Take Home Midterm. Given out Feb 27 Morally Due THURSDAY March 8. Sick Cat Day-TUESDAY March 13 FIVE PAGES!!!!!!!!!!!!!

- 1. (0 points) What is your name? Write it clearly. Staple this.
- 2. (25 points) Find a function f(n) such that the following is true, and prove it:
 - For any coloring (any number of colors) of $\{1, \ldots, f(n)\}$ there exists either *n* elements that are the same color OR there exists *n* elements that are all different colors.
 - There exists a coloring (any number of colors) of $\{1, \ldots, f(n) 1\}$ with neither *n* elements that are the same color NOR with *n* elements that are all different colors.

Solution:

Let $f(n) = (n-1)^2 + 1$. Suppose that you color $(n-1)^2 + 1$ elements with $\leq n-1$ colors. Then the average number of times each color is used must be greater than or equal to $\frac{(n-1)^2+1}{n-1} > n-1$. Thus there is a color used at least n times. If there are only $(n-1)^2$ elements, we can simply use each of n-1 colors n-1 times, and there will be no homogenous or rainbow sets of size n.

- 3. (25 points)
 - (a) Find a function f(n) such that the following is true, and prove it using a maximal-set argument.

If X is a set of points in the plane, no three colinear, of size f(n) then there exists $Y \subseteq X$ of size n such that no four points form a trapezoid.

(b) Find a function f(n,k) such that the following is true, and prove it using a maximal-set argument. (We assume $n, k \ge 3$.)

If X is a set of points in the plane, no k colinear, of size f(n,k)then there exists $Y \subseteq X$ of size n such that no four points form a trapezoid.

Solution:

Let $f(n) = (n-1)\binom{n-1}{2} + n$, and consider a maximal trapezoid free set $Y \subseteq X$. Suppose $|Y| \leq n-1$. Let $x \in X \setminus Y$. Since Y is maximal, there exists $\{a, (b, c)\} \in Y \times \binom{Y}{2}$ such that $\{x, a, b, c\}$ forms a trapezoid with parallels lines ax and bc. We think of $\{a, (b, c)\}$ as the reason $x \notin Y$. Define $\varphi : X \setminus Y \to Y \times \binom{Y}{2}$ by $\varphi(x) = (a, (b, c))$ as above. If there are multiple possible choices for $\varphi(x)$, choose arbitrarily. Then if $\varphi(x_1) = \varphi(x_2) = (a, (b, c))$ then the line x_1a and x_2a are both parallel to bc, hence a, x_1, x_2 are collinear which violates the hypothesis. Hence φ is injective. Therefore the domain has size \leq the codomain, so

$$|X - Y| \le |Y| \times \binom{|Y|}{2}.$$
$$|X| \le |Y| \times \binom{|Y|}{2} + |Y| \le (n-1) \times \binom{(n-1)}{2} + n - 1.$$

This contradicts the size of |X|.

Part 2 we leave to you.

NOTE: Many students mapped x to $\{a, b, c\}$ rather than (a, (b, c)). This can work but is trickier and most students formally got it wrong though we did not penalize.

GO TO NEXT PAGE

- 4. (25 points) Let COL be a coloring of N×N. A mono grid is a pair of sets A, B ⊆ N such that the COL restricted to A×B is monochromatic. If A and B are both of size infinite we say its an *infinite mono grid of size n*. If A and B are both of size n we say its an mono grid of size n.
 - (a) Prove or disprove: For all 2-colorings of $\mathsf{N}\times\mathsf{N}$ there exists an infinite mono grid.
 - (b) Find a function f(n) such that the following is true (and prove it), or show that no such function exists:
 For all 2-colorings of [f(n)] × [f(n)] there exists a mono grid of size n.
 - (c) Find a function f(n, c) such that the following is true (and prove it), or show that no such function exists:
 For all c-colorings of [f(n, c)] × [f(n, c)] there exists a mono grid

For all c-colorings of $[f(n,c)] \times [f(n,c)]$ there exists a mono grid of size n.

Solution:

(a) False. Consider the coloring C(a, b) = 1 if a < b, and C(a, b) = 2 otherwise.

(b) We give several proofs:

PROOF ONE: $f(n) = 2^{2n+1}$

Let COL be a 2-coloring of $[f(n)] \times [f(n)]$.

View COL as a 2^{n} -coloring of the rows. There are 2^{2n+1} rows so by PHP there are $\frac{2^{2n+1}}{2^{n}} = 2^{n+1}$ rows that are the same color (we just need 2^{n}). Look just at those rows. Assume the color has at least half R's. Each row is 2^{n+1} long, so there is a set of 2^{n} positions where it is R. Take the 2^{n} rows, the 2^{n} positions where they are R and you have your mono grid.

