1. (0 points) What is your name? Write it clearly. Staple this.

2. (25 points) Find a function $f(n)$ such that the following is true, and prove it:

 - For any coloring (any number of colors) of $\{1, \ldots, f(n)\}$ there exists either n elements that are the same color OR there exists n elements that are all different colors.
 - There exists a coloring (any number of colors) of $\{1, \ldots, f(n) - 1\}$ with neither n elements that are the same color NOR with n elements that are all different colors.

 Solution:

 Let $f(n) = (n - 1)^2 + 1$. Suppose that you color $(n - 1)^2 + 1$ elements with $\leq n - 1$ colors. Then the average number of times each color is used must be greater than or equal to $\frac{(n-1)^2+1}{n-1} > n - 1$. Thus there is a color used at least n times. If there are only $(n - 1)^2$ elements, we can simply use each of $n - 1$ colors $n - 1$ times, and there will be no homogenous or rainbow sets of size n.

3. (25 points)

 (a) Find a function $f(n)$ such that the following is true, and prove it using a maximal-set argument.

 If X is a set of points in the plane, no three colinear, of size $f(n)$ then there exists $Y \subseteq X$ of size n such that no four points form a trapezoid.

 (b) Find a function $f(n, k)$ such that the following is true, and prove it using a maximal-set argument. (We assume $n, k \geq 3$.)

 If X is a set of points in the plane, no k colinear, of size $f(n, k)$ then there exists $Y \subseteq X$ of size n such that no four points form a trapezoid.
Solution:
Let \(f(n) = (n-1)(n^{-1}) + n \), and consider a maximal trapezoid free set \(Y \subseteq X \). Suppose \(|Y| \leq n - 1 \). Let \(x \in X \setminus Y \). Since \(Y \) is maximal, there exists \(\{a, (b, c)\} \in Y \times \binom{Y}{2} \) such that \(\{x, a, b, c\} \) forms a trapezoid with parallels lines \(ax \) and \(bc \). We think of \(\{a, (b, c)\} \) as the reason \(x \notin Y \). Define \(\varphi : X \setminus Y \to Y \times \binom{Y}{2} \) by \(\varphi(x) = (a, (b, c)) \) as above. If there are multiple possible choices for \(\varphi(x) \), choose arbitrarily. Then if \(\varphi(x_1) = \varphi(x_2) = (a, (b, c)) \) then the line \(x_1a \) and \(x_2a \) are both parallel to \(bc \), hence \(a, x_1, x_2 \) are colinear which violates the hypothesis. Hence \(\varphi \) is injective. Therefore the domain has size \(\leq \) the codomain, so

\[
|X \setminus Y| \leq |Y| \times \binom{|Y|}{2}.
\]

\[
|X| \leq |Y| \times \binom{|Y|}{2} + |Y| \leq (n - 1) \times \binom{n - 1}{2} + n - 1.
\]

This contradicts the size of \(|X| \).

Part 2 we leave to you.

\textbf{NOTE:} Many students mapped \(x \) to \(\{a, b, c\} \) rather than \((a, (b, c)) \). This can work but is trickier and most students formally got it wrong though we did not penalize.
4. (25 points) Let COL be a coloring of $\mathbb{N} \times \mathbb{N}$. A mono grid is a pair of sets $A, B \subseteq \mathbb{N}$ such that the COL restricted to $A \times B$ is monochromatic. If A and B are both of size infinite we say its an infinite mono grid of size n. If A and B are both of size n we say its an mono grid of size n.

(a) Prove or disprove: For all 2-colorings of $\mathbb{N} \times \mathbb{N}$ there exists an infinite mono grid.

(b) Find a function $f(n)$ such that the following is true (and prove it), or show that no such function exists:

For all 2-colorings of $[f(n)] \times [f(n)]$ there exists a mono grid of size n.

(c) Find a function $f(n, c)$ such that the following is true (and prove it), or show that no such function exists:

For all c-colorings of $[f(n, c)] \times [f(n, c)]$ there exists a mono grid of size n.

Solution:

(a) False. Consider the coloring $C(a, b) = 1$ if $a < b$, and $C(a, b) = 2$ otherwise.

(b) We give several proofs:

PROOF ONE: $f(n) = 2^{2n+1}$

Let COL be a 2-coloring of $[f(n)] \times [f(n)]$.

