
Take Home Midterm. Given out Feb 27
Morally Due THURSDAY March 8. Sick Cat Day-TUESDAY March 13

FIVE PAGES!!!!!!!!!!!!!!!

1. (0 points) What is your name? Write it clearly. Staple this.

2. (25 points) Find a function f(n) such that the following is true, and
prove it:

• For any coloring (any number of colors) of {1, . . . , f(n)} there
exists either n elements that are the same color OR there exists n
elements that are all different colors.

• There exists a coloring (any number of colors) of {1, . . . , f(n)−1}
with neither n elements that are the same color NOR with n
elements that are all different colors.

Solution:

Let f(n) = (n− 1)2 + 1. Suppose that you color (n− 1)2 + 1 elements
with ≤ n − 1 colors. Then the average number of times each color is

used must be greater than or equal to (n−1)2+1
n−1

> n− 1. Thus there is
a color used at least n times. If there are only (n − 1)2 elements, we
can simply use each of n − 1 colors n − 1 times, and there will be no
homogenous or rainbow sets of size n.

3. (25 points)

(a) Find a function f(n) such that the following is true, and prove it
using a maximal-set argument.

If X is a set of points in the plane, no three colinear, of size f(n)
then there exists Y ⊆ X of size n such that no four points form a
trapezoid.

(b) Find a function f(n, k) such that the following is true, and prove
it using a maximal-set argument. (We assume n, k ≥ 3.)

If X is a set of points in the plane, no k colinear, of size f(n, k)
then there exists Y ⊆ X of size n such that no four points form a
trapezoid.
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Solution:

Let f(n) = (n− 1)
(
n−1

2

)
+n, and consider a maximal trapezoid free set

Y ⊆ X. Suppose |Y | ≤ n − 1. Let x ∈ X \ Y . Since Y is maximal,
there exists {a, (b, c)} ∈ Y ×

(
Y
2

)
such that {x, a, b, c} forms a trapezoid

with parallels lines ax and bc. We think of {a, (b, c)} as the reason
x /∈ Y . Define ϕ : X \ Y → Y ×

(
Y
2

)
by ϕ(x) = (a, (b, c)) as above. If

there are multiple possible choices for ϕ(x), choose arbitrarily. Then if
ϕ(x1) = ϕ(x2) = (a, (b, c)) then the line x1a and x2a are both parallel
to bc, hence a, x1, x2 are colinear which violates the hypothesis. Hence
ϕ is injective. Therefore the domain has size ≤ the codomain, so

|X − Y | ≤ |Y | ×
(
|Y |
2

)
.

|X| ≤ |Y | ×
(
|Y |
2

)
+ |Y | ≤ (n− 1)×

(
(n− 1)

2

)
+ n− 1.

This contradicts the size of |X|.
Part 2 we leave to you.

NOTE: Many students mapped x to {a, b, c} rather than (a, (b, c)).
This can work but is trickier and most students formally got it wrong
though we did not penalize.

GO TO NEXT PAGE
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4. (25 points) Let COL be a coloring of N× N. A mono grid is a pair of
sets A,B ⊆ N such that the COL restricted to A×B is monochromatic.
If A and B are both of size infinite we say its an infinite mono grid of
size n. If A and B are both of size n we say its an mono grid of size n.

(a) Prove or disprove: For all 2-colorings of N × N there exists an
infinite mono grid.

(b) Find a function f(n) such that the following is true (and prove
it), or show that no such function exists:

For all 2-colorings of [f(n)] × [f(n)] there exists a mono grid of
size n.

(c) Find a function f(n, c) such that the following is true (and prove
it), or show that no such function exists:

For all c-colorings of [f(n, c)]× [f(n, c)] there exists a mono grid
of size n.

Solution:

(a) False. Consider the coloring C(a, b) = 1 if a < b, and C(a, b) = 2
otherwise.

(b) We give several proofs:

PROOF ONE: f(n) = 22n+1

Let COL be a 2-coloring of [f(n)]× [f(n)].

View COL as a 2n-coloring of the rows. There are 22n+1 rows so by
PHP there are 22n+1

2n
= 2n+1 rows that are the same color (we just need

2n). Look just at those rows. Assume the color has at least half R’s.
Each row is 2n+1 long, so there is a set of 2n positions where it is R.
Take the 2n rows, the 2n positions where they are R and you have your
mono grid.

PROOF TWO: f(n) = 23n+1.