PROOF TWO: $f(n) = 2^{3n+1}$.

Look at ROW 1: Let c_1 be the majority color KILL ALL THOSE WHO DISAGREE. There are now 2^{3n} columns.

Look at ROW 2: Let c_2 be the majority color KILL ALL THOSE WHO DISAGREE. There are now 2^{3n-1} columns.

Keep doing this. until

Look at ROW 2n + 1: Let c_{2n+1} be the majority color KILL.... There are now $2^{3n-2n} = 2^n$ columns.

We have c_1, \ldots, c_{2n+1} . There are *n* that are the same color. Take those rows.

PROOF THREE: $f(n) = 2^{2n}$ suffices. Let g(a, b) be equal to the number of elements required to find either a mono grid for color 1 of size a or a mono grid for color 2 of size b. Then we can construct a mono grid of size n given sufficiently many points as follows: Consider point 1. If there are g(n-1,n) elements b of B such that COL(1,b) = 1, let COL'(1) = 1 and let B_1 be the subset of N such that COL(1,b) = 1 for all $b \in B_1$. Otherwise, there will be g(n, n-1) elements b in B such that COL(1,b) = 2. In this case COL'(1) = 2 and B_1 is the set of things such that COL(1,b) = 2. Suppose the former case occurred. Then either there is a mono grid $A \times B$ for color 1 of size (n-1) such that $1 \notin A$ and $B \subseteq B_1$, or there is a mono grid $A \times B$ for color 2 of size n such that $1 \notin A$ and $B \subseteq B_1$. Either way, we can then construct a mono grid of size n on the original grid.

A similar argument shows $g(a,b) \leq g(a-1,b) + g(a,b-1)$. We will now show $g(a,b) \leq 2^{a+b}$. First, it is easy to check $g(x,1) = g(1,x) = x \leq 2^{x+1}$. Now, for a, b > 1 we have $g(a,b) \leq g(a-1,b) + g(a,b-1) \leq 2 \cdot 2^{a+b-1} = 2^{a+b}$, as desired. Since $g(n,n) \leq 2^{2n}$, $f(n) = 2^{2n}$ suffices.

(c) $f(n) = c^{cn}$ suffices. Use the previous argument, except instead of $g(a,b) \leq g(a-1,b) + g(a,b-1)$ show that $g_c(a_1,a_2,\ldots,a_c) \leq g_c(a_1-1,a_2,\ldots,a_c) + g_c(a_1,a_2-1,\ldots,a_c) + \cdots + g_c(a_1,a_2,\ldots,a_c-1)$. Check that $g_c(1,a_2,a_3,\ldots,a_c) \leq g_{c-1}(a_2,a_3,\ldots,a_c) \leq (c-1)^{(a_2+a_3+\cdots+a_c)} \leq c^{(1+a_2+a_3+\cdots+a_c)}$. Then by induction $g_c(a_1,a_2,\ldots,a_c) \leq c^{(a_1+a_2+\cdots+a_n)}$. Therefore $g_c(n,n,\ldots,n) \leq c^{cn}$, so $f(n) = c^{cn}$ suffices.

GOTO THE NEXT PAGE

5. (50 points) In this problem we guide you through a finite version of Mileti's proof of the infinite can Ramsey Theorem. We work backwards by taking the last part of the proof first.

ADVICE: (1) When the infinite proof asked for an INFINITE subset, here instead take a subset that is of size square root of what we had, (2) make gross overestimates to get this all to work – trying to refine it gets complicated.

PROBLEM MILLONE

Find a function f(n) such that the following lemma holds.

Lemma Let COL be an ω -coloring of $\binom{[f(n)]}{2}$. Assume that

• For all $1 \le i \le f(n) - 2$, for all $i < k_1 < k_2 \le f(n)$

 $COL(i, k_1) \neq COL(i, k_2).$

• For all $1 \le i < j \le f(n) - 1$, for all $k \ge j + 1$,

$$COL(i,k) \neq COL(j,k).$$

Then there exists a rainbow set of size n. (Note that we DO NOT have one yet since COL(3, 8) = COL(4, 11) is possible.)