View COL as a 2^n-coloring of the rows. There are 2^{2n+1} rows so by PHP there are $\frac{2^{2n+1}}{2^n} = 2^{n+1}$ rows that are the same color (we just need 2^n). Look just at those rows. Assume the color has at least half R's. Each row is 2^n+1 long, so there is a set of 2^n positions where it is R. Take the 2^n rows, the 2^n positions where they are R and you have your mono grid.

PROOF TWO: $f(n) = 2^{3n+1}$.

Look at ROW 1: Let c_1 be the majority color KILL ALL THOSE WHO DISAGREE. There are now 2^{3n} columns.

Look at ROW 2: Let c_2 be the majority color KILL ALL THOSE WHO DISAGREE. There are now 2^{3n-1} columns.

Keep doing this, until
Look at ROW 2n + 1: Let c_{2n+1} be the majority color KILL. . . . There are now $2^{3n-2n} = 2^n$ columns.

We have c_1, \ldots, c_{2n+1}. There are n that are the same color. Take those rows.

PROOF THREE: $f(n) = 2^{2n}$ suffices. Let $g(a, b)$ be equal to the number of elements required to find either a mono grid for color 1 of size a or a mono grid for color 2 of size b. Then we can construct a mono grid of size n given sufficiently many points as follows: Consider point 1. If there are $g(n-1, n)$ elements b of B such that $COL(1, b) = 1$, let $COL'(1) = 1$ and let B_1 be the subset of N such that $COL(1, b) = 1$ for all $b \in B_1$. Otherwise, there will be $g(n, n-1)$ elements b in B such that $COL(1, b) = 2$. In this case $COL'(1) = 2$ and B_1 is the set of things such that $COL(1, b) = 2$. Suppose the former case occurred. Then either there is a mono grid $A \times B$ for color 1 of size $(n-1)$ such that $1 \notin A$ and $B \subseteq B_1$, or there is a mono grid $A \times B$ for color 2 of size n such that $1 \notin A$ and $B \subseteq B_1$. Either way, we can then construct a mono grid of size n on the original grid.

A similar argument shows $g(a, b) \leq g(a-1, b) + g(a, b-1)$. We will now show $g(a, b) \leq 2^{a+b}$. First, it is easy to check $g(x, 1) = g(1, x) = x \leq 2^{x+1}$. Now, for $a, b > 1$ we have $g(a, b) \leq g(a-1, b) + g(a, b-1) \leq 2 \cdot 2^{a+b-1} = 2^{a+b}$, as desired. Since $g(n, n) \leq 2^{2n}$, $f(n) = 2^{2n}$ suffices.

(c) $f(n) = c^n$ suffices. Use the previous argument, except instead of $g(a, b) \leq g(a-1, b) + g(a, b-1)$ show that $g_c(a_1, a_2, \ldots, a_c) \leq g_c(a_1-1, a_2, \ldots, a_c) + \cdots + g_c(a_1, a_2, \ldots, a_c-1)$. Check that $g_c(a_1, a_2, a_3, \ldots, a_c) \leq g_{c-1}(a_2, a_3, \ldots, a_c) \leq (c-1)^{(a_2+a_3+\cdots+a_c)} \leq c^{(1+a_2+a_3+\cdots+a_c)}$. Then by induction $g_c(a_1, a_2, \ldots, a_c) \leq c^{(a_1+a_2+\cdots+a_n)}$. Therefore $g_c(n, n, \ldots, n) \leq c^{cn}$, so $f(n) = c^n$ suffices.

GOTO THE NEXT PAGE
5. (50 points) In this problem we guide you through a finite version of Mileti’s proof of the infinite can Ramsey Theorem. We work backwards by taking the last part of the proof first.

ADVICE: (1) When the infinite proof asked for an INFINITE subset, here instead take a subset that is of size square root of what we had, (2) make gross overestimates to get this all to work – trying to refine it gets complicated.

PROBLEM MILLONE

Find a function $f(n)$ such that the following lemma holds.