Look at ROW 1: Let c1 be the majority color KILL ALL THOSE WHO
DISAGREE. There are now 23n columns.

Look at ROW 2: Let c2 be the majority color KILL ALL THOSE WHO
DISAGREE. There are now 23n−1 columns.

Keep doing this. until
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Look at ROW 2n + 1: Let c2n+1 be the majority color KILL. . .. There
are now 23n−2n = 2n columns.

We have c1, . . . , c2n+1. There are n that are the same color. Take those
rows.

PROOF THREE: f(n) = 22n suffices. Let g(a, b) be equal to the
number of elements required to find either a mono grid for color 1 of
size a or a mono grid for color 2 of size b. Then we can construct a mono
grid of size n given sufficiently many points as follows: Consider point
1. If there are g(n− 1, n) elements b of B such that COL(1, b) = 1, let
COL′(1) = 1 and let B1 be the subset of N such that COL(1, b) = 1
for all b ∈ B1. Otherwise, there will be g(n, n − 1) elements b in B
such that COL(1, b) = 2. In this case COL′(1) = 2 and B1 is the set
of things such that COL(1, b) = 2. Suppose the former case occurred.
Then either there is a mono grid A×B for color 1 of size (n− 1) such
that 1 6∈ A and B ⊆ B1, or there is a mono grid A × B for color 2 of
size n such that 1 6∈ A and B ⊆ B1. Either way, we can then construct
a mono grid of size n on the original grid.

A similar argument shows g(a, b) ≤ g(a − 1, b) + g(a, b − 1). We will
now show g(a, b) ≤ 2a+b. First, it is easy to check g(x, 1) = g(1, x) =
x ≤ 2x+1. Now, for a, b > 1 we have g(a, b) ≤ g(a− 1, b) + g(a, b− 1) ≤
2 · 2a+b−1 = 2a+b, as desired. Since g(n, n) ≤ 22n, f(n) = 22n suffices.

(c) f(n) = ccn suffices. Use the previous argument, except instead of
g(a, b) ≤ g(a− 1, b) + g(a, b− 1) show that gc(a1, a2, . . . , ac) ≤ gc(a1 −
1, a2, . . . , ac) + gc(a1, a2− 1, . . . , ac) + · · ·+ gc(a1, a2, . . . , ac− 1). Check
that gc(1, a2, a3, . . . , ac) ≤ gc−1(a2, a3, . . . , ac) ≤ (c − 1)(a2+a3+···+ac) ≤
c(1+a2+a3+···+ac). Then by induction gc(a1, a2, . . . , ac) ≤ c(a1+a2+···+an).
Therefore gc(n, n, . . . , n) ≤ ccn, so f(n) = ccn suffices.

GOTO THE NEXT PAGE
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5. (50 points) In this problem we guide you through a finite version of
Mileti’s proof of the infinite can Ramsey Theorem. We work backwards
by taking the last part of the proof first.

ADVICE: (1) When the infinite proof asked for an INFINITE subset,
here instead take a subset that is of size square root of what we had,
(2) make gross overestimates to get this all to work – trying to refine
it gets complicated.

PROBLEM MILLONE

Find a function f(n) such that the following lemma holds.

Lemma Let COL be an ω-coloring of
(

[f(n)]
2

)
. Assume that

• For all 1 ≤ i ≤ f(n)− 2, for all i < k1 < k2 ≤ f(n)

COL(i, k1) 6= COL(i, k2).

• For all 1 ≤ i < j ≤ f(n)− 1, for all k ≥ j + 1,

COL(i, k) 6= COL(j, k).

Then there exists a rainbow set of size n. (Note that we DO NOT have
one yet since COL(3, 8) = COL(4, 11) is possible.)
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SOLUTION TO MILLONE

We will pick f later. We define a sequence of z’s and a sequence of H’s

z1 = 1

H1 = {2, 3, . . . , f(n)}.
Assume that z1, . . . , zi have been chosen and that all of the edges be-
tween them are different colors. Let SETCOLi be the set of colors of
edges (there are

(
i
2

)
of them). All of the elements of Hi are > zi. Find

the least element z of Hi such that,

(∀1 ≤ j ≤ i)[COL(zj, z) /∈ SETCOLi].

AND

(∀1 ≤ j1 < j2 ≤ i)[COL(zj1 , z) 6= COL(zj2 , z)].

