinite rainb set.
VOTE: TRUE, FALSE, or UNKNOWN TO SCIENCE.

FALSE:

I COL(i , j) = min{i , j}.
I COL(i , j) = max{i , j}.
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Min-Homog, Max-Homog, Rainbow

Definition: Let COL :
(N
2

)
→ ω. Let V ⊆ N.

I V is homogenous if COL(a, b) = COL(c , d) iff TRUE .

I V is min-homogenous if COL(a, b) = COL(c , d) iff a = c .

I V is max-homogenous if COL(a, b) = COL(c, d) iff b = d .

I V is rainb if COL(a, b) = COL(c , d) iff a = c and b = d .



One-Dim Can Ramsey Theorem

Lemma: Let V be an countable set. Let COL : V → ω. Then
there exists either an infinite homog set (all the same color) or an
infinite rainb set (all diff colors).



Proof of Can Ramsey Theorem for Infinite Graphs

We are given COL :
(N
2

)
→ ω.

Want to find infinite homog OR min-homog OR max-homog OR
rainbow set.

We use COL to define COL′ :
(N
4

)
→ [16]

We then apply 4-ary Ramsey theorem. (an “Application!”)

In the slides below x1 < x2 < x3 < x4.
All cases assume negation of prior cases.

Homog always means infinite Homog.



Pairs that begin the same way are same color

1. COL(x1, x2) = COL(x1, x3)→ COL′(x1 < x2 < x3 < x4) = 1.

2. COL(x1, x2) = COL(x1, x4)→ COL′(x1 < x2 < x3 < x4) = 2.

3. COL(x1, x3) = COL(x1, x4)→ COL′(x1 < x2 < x3 < x4) = 3.

4. COL(x2, x3) = COL(x2, x4)→ COL′(x1 < x2 < x3 < x4) = 4.

H is homog set,color 1 (rest similar)
COL′′ : H → N is COL′′(x) = color of all (x , y) with x < y ∈ H.

Use 1-dim Can Ramsey!:
Case 1: COL′′ has homog set H ′ then H’ homog for COL.
Case 2: COL′′ has rainb set H ′ then H ′ min-homog for COL.



Pairs that End the same way are same color

1. COL(x1, x3) = COL(x2, x3)→ COL′(x1 < x2 < x3 < x4) = 5.

2. COL(x1, x4) = COL(x2, x4)→ COL′(x1 < x2 < x3 < x4) = 6.

3. COL(x1, x4) = COL(x3, x4)→ COL′(x1 < x2 < x3 < x4) = 7.

4. COL(x2, x4) = COL(x3, x4)→ COL′(x1 < x2 < x3 < x4) = 8.

H is homog set,color 5 (rest similar)
COL′′ : H → N is COL′′(y) = color of all (x , y) with x < y ∈ H.

Use 1-dim Can Ramsey!:
Case 1: COL′′ has homog set H ′ then H ′ homog for COL.
Case 2: COL′′ has rainb set H ′ then H ′ max-homog for COL.



Easy Homog Cases

1. COL(x1, x2) = COL(x2, x3)⇒ COL(x1, x2, x3, x4) = 9.

2. COL(x1, x2) = COL(x2, x4)⇒ COL(x1, x2, x3, x4) = 10.

3. COL(x1, x2) = COL(x3, x4)⇒ COL(x1, x2, x3, x4) = 11.

4. COL(x1, x3) = COL(x2, x4)⇒ COL(x1, x2, x3, x4) = 12.

5. COL(x1, x3) = COL(x3, x4)⇒ COL(x1, x2, x3, x4) = 13.

6. COL(x2, x3) = COL(x1, x4)⇒ COL(x1, x2, x3, x4) = 14.

7. COL(x2, x3) = COL(x3, x4)⇒ COL(x1, x2, x3, x4) = 15.

H is homog set,color 9 (rest similar)
For all w < x < y < z ∈ H.

COL(w , x) = COL(x , y) = COL(y , z).