Lemma Let COL be an ω-coloring of $\left(\binom{f(n)}{2}\right)$. Assume that

- For all $1 \leq i \leq f(n) - 2$, for all $i < k_1 < k_2 \leq f(n)$

 \[
 COL(i, k_1) \neq COL(i, k_2).
 \]

- For all $1 \leq i < j \leq f(n) - 1$, for all $k \geq j + 1$,

 \[
 COL(i, k) \neq COL(j, k).
 \]

Then there exists a rainbow set of size n. (Note that we DO NOT have one yet since $COL(3, 8) = COL(4, 11)$ is possible.)
SOLUTION TO MILLONE

We will pick f later. We define a sequence of z's and a sequence of H's

$z_1 = 1$

$H_1 = \{2, 3, \ldots, f(n)\}$.

Assume that z_1, \ldots, z_i have been chosen and that all of the edges between them are different colors. Let $SETCOL_i$ be the set of colors of edges (there are $i\choose 2$ of them). All of the elements of H_i are $> z_i$. Find the least element z of H_i such that,

$(\forall 1 \leq j \leq i)[COL(z_j, z) \notin SETCOL_i].$

AND

$(\forall 1 \leq j_1 < j_2 \leq i)[COL(z_j_1, z) \neq COL(z_j_2, z)].$

FIRST KEY: The second clause holds for all z

SECOND KEY: we need to show that there exists a z satisfying the first clause. We claim that such a z exists within the first i^3 elements of H_i. Assume, by contradiction, that there is no such z. We map each $z \in H_i$ to the REASON it does not work. Map H_i to $\{1, \ldots, i\} \times SETCOL_i$ as follows:

$z \in H_i$. z DID NOT get to be z_{i+1}. Hence there is some j (take the least one) such that $COL(z_j, z) = c \in SETCOL_i$. Let j be the least such j. Map z to (j, c).

Restrict this map to the first i^3 elements of H_{i-1}. Now it maps i^3 elements to $i \times \binom{i}{3}$ elements, which is $< i^3$. Hence there is z, z' within the first i^3 elements of H_i such that there is a j with $COL(z_j, z) = c$ and $COL(z_j, z') = c$. This violated $COL(z_j)$ only has one color coming ot of it.

We now define

z_{j+1} is the z found

H_{j+1} is H_j MINUS all the elements in H_j that were less than z that did not make it. So sad for them :-(.

Since $|H_{i+1}| \geq |H_i| - i^3$ we have
\[|H_n| \geq |H_0| - 1^2 - 2^3 - 3^3 - \cdots - n^3 \geq |H_0| - n^4. \]

Since we need to do the process \(n \) times take \(f(n) = n^4 \).

END OF SOLUTION TO MILLONE

PROBLEM MILLTWO Find a function \(g(n) \) such that the following lemma is true: **Lemma** Let \(COL' \) be a coloring of \([g(n)]\) where the colors are of the form \((H, c)\) and \((RB, i)\). Then one of the following must occur:

(a) There exists \(c \) and \(Y \subseteq [g(n)], |Y| \geq n \), such that every element of \(Y \) is colored \((H, c)\).

(b) There exists \(Y \subseteq [g(n)], |Y| \geq n \), such that every element of \(Y \) is colored \((H, *)\) and they all have different second components.

(c) There exists \(i \) and \(Y \subseteq [g(n)], |Y| \geq n \), such that every element of \(Y \) is colored \((RB, i)\).

(d) There exists \(Y \subseteq [g(n)], |Y| \geq n \), such that every element of \(Y \) is colored \((RB, *)\) and they all have different second components.

SOLUTION TO PROBLEM MILLTWO

Either \(g(n)/2 \) of the numbers are colored \((H, *)\) or are colored \((RB, *)\). Assume its \((H, *)\) (the other case is similar).

Of these \(g(n)/2 \) elements either there exists \(c \) such that \(\sqrt{g(n)/2} \) are colored \((H, c)\) OR there exists \(\sqrt{g(n)/2} \) with different second components.

So we need \(\sqrt{g(n)/2} \geq n \). We take \(g(n) = 2n^2 \).