FIRST KEY: The second clause holds for all z

SECOND KEY: we need to show that there exists a z satisfying the first
clause. We claim that such a z exists within the first i3 elements of Hi.
Assume, by contradiction, that there is no such z. We map each z ∈ Hi

to the REASON it does not work. Map Hi to {1, . . . , i} × SETCOLi

as follows:

z ∈ Hi. z DID NOT get to be zi+1. Hence there is some j (take the
least one) such that COL(zj, z) = c ∈ SETCOLi. Let j be the least
such j. Map z to (j, c).

Restrict this map to the first i3 elements of Hi−1. Now it maps i3

elements to i×
(
i
2

)
elements, which is < i3. Hence there is z, z′ within

the first i3 elements of Hi such that there is a j with COL(zj, z) = c
and COL(zj, z

′) = c This violated COL(zj) only has one color coming
ot of it.

We now define

zj+1 is the z found

Hj+1 is Hj MINUS all the elements in Hj that were less than z that
did not make it. So sad for them :-( .

Since |Hi+1| ≥ |Hi| − i3 we have
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|Hn| ≥ |H0| − 12 − 23 − 33 − · · · − n3 ≥ |H0| − n4.

Since we need to do the process n times take f(n) = n4.

END OF SOLUTION TO MILLONE

PROBLEM MILLTWO Find a function g(n) such that the following
lemma is true: Lemma Let COL′ be a coloring of [g(n)] where the
colors are of the form (H, c) and (RB, i). Then one of the following
must occur:

(a) There exists c and Y ⊆ [g(n)], |Y | ≥ n, such that every element
of Y is colored (H, c).

(b) There exists Y ⊆ [g(n)], |Y | ≥ n, such that every element of Y is
colored (H, ∗) and they all have different second components.

(c) There exists i and Y ⊆ [g(n)], |Y | ≥ n, such that every element
of Y is colored (RB, i).

(d) There exists Y ⊆ [g(n)], |Y | ≥ n, such that every element of Y is
colored (RB, ∗) and they all have different second components.

SOLUTION TO PROBLEM MILLTWO

Either g(n)/2 of the numbers are colored (H, ∗) or are colored (RB, ∗).
Assume its (H, ∗) (the other case is similar).

Of these g(n)/2 elements either there exists c such that
√

g(n)/2 are

colored (H, c) OR there exists
√
g(n)/2 with different second compo-

nents.

So we need
√

g(n)/2 ≥ n. We take g(n) = 2n2.
END OF SOLUTION TO PROBLEM MILLTWO

GOTO THE NEXT PAGE
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PROBLEM MILLTHREE

Find a function h(n) such that the following lemma is true: Lemma
Let COL be an ω-coloring of

(
[h(n)]

2

)
Assume there is a coloring COL′

of [h(n)] where the colors are of the form (H, c) and (RB, i), and the
following holds:

• If COL′(x) = (H, c) then for all z > x COL(x, z) = c.

• If COL′(x) = (RB, i) then for all z1 6= z2 > x, COL(x, z1) 6=
COL(x, z2).

• If COL′(x) = (RB, i) and COL′(y) = (RB, i) then for all z >
max{x, y}, COL(x, z) = COL(y, z).

• If COL′(x) = (RB, i) and COL′(y) = (RB, j) (with i 6= j) then
for all z > max{x, y}, COL(x, z) 6= COL(y, z).

Then one of the followings holds:

(a) There is a homog set of size n.

(b) There is a min-homog set of size n.

(c) There is a max-homog set of size n.

(d) There is a rainbow set of size n.

SOLUTION TO MILLTHREE

By the solution to MILLTWO one of the following holds:

(a) There are
√

h(n)/2 with (H, c). Then there is a homog set of size√
h(n)/2 so we need h(n) ≥ 2n2.

(b) There are
√
h(n)/2 with (H, ∗), all different second parts. Then

there is a min-homog set of size
√

h(n)/2 so we need h(n) ≥ 2n2.

(c) There are
√

h(n)/2 with (RB, i) Then there is a max-homog set

of size
√

h(n)/2 so we need h(n) ≥ 2n2.

(d) There are
√
h(n)/2 with (RB, ∗), all different second parts. You

DO NOT have a rainbow set! You use the solution to MILLONE
to get a rainbow set of size (

√
h(n)/2)1/4 = (h(n)/2)1/8.