Other cases, like COL(w , y) = COL(x , z), are similar



Rainbow Case

If NONE of the above cases hold then COL(x1, x2, x3, x4) = 16.

Let H be homog set.

All edges from H diff colors, so Rainbow Set.



PROS and CONS of Proof

PRO: Each Case easy. Note that Rainbow case was easy.

CON: Lots of Cases. Use of 4-ary hypergraph Ramsey makes finite
version have large bounds.

We will give anther proof which only uses 3-ary hypergraph
Ramsey.
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Definition that Will Help Us

Definition Let COL :
(N
2

)
→ ω. If c is a color and v ∈ N then

degc(v) is the number of c-colored edges with v as an endpoint.

Note: degc(v) could be infinite.



Needed Lemma

Lemma Let X be infinite. Let COL :
(X
2

)
→ ω. If for every x ∈ X

and c ∈ ω, degc(x) ≤ 1 then there is an infinite rainb set.
TRY TO PROVE WITH YOUR NEIGHBOR. I WILL THEN GIVE
PROOF.



Proof

Let R be a MAXIMAL rainb set of X .

(∀y ∈ X − R)[X ∪ {y} is not a rainb set].

Let y ∈ X − R. Why is y /∈ R?

1. (∃u ∈ R, ∃{a, b} ∈
(R
2

)
)[COL(y , u) = COL(a, b)].

2. (∃{a, b} ∈
(R
2

)
)[COL(y , a) = COL(y , b)].

If c = COL(y , a) then degc(y) ≥ 2, so Can’t Happen!

Map X − R to R ×
(R
2

)
: map y ∈ X − R to (u, {a, b}) (item 1).

Map is injective: if y1 and y2 both map to (u, {a, b}) then
COL(y1, u) = COL(y2, u) but degc(u) ≤ 1.
Injection from X − R to R ×

(R
2

)
. If R finite then injection from an

infinite set to a finite set Impossible! Hence R is infinite.



Canonical Ramsey Theorem for N

Theorem: For all COL :
(N
2

)
→ ω there is either

I an infinite homogenous set,

I an infinite min-homog set,

I an infinite max-homog set, or

I an infinite rainb set.



Proof of Can Ramsey Theorem for Graphs

Given COL :
(N
2

)
→ ω. We use COL to obtain COL′ :

(N
3

)
→ [4]

We will use the 3-ary Ramsey theorem. In all of the below
x1 < x2 < x3.

1. If COL(x1, x2) = COL(x1, x3) then COL′(x1 < x2 < x3) = 1.

2. If COL(x1, x3) = COL(x2, x3) then COL′(x1 < x2 < x3) = 2.

3. If COL(x1, x2) = COL(x2, x3) then COL′(x1 < x2 < x3) = 3.

4. If none of the above occur then COL′(x1 < x2 < x3) = 4.

Cases 1,2,3 are just like in the prior proof.
Case 4: For all x , for all c , degc(x) ≤ 1 so have Rainbow by
Lemma.



Case 4: An Alternative Proof without Maximal Sets

There is an infinite homog set of color 4: Recall: all pairs of
x1, x2, x3 have diff colors. Let H be the infinite homog set.
Rename so

H = {1, 2, 3, . . .}

GOOD NEWS: (1, 2) and (2, 3) diff colors.
BAD NEWS: (1, 2) and (3, 4) could be same color.
USEFUL NEWS: Let RE be the set of all RED edges. The set RE
is a set of disjoint edges.
CANNOT have, say (4,100) and (100,200) in RE .
CANNOT have, say (4,100) and (4,200) in RE .
Need to do some more killing!



Case 4 cont:

Lets out all edges in order of max number:

(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5) . . .

We process each edge.
(1,2): Say its RED. We want to KILL all RED edges but still have
an infinite number of vertices. Let
(a1, b1), (a2, b2), . . . be all the RED edges. KEY: all disjoint and
none have 1 or 2 in them. Assume ai < bi .
KILL ALL THE bi ’s!
Look at the next edge on the list thats left. Do the same.
When done have bloody rainbow set!