END OF SOLUTION TO PROBLEM MILLTWO

GOTO THE NEXT PAGE
PROBLEM MILLTHREE
Find a function \(h(n) \) such that the following lemma is true: **Lemma**
Let \(COL \) be an \(\omega \)-coloring of \(\left(\left\lfloor h(n) \right\rfloor \right) \) Assume there is a coloring \(COL' \) of \([h(n)] \) where the colors are of the form \((H, c)\) and \((RB, i)\), and the following holds:

- If \(COL'(x) = (H, c) \) then for all \(z > x \) \(COL(x, z) = c \).
- If \(COL'(x) = (RB, i) \) then for all \(z_1 \neq z_2 > x \) \(COL(x, z_1) \neq COL(x, z_2) \).
- If \(COL'(x) = (RB, i) \) and \(COL'(y) = (RB, i) \) then for all \(z > \max\{x, y\} \) \(COL(x, z) = COL(y, z) \).
- If \(COL'(x) = (RB, i) \) and \(COL'(y) = (RB, j) \) (with \(i \neq j \)) then for all \(z > \max\{x, y\} \) \(COL(x, z) \neq COL(y, z) \).

Then one of the followings holds:
(a) There is a homog set of size \(n \).
(b) There is a min-homog set of size \(n \).
(c) There is a max-homog set of size \(n \).
(d) There is a rainbow set of size \(n \).

SOLUTION TO MILLTHREE
By the solution to MILLTWO one of the following holds:

(a) There are \(\sqrt{\frac{h(n)}{2}} \) with \((H, c)\). Then there is a homog set of size \(\sqrt{\frac{h(n)}{2}} \) so we need \(h(n) \geq 2n^2 \).
(b) There are \(\sqrt{\frac{h(n)}{2}} \) with \((H, *)\), all different second parts. Then there is a min-homog set of size \(\sqrt{\frac{h(n)}{2}} \) so we need \(h(n) \geq 2n^2 \).
(c) There are \(\sqrt{\frac{h(n)}{2}} \) with \((RB, i)\) Then there is a max-homog set of size \(\sqrt{\frac{h(n)}{2}} \) so we need \(h(n) \geq 2n^2 \).
(d) There are \(\sqrt{\frac{h(n)}{2}} \) with \((RB, *)\), all different second parts. You DO NOT have a rainbow set! You use the solution to MILLONE to get a rainbow set of size \((\sqrt{\frac{h(n)}{2}})^{1/4} = (\frac{h(n)}{2})^{1/8} \).

So take \(h(n) = 2n^8 \).
PROBLEM MILLFOUR

Find a function $BILL(n)$ (sorry, I’m running out of letters) such that the following lemma is true: **Lemma:** Let COL be a ω-coloring of $\binom{[BILL(n)]}{2}$ Then there is a subset of $[BILL(n)]$ of size n and a coloring COL' of that subset, where the colors are of the form (H, c) and (RB, i), such that the following holds:

- If $COL'(x) = (H, c)$, then for all $z > x$, $COL(x, z) = c$.
- If $COL'(x) = (RB, i)$, then for all $z_1, z_2 > x$, $COL(x, z_1) \neq COL(x, z_2)$.
- If $COL'(x) = (RB, i)$ and $COL'(y) = (RB, i)$, then for all $z > \max\{x, y\}$, $COL(x, z) = COL(y, z)$.
- If $COL'(x) = (RB, i)$ and $COL'(y) = (RB, j)$ (with $i \neq j$), then for all $z > \max\{x, y\}$, $COL(x, z) \neq COL(y, z)$.
SOLUTION TO MILLFOUR

\[V_0 = [BILL(n)] \]
\[x_1 = 1 \]

If \((\exists c)\{|v \in V_0 \mid COL(x_1, v) = c\}| \geq \sqrt{|BILL(n)|} \) then:

- \(c_1 = (H, c) \)
- \(V_1 = \{v \in V_0 \mid COL(x_1, v) = c\} \). (Note that \(|V_1| \geq \sqrt{|BILL(n)|}\))

If \((\forall c)\{|v \in V_0 \mid COL(x_1, v) = c\}| < \sqrt{|BILL(n)|} \) then:

- \(V_1 = \{v \in V_0 \mid (\exists c)[COL(x_1, v) = c \land (\forall x_1 < u < v)[COL(x_1, u) \neq c]]\} \) (so \(v \) is the first first with \(COL(x_1, v) = c \). Hence there will only be ONE \(v \) with \(COL(x_1, v) = c \).) (Note that \(|V_1| \geq \sqrt{|BILL(n)|}\))
- \(c_1 = (RB, 1) \). (The 1 marks that this is the first rainbow-color assigned.)

