Take Home Midterm. Given out Feb 27
Morally Due THURSDAY March 8. Sick Cat Day-TUESDAY March 13
FIVE PAGES!!!!!!!!!!!!!!!

1. (0 points) What is your name? Write it clearly. Staple this.

2. (25 points) Find a function \(f(n) \) such that the following is true, and prove it:
 - For any coloring (any number of colors) of \(\{1, \ldots, f(n)\} \) there exists either \(n \) elements that are the same color OR there exists \(n \) elements that are all different colors.
 - There exists a coloring (any number of colors) of \(\{1, \ldots, f(n) - 1\} \) with neither \(n \) elements that are the same color NOR with \(n \) elements that are all different colors.

3. (25 points)
 (a) Find a function \(f(n) \) such that the following is true, and prove it using a maximal-set argument.
 \(\text{If } X \text{ is a set of points in the plane, no three colinear, of size } f(n) \text{ then there exists } Y \subseteq X \text{ of size } n \text{ such that no four points form a trapezoid.} \)

 (b) Find a function \(f(n, k) \) such that the following is true, and prove it using a maximal-set argument. (We assume \(n, k \geq 3 \).)
 \(\text{If } X \text{ is a set of points in the plane, no } k \text{ colinear, of size } f(n, k) \text{ then there exists } Y \subseteq X \text{ of size } n \text{ such that no four points form a trapezoid.} \)
4. (25 points) Let COL be a coloring of $\mathbb{N} \times \mathbb{N}$. A mono grid is a pair of sets $A, B \subseteq \mathbb{N}$ such that the COL restricted to $A \times B$ is monochromatic. If A and B are both of size infinite we say its an infinite mono grid of size n. If A and B are both of size n we say its a mono grid of size n.

(a) Prove or disprove: For all 2-colorings of $\mathbb{N} \times \mathbb{N}$ there exists an infinite mono grid.

(b) Find a function $f(n)$ such that the following is true (and prove it), or show that no such function exists:

For all 2-colorings of $[f(n)] \times [f(n)]$ there exists a mono grid of size n.

(c) Find a function $f(n, c)$ such that the following is true (and prove it), or show that no such function exists:

For all c-colorings of $[f(n, c)] \times [f(n, c)]$ there exists a mono grid of size n.

GOTO THE NEXT PAGE
(50 points) In this problem we guide you through a finite version of Mileti’s proof of the infinite can Ramsey Theorem. We work backwards by taking the last part of the proof first.

ADVICE: (1) When the infinite proof asked for an INFINITE subset, here instead take a subset that is of size square root of what we had, (2) make gross overestimates to get this all to work – trying to refine it gets complicated.

PROBLEM MILLONE

Find a function \(f(n) \) such that the following lemma holds.

Lemma Let \(\text{COL} \) be an \(\omega \)-coloring of \((\lceil f(n) \rceil)^2 \). Assume that

- For all \(1 \leq i \leq f(n) - 2 \), for all \(i < k_1 < k_2 \leq f(n) \)
 \[
 \text{COL}(i, k_1) \neq \text{COL}(i, k_2).
 \]

- For all \(1 \leq i < j \leq f(n) - 1 \), for all \(k \geq j + 1 \),
 \[
 \text{COL}(i, k) \neq \text{COL}(j, k).
 \]

Then there exists a rainbow set of size \(n \). (Note that we DO NOT have one yet since \(\text{COL}(3, 8) = \text{COL}(4, 11) \) is possible.)

PROBLEM MILLTWO Find a function \(g(n) \) such that the following lemma is true: **Lemma** Let \(\text{COL}' \) be a coloring of \([g(n)] \) where the colors are of the form \((H, c)\) and \((RB, i)\). Then one of the following must occur:

(a) There exists \(c \) and \(Y \subseteq [g(n)] \), \(|Y| \geq n\), such that every element of \(Y \) is colored \((H, c)\).

(b) There exists \(Y \subseteq [g(n)] \), \(|Y| \geq n\), such that every element of \(Y \) is colored \((H, *)\) and they all have different second components.

(c) There exists \(i \) and \(Y \subseteq [g(n)] \), \(|Y| \geq n\), such that every element of \(Y \) is colored \((RB, i)\).

(d) There exists \(Y \subseteq [g(n)] \), \(|Y| \geq n\), such that every element of \(Y \) is colored \((RB, *)\) and they all have different second components.

GOTO THE NEXT PAGE
PROBLEM MILLTHREE
Find a function $h(n)$ such that the following lemma is true: Lemma
Let COL be an ω-coloring of $\binom{[h(n)]}{2}$ Assume there is a coloring COL' of $[h(n)]$ where the colors are of the form (H, c) and (RB, i), and the following holds:

- If $COL'(x) = (H, c)$ then for all $z > x$ $COL(x, z) = c$.
- If $COL'(x) = (RB, i)$ then for all $z_1 \neq z_2 > x$, $COL(x, z_1) \neq COL(x, z_2)$.
- If $COL'(x) = (RB, i)$ and $COL'(y) = (RB, i)$ then for all $z > \max\{x, y\}$, $COL(x, z) = COL(y, z)$.
- If $COL'(x) = (RB, i)$ and $COL'(y) = (RB, j)$ (with $i \neq j$) then for all $z > \max\{x, y\}$, $COL(x, z) \neq COL(y, z)$.

Then one of the followings holds:
(a) There is a homog set of size n.
(b) There is a min-homog set of size n.
(c) There is a max-homog set of size n.
(d) There is a rainbow set of size n.

PROBLEM MILLFOUR
Find a function $BILL(n)$ (sorry, I’m running out of letters) such that the following lemma is true: Lemma: Let COL be a ω-coloring of $\binom{[BILL(n)]}{2}$ Then there is a subset of $[BILL(n)]$ of size n and a coloring COL' of that subset, where the colors are of the form (H, c) and (RB, i), such that the following holds:

- If $COL'(x) = (H, c)$, then for all $z > x$, $COL(x, z) = c$.
- If $COL'(x) = (RB, i)$, then for all $z_1, z_2 > x$, $COL(x, z_1) \neq COL(x, z_2)$.
- If $COL'(x) = (RB, i)$ and $COL'(y) = (RB, i)$, then for all $z > \max\{x, y\}$, $COL(x, z) = COL(y, z)$.
- If $COL'(x) = (RB, i)$ and $COL'(y) = (RB, j)$ (with $i \neq j$), then for all $z > \max\{x, y\}$, $COL(x, z) \neq COL(y, z)$.

GOTO THE NEXT PAGE
PROBLEM MILLFIVE Put all of this together to (easily) find a function $CR(n)$ (for Can Ramsey) such that the following theorem is true:

Theorem Let COL be an ω-coloring of $\binom{|CR(n)|}{2}$. Then one of the following holds:

(a) There is a homog set of size n.
(b) There is a min-homog set of size n.
(c) There is a max-homog set of size n.
(d) There is a rainbow set of size n.

6. (25 points) (This is a NEW problem – nothing to do with Finite Can Ramsey.) Let (L, \preceq) be a well quasi order. Let $2^{\text{fin}L}$ be the set of FINITE subsets of L. We DEFINE an order \preceq' on $2^{\text{fin}L}$:

$A \preceq' B$ if there is an injection f from A to B such that $x \preceq f(x)$.

($\emptyset \preceq' B$ is always true: use the empty function and the condition holds vacuously.)

Show that $(2^{\text{fin}L}, \preceq')$ is a well quasi order.

(NOTE- this proof will use that wqo are closed under cross product, but the proof I have does not use Ramsey Theory directly.)