So take h(n) = 2n8.
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END OF SOLUTION TO MILLTHREE

PROBLEM MILLFOUR

Find a function BILL(n) (sorry, I’m running out of letters) such that
the following lemma is true: Lemma: Let COL be a ω-coloring of(

[BILL(n)]
2

)
Then there is a subset of [BILL(n)] of size n and a coloring

COL′ of that subset, where the colors are of the form (H, c) and (RB, i),
such that the following holds:

• If COL′(x) = (H, c), then for all z > x, COL(x, z) = c.

• If COL′(x) = (RB, i), then for all z1, z2 > x, COL(x, z1) 6=
COL(x, z2).

• If COL′(x) = (RB, i) and COL′(y) = (RB, i), then for all z >
max{x, y}, COL(x, z) = COL(y, z).

• If COL′(x) = (RB, i) and COL′(y) = (RB, j) (with i 6= j), then
for all z > max{x, y}, COL(x, z) 6= COL(y, z).
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SOLUTION TO MILLFOUR

V0 = [BILL(n)]
x1 = 1

If (∃c)|{v ∈ V0 | COL(x1, v) = c}| ≥
√
|BILL(n)| then:

• c1 = (H, c)

• V1 = {v ∈ V0 | COL(x1, v) = c}. (Note that |V1| ≥
√
|BILL(n)|)

If (∀c)|{v ∈ V0 | COL(x1, v) = c}| <
√
|BILL(n)| then:

• V1 = {v ∈ V0 | (∃c)[COL(x1, v) = c∧(∀x1 < u < v)[COL(x1, u) 6=
c]]} (so v is the first first with COL(x1, v) = c. Hence there
will only be ONE v with COL(x1, v) = c.) (Note that |V1| ≥√
|BILL(n)|)

• c1 = (RB, 1). (The 1 marks that this is the first rainbow-color
assigned.)

Let i ≥ 2, and assume that Vi−1 is defined. We define xi, ci, and Vi:

xi gets the least element of Vi−1.

For all colors c let

Yc = {x ∈ Vi−1 : COL(xi, x) = c}
Also let:

Yω = {x ∈ Vi−1 : (∀y ∈ Vi−1, y < x)[COL(xi, x) 6= COL(xi, y)]}
(So all colors coming out of x are different.

If there exists c such that |Yc| ≥
√
|Vi−1| then

ci = (H, c)
Vi = Yc

If no such c exist then there exists Yω with |Yω| ≥
√
|Vi−1|. with all of

the vertices coming out of it being different colors. We initially take

Vi = Yω

But we may thin it out. And we haven’t colored xi yet.
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Do the following:

For all 1 ≤ j ≤ i− 1 such that COL′(xj) = (RB, k) for some k then:

(a) If |{y ∈ Yω : COL(xj, y) = COL(xi, y)}| ≥
√
|Vi| then let Vi be

this set and let ci = cj. (So COL′(xi) will be of the form (RB, k)
for some k). You are done and do not go to the next j.

(b) If |{y ∈ Yω : COL(xj, y) = COL(xi, y)}| <
√
|Vi| then let Vi be

the Yω minus those vertices.

If Case 1 ever happens then we are done. If Case 2 always happens
then note that xi disagrees with every xj on every element > xi. We ci
with (RB, k) where k is the least number not used for a rainbow color
yet.

END OF CONSTRUCTION

The KEY for us is how big is Vi.

In the worst case we keep on subtracting
√
|Vi| vertices and then at

the very last stage take a square root. Even though |Vi| keeps getting
smaller within a stage we won’t use this (so our results are not as good
as they could be).

Lets start at the beginning

We have Vi−1.

We do the Yω thing

We now have a set of size
√
|Vi−1|.

We then subtract |Vi−1|1/4 i times.

So we have

|Vi| ≥
√
|Vi|1/2 − i|Vi|1/4

To simplify we will assume i|Vi|1/4 ≤ |Vi|1/2
2

. (we later make sure that
all |Vi| ≥ 16i4 so this true). Hence

|Vi| ≥
√
|Vi−1|1/2 − i|Vi−1|1/4 ≥

√
|Vi−1|1/2

2

So we have
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|Vi| ≥
|Vi−1|1/4

√
2

We get really lazy here and make this even easier to deal with by

assuming |Vi| ≥ |Vi−1|1/4√
2
≥ |Vi−1|1/5 (we later make sure that all |Vi| ≥

45 to make this true).

|Vi| ≥ |Vi−1|1/5

|Vn| ≥ |V0|(1/5)n

So we need |V0|(1/5)n ≥ 45, so |V0| ≥ 45n+1
.