Let \(i \geq 2 \), and assume that \(V_{i-1} \) is defined. We define \(x_i, c_i, \) and \(V_i \):

- \(x_i \) gets the least element of \(V_{i-1} \).
- For all colors \(c \) let \(Y_c = \{x \in V_{i-1} : COL(x_i, x) = c\} \)
- Also let: \(Y_\omega = \{x \in V_{i-1} : (\forall y \in V_{i-1}, y < x)[COL(x_i, x) \neq COL(x_i, y)]\} \)
 (So all colors coming out of \(x \) are different.
- If there exists \(c \) such that \(|Y_c| \geq \sqrt{|V_{i-1}|}\) then
 \[c_i = (H, c) \]
 \[V_i = Y_c \]

If no such \(c \) exist then there exists \(Y_\omega \) with \(|Y_\omega| \geq \sqrt{|V_{i-1}|}\). with all of the vertices coming out of it being different colors. We initially take \(V_i = Y_\omega \)

But we may thin it out. And we haven’t colored \(x_i \) yet.
Do the following:
For all $1 \leq j \leq i - 1$ such that $COL'(x_j) = (RB, k)$ for some k then:

(a) If $|\{y \in Y : COL(x_j, y) = COL(x_i, y)\}| \geq \sqrt{|V_i|}$ then let V_i be this set and let $c_i = c_j$. (So $COL'(x_i)$ will be of the form (RB, k) for some k). You are done and do not go to the next j.

(b) If $|\{y \in Y : COL(x_j, y) = COL(x_i, y)\}| < \sqrt{|V_i|}$ then let V_i be the Y minus those vertices.

If Case 1 ever happens then we are done. If Case 2 always happens then note that x_i disagrees with every x_j on every element $> x_i$. We c_i with (RB, k) where k is the least number not used for a rainbow color yet.

END OF CONSTRUCTION

The KEY for us is how big is V_i.

In the worst case we keep on subtracting $\sqrt{|V_i|}$ vertices and then at the very last stage take a square root. Even though $|V_i|$ keeps getting smaller within a stage we won’t use this (so our results are not as good as they could be).

Lets start at the beginning
We have V_{i-1}.

We do the Y_ω thing
We now have a set of size $\sqrt{|V_{i-1}|}$.

We then subtract $|V_{i-1}|^{1/4}$ i times.

So we have

$$|V_i| \geq \sqrt{|V_{i-1}|^{1/2} - i|V_{i-1}|^{1/4}}$$

To simplify we will assume $i|V_i|^{1/4} \leq \frac{|V_i|^{1/2}}{2}$. (we later make sure that all $|V_i| \geq 16i^4$ so this true). Hence

$$|V_i| \geq \sqrt{|V_{i-1}|^{1/2} - i|V_{i-1}|^{1/4}} \geq \sqrt{\frac{|V_{i-1}|^{1/2}}{2}}$$

So we have
\[|V_i| \geq \frac{|V_{i-1}|^{1/4}}{\sqrt{2}} \]

We get really lazy here and make this even easier to deal with by assuming
\[|V_i| \geq \frac{|V_{i-1}|^{1/4}}{\sqrt{2}} \geq |V_{i-1}|^{1/5} \] (we later make sure that all \(|V_i| \geq 4^5 \) to make this true).

\[|V_i| \geq |V_{i-1}|^{1/5} \]

\[|V_n| \geq |V_0|^{(1/5)^n} \]

So we need \(|V_0|^{(1/5)^n} \geq 4^5 \), so \(|V_0| \geq 4^{5^n+1} \).

We also need \(|V_0|^{(1/5)^n} \geq 16n^4 \), so \(|V_0| \geq (16n^4)^{5^n} \)

so we can take \(BILL(n) = 4^{5^n+1} + (16n^4)^{5^n} \)

END OF SOLUTION TO MILLFOUR

GOTO THE NEXT PAGE
PROBLEM MILLFIVE Put all of this together to (easily) find a function \(CR(n) \) (for Can Ramsey) such that the following theorem is true:

Theorem Let \(COL \) be an \(\omega \)-coloring of \(\binom{|CR(n)|}{2} \). Then one of the following holds:

(a) There is a homog set of size \(n \).
(b) There is a min-homog set of size \(n \).
(c) There is a max-homog set of size \(n \).
(d) There is a rainbow set of size \(n \).

SOLUTION TO MILLFIVE

Let \(CR(n) = BILL(2n^8) = 4^{5n^8+1} + (256n^{32})^{5n^8} \).