SOLUTION TO MILLONE

We will pick f later. We define a sequence of z's and a sequence of H's $z_1 = 1$

 $H_1 = \{2, 3, \dots, f(n)\}.$

Assume that z_1, \ldots, z_i have been chosen and that all of the edges between them are different colors. Let $SETCOL_i$ be the set of colors of edges (there are $\binom{i}{2}$ of them). All of the elements of H_i are $> z_i$. Find the least element z of H_i such that,

$$(\forall 1 \leq j \leq i) [COL(z_i, z) \notin SETCOL_i].$$

AND

$$(\forall 1 \le j_1 < j_2 \le i)[COL(z_{j_1}, z) \ne COL(z_{j_2}, z)].$$

FIRST KEY: The second clause holds for all z

SECOND KEY: we need to show that there exists a z satisfying the first clause. We claim that such a z exists within the first i^3 elements of H_i . Assume, by contradiction, that there is no such z. We map each $z \in H_i$ to the REASON it does not work. Map H_i to $\{1, \ldots, i\} \times SETCOL_i$ as follows:

 $z \in H_i$. z DID NOT get to be z_{i+1} . Hence there is some j (take the least one) such that $COL(z_j, z) = c \in SETCOL_i$. Let j be the least such j. Map z to (j, c).

Restrict this map to the first i^3 elements of H_{i-1} . Now it maps i^3 elements to $i \times {i \choose 2}$ elements, which is $\langle i^3 \rangle$. Hence there is z, z' within the first i^3 elements of H_i such that there is a j with $COL(z_j, z) = c$ and $COL(z_j, z') = c$ This violated $COL(z_j)$ only has one color coming ot of it.

We now define

 z_{j+1} is the z found

 H_{j+1} is H_j MINUS all the elements in H_j that were less than z that did not make it. So sad for them :-(.

Since $|H_{i+1}| \ge |H_i| - i^3$ we have

 $|H_n| \ge |H_0| - 1^2 - 2^3 - 3^3 - \dots - n^3 \ge |H_0| - n^4.$

Since we need to do the process n times take $f(n) = n^4$.

END OF SOLUTION TO MILLONE

PROBLEM MILLTWO Find a function g(n) such that the following lemma is true: Lemma Let COL' be a coloring of [g(n)] where the colors are of the form (H, c) and (RB, i). Then one of the following must occur:

- (a) There exists c and $Y \subseteq [g(n)], |Y| \ge n$, such that every element of Y is colored (H, c).
- (b) There exists $Y \subseteq [g(n)], |Y| \ge n$, such that every element of Y is colored (H, *) and they all have different second components.
- (c) There exists i and $Y \subseteq [g(n)], |Y| \ge n$, such that every element of Y is colored (RB, i).
- (d) There exists $Y \subseteq [g(n)], |Y| \ge n$, such that every element of Y is colored (RB, *) and they all have different second components.

SOLUTION TO PROBLEM MILLTWO

Either g(n)/2 of the numbers are colored (H, *) or are colored (RB, *). Assume its (H, *) (the other case is similar).

Of these g(n)/2 elements either there exists c such that $\sqrt{g(n)/2}$ are colored (H, c) OR there exists $\sqrt{g(n)/2}$ with different second components.

So we need $\sqrt{g(n)/2} \ge n$. We take $g(n) = 2n^2$.

END OF SOLUTION TO PROBLEM MILLTWO GOTO THE NEXT PAGE

PROBLEM MILLTHREE

Find a function h(n) such that the following lemma is true: **Lemma** Let COL be an ω -coloring of $\binom{[h(n)]}{2}$ Assume there is a coloring COL' of [h(n)] where the colors are of the form (H, c) and (RB, i), and the following holds:

- If COL'(x) = (H, c) then for all z > x COL(x, z) = c.
- If COL'(x) = (RB, i) then for all $z_1 \neq z_2 > x$, $COL(x, z_1) \neq COL(x, z_2)$.
- If COL'(x) = (RB, i) and COL'(y) = (RB, i) then for all $z > \max\{x, y\}$, COL(x, z) = COL(y, z).
- If COL'(x) = (RB, i) and COL'(y) = (RB, j) (with $i \neq j$) then for all $z > \max\{x, y\}$, $COL(x, z) \neq COL(y, z)$.

Then one of the followings holds:

- (a) There is a homog set of size n.
- (b) There is a min-homog set of size n.
- (c) There is a max-homog set of size n.
- (d) There is a rainbow set of size n.

SOLUTION TO MILLTHREE

By the solution to MILLTWO one of the following holds:

- (a) There are $\sqrt{h(n)/2}$ with (H, c). Then there is a homog set of size $\sqrt{h(n)/2}$ so we need $h(n) \ge 2n^2$.
- (b) There are $\sqrt{h(n)/2}$ with (H, *), all different second parts. Then there is a min-homog set of size $\sqrt{h(n)/2}$ so we need $h(n) \ge 2n^2$.
- (c) There are $\sqrt{h(n)/2}$ with (RB, i) Then there is a max-homog set of size $\sqrt{h(n)/2}$ so we need $h(n) \ge 2n^2$.
- (d) There are $\sqrt{h(n)/2}$ with (RB, *), all different second parts. You DO NOT have a rainbow set! You use the solution to MILLONE to get a rainbow set of size $(\sqrt{h(n)/2})^{1/4} = (h(n)/2)^{1/8}$.