We also need |V0|(1/5)n ≥ 16n4, so |V0| ≥ (16n4)5n

so we can take BILL(n) = 45n+1
+ (16n4)5n

END OF SOLUTION TO MILLFOUR
GOTO THE NEXT PAGE
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PROBLEM MILLFIVE Put all of this together to (easily) find a
function CR(n) (for Can Ramsey) such that the following theorem is
true:

Theorem Let COL be an ω-coloring of
(

[CR(n)]
2

)
. Then one of the

following holds:

(a) There is a homog set of size n.

(b) There is a min-homog set of size n.

(c) There is a max-homog set of size n.

(d) There is a rainbow set of size n.

SOLUTION TO MILLFIVE

Let CR(n) = BILL(2n8) = 452n
8+1

+ (256n32)52n
8

.

We leave it to the reader to see that this works.
END OF SOLUTION TO MILLFIVE
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6. (25 points) (This is a NEW problem – nothing to do with Finite Can
Ramsey.) Let (L,�) be a well quasi order. Let 2finL be the set of
FINITE subsets of L. We DEFINE an order �′ on 2finL:

A �′ B if there is an injection f from A to B such that x � f(x).

(∅ �′ B is always true: use the empty function and the condition holds
vacuously.)

Show that (2finL,�′) is a well quasi order.

(NOTE- this proof will use that wqo are closed under cross product,
but the proof I have does not use Ramsey Theory directly.)

SOLUTION TO PROBLEM SIX

Throughout ‘smallest’ means smallest CARDINALITY of a set.

Assume, BWOC, that (2finL,�′) is a NOT a wqo.

Let A1 be the smallest set that begins a bad sequence.

Let A2 be the smallest set that is the second element of a bad sequence
that begins with A1

For all i ≥ 3

Let Ai be the smallest set that is the ith element of a bad sequence
that begins with A1, A2, . . . , Ai−1.

Note that

A1, A2, A3, . . .

is a minimal bad sequence.

None of the Ai’s can be empty since its a bad sequence.

Let Bi be Ai minus an element.

The elements are picked arb, however lets call the set of such elements
MINUS.

Let B = {B1, B2, . . .}.
Claim: B with the order �′ is a wqo

Proof of Claim: Assume, BWOC, that there is a bad sequence:

Bi1 , Bi2 , . . .
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We can assume that i1 is the smallest index that appears (take the
smallest one that appears and start there). Aside from that we DO
NOT know anything about the order of the ij’s.

Look at the sequence

A1, A2, . . . , Ai1−1, Bi1 , Bi2 , . . .

(NOTE we DO NOT KNOW, NOR DO WE THINK that i1 < i2 < · · · )
We show this is a BAD sequence.

(a) Since A1, A2, . . . is a bad sequence there will be no uptick in the
first i1 − 1 elements of the sequence.

(b) Since Bi1 , Bi2 , . . . is a bad sequence there will be on uptick in the
elements after Ai1−1.

(c) Assume, BWOC, that we have i < ij and Ai �′ Bij . Take the
injection from Ai to Bij and view it as an injection from Ai to
Aij . Hence i < ij and Ai � Aij . Hence we have an uptick in the
BAD SEQUENCE A1, A2, . . .. This is a contradiction.

SO
A1, A2, . . . , Ai1−1, Bi1 , Bi2 , . . .

is a bad sequence. Look at its i1 element. Recall how Ai1 was defined:

Let Ai1 be the smallest set that is the i1th element of a bad sequence
that begins with A1, A2, . . . , Ai1−1.

BUT we are now looking at a bad sequence that begins with

A1, A2, . . . , Ai1−1

with i1th element Bi1 , and |Bi1| is Ai1 with one element missing so it
is SMALLER. This is a contradiction.

So B with �′ is a wqo.

End of Proof of Claim

SO B under �′ is a wqo

MINUS under � is a subset of a wqo so its a wqo.
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So B ×MINUS is a wqo.

Look at the original bad sequence (Sounds like a rap singer’s nickname
the original badass sequence! - Maybe he or she could do a rap song
about badass sequences – it could not be worse than the BW “rap”).

SEQONE: A1, A2, . . . ,

View this as

SEQTWO: (B1, b1), (B2, b2), . . .

Where Ai = Bi ∩ {bi}.
Since SEQTWO has an uptick, SEQONE has an uptick.
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