We leave it to the reader to see that this works.

END OF SOLUTION TO MILLFIVE
6. (25 points) (This is a NEW problem – nothing to do with Finite Can Ramsey.) Let \((L, \preceq)\) be a well quasi order. Let \(2^{\text{fin}L}\) be the set of FINITE subsets of \(L\). We DEFINE an order \(\preceq'\) on \(2^{\text{fin}L}\):

\[A \preceq' B \text{ if there is an injection } f \text{ from } A \text{ to } B \text{ such that } x \preceq f(x). \]

(\(\emptyset \preceq' B\) is always true: use the empty function and the condition holds vacuously.)

Show that \((2^{\text{fin}L}, \preceq')\) is a well quasi order.

(NOTE- this proof will use that wqo are closed under cross product, but the proof I have does not use Ramsey Theory directly.)

SOLUTION TO PROBLEM SIX

Throughout ‘smallest’ means smallest CARDINALITY of a set.

Assume, BWOC, that \((2^{\text{fin}L}, \preceq')\) is a NOT a wqo.

Let \(A_1\) be the smallest set that begins a bad sequence.

Let \(A_2\) be the smallest set that is the second element of a bad sequence that begins with \(A_1\)

For all \(i \geq 3\)

Let \(A_i\) be the smallest set that is the \(i\)th element of a bad sequence that begins with \(A_1, A_2, \ldots, A_{i-1}\).

Note that

\[A_1, A_2, A_3, \ldots \]

is a minimal bad sequence.

None of the \(A_i\)’s can be empty since its a bad sequence.

Let \(B_i\) be \(A_i\) minus an element.

The elements are picked arb, however lets call the set of such elements MINUS.

Let \(B = \{B_1, B_2, \ldots\}\).

Claim: \(B\) with the order \(\preceq'\) is a wqo

Proof of Claim: Assume, BWOC, that there is a bad sequence:

\[B_{i_1}, B_{i_2}, \ldots \]
We can assume that i_1 is the smallest index that appears (take the smallest one that appears and start there). Aside from that we DO NOT know anything about the order of the i_j’s.

Look at the sequence

$$A_1, A_2, \ldots, A_{i_1-1}, B_{i_1}, B_{i_2}, \ldots$$

(NO TED we DO NOT KNOW, NOR DO WE THINK that $i_1 < i_2 < \cdots$)

We show this is a BAD sequence.

(a) Since A_1, A_2, \ldots is a bad sequence there will be no uptick in the first $i_1 - 1$ elements of the sequence.

(b) Since B_{i_1}, B_{i_2}, \ldots is a bad sequence there will be on uptick in the elements after A_{i_1-1}.

(c) Assume, BWOC, that we have $i < i_j$ and $A_i \preceq' B_{i_j}$. Take the injection from A_i to B_{i_j} and view it as an injection from A_i to A_{i_j}. Hence $i < i_j$ and $A_i \preceq A_{i_j}$. Hence we have an uptick in the BAD SEQUENCE A_1, A_2, \ldots. This is a contradiction.

SO

$$A_1, A_2, \ldots, A_{i_1-1}, B_{i_1}, B_{i_2}, \ldots$$

is a bad sequence. Look at its i_1 element. Recall how A_{i_1} was defined:

Let A_{i_1} be the smallest set that is the i_1th element of a bad sequence that begins with $A_1, A_2, \ldots, A_{i_1-1}$.

BUT we are now looking at a bad sequence that begins with

$$A_1, A_2, \ldots, A_{i_1-1}$$

with i_1th element B_{i_1}, and $|B_{i_1}|$ is A_{i_1} with one element missing so it is SMALLER. This is a contradiction.

So B with \preceq' is a wqo.

End of Proof of Claim

SO B under \preceq' is a wqo

$MINUS$ under \preceq is a subset of a wqo so its a wqo.
So $\mathcal{B} \times MINUS$ is a wqo.

Look at the original bad sequence (Sounds like a rap singer’s nickname the original badass sequence! - Maybe he or she could do a rap song about badass sequences – it could not be worse than the BW “rap”).

SEQONE: A_1, A_2, \ldots,

View this as

SEQTWO: $(B_1, b_1), (B_2, b_2), \ldots$

Where $A_i = B_i \cap \{b_i\}$.

Since SEQTWO has an uptick, SEQONE has an uptick.