So take $h(n) = 2n^8$.

END OF SOLUTION TO MILLTHREE PROBLEM MILLFOUR

Find a function BILL(n) (sorry, I'm running out of letters) such that the following lemma is true: **Lemma:** Let COL be a ω -coloring of $\binom{[BILL(n)]}{2}$ Then there is a subset of $\begin{bmatrix}BILL(n)\end{bmatrix}$ of size n and a coloring COL' of that subset, where the colors are of the form (H, c) and (RB, i), such that the following holds:

- If COL'(x) = (H, c), then for all z > x, COL(x, z) = c.
- If COL'(x) = (RB, i), then for all $z_1, z_2 > x$, $COL(x, z_1) \neq COL(x, z_2)$.
- If COL'(x) = (RB, i) and COL'(y) = (RB, i), then for all $z > \max\{x, y\}$, COL(x, z) = COL(y, z).
- If COL'(x) = (RB, i) and COL'(y) = (RB, j) (with $i \neq j$), then for all $z > \max\{x, y\}$, $COL(x, z) \neq COL(y, z)$.

$$V_0 = [BILL(n)]$$
$$x_1 = 1$$

If $(\exists c)|\{v \in V_0 \mid COL(x_1, v) = c\}| \ge \sqrt{|BILL(n)|}$ then:

- $c_1 = (H, c)$
- $V_1 = \{ v \in V_0 \mid COL(x_1, v) = c \}$. (Note that $|V_1| \ge \sqrt{|BILL(n)|}$)

If $(\forall c)|\{v \in V_0 \mid COL(x_1, v) = c\}| < \sqrt{|BILL(n)|}$ then:

- $V_1 = \{v \in V_0 \mid (\exists c) [COL(x_1, v) = c \land (\forall x_1 < u < v) [COL(x_1, u) \neq c]]\}$ (so v is the first first with $COL(x_1, v) = c$. Hence there will only be ONE v with $COL(x_1, v) = c$.) (Note that $|V_1| \ge \sqrt{|BILL(n)|}$)
- $c_1 = (RB, 1)$. (The 1 marks that this is the first rainbow-color assigned.)

Let $i \ge 2$, and assume that V_{i-1} is defined. We define x_i , c_i , and V_i : x_i gets the least element of V_{i-1} .

For all colors c let

$$Y_{c} = \{x \in V_{i-1} : COL(x_{i}, x) = c\}$$

Also let:

$$Y_{\omega} = \{ x \in V_{i-1} : (\forall y \in V_{i-1}, y < x) [COL(x_i, x) \neq COL(x_i, y)] \}$$

(So all colors coming out of x are different.

If there exists c such that $|Y_c| \ge \sqrt{|V_{i-1}|}$ then

$$c_i = (H, c)$$
$$V_i = Y_c$$

If no such c exist then there exists Y_{ω} with $|Y_{\omega}| \ge \sqrt{|V_{i-1}|}$, with all of the vertices coming out of it being different colors. We initially take

 $V_i = Y_\omega$

But we may thin it out. And we haven't colored x_i yet.

Do the following:

For all $1 \le j \le i - 1$ such that $COL'(x_j) = (RB, k)$ for some k then:

- (a) If $|\{y \in Y_{\omega} : COL(x_j, y) = COL(x_i, y)\}| \ge \sqrt{|V_i|}$ then let V_i be this set and let $c_i = c_j$. (So $COL'(x_i)$ will be of the form (RB, k) for some k). You are done and do not go to the next j.
- (b) If $|\{y \in Y_{\omega} : COL(x_j, y) = COL(x_i, y)\}| < \sqrt{|V_i|}$ then let V_i be the Y_{ω} minus those vertices.

If Case 1 ever happens then we are done. If Case 2 always happens then note that x_i disagrees with every x_j on every element $> x_i$. We c_i with (RB, k) where k is the least number not used for a rainbow color yet.

END OF CONSTRUCTION

The KEY for us is how big is V_i .

In the worst case we keep on subtracting $\sqrt{|V_i|}$ vertices and then at the very last stage take a square root. Even though $|V_i|$ keeps getting smaller within a stage we won't use this (so our results are not as good as they could be).

Lets start at the beginning

We have V_{i-1} .

We do the Y_{ω} thing

We now have a set of size $\sqrt{|V_{i-1}|}$.

We then subtract $|V_{i-1}|^{1/4}$ *i* times.

So we have

 $|V_i| \ge \sqrt{|V_i|^{1/2} - i|V_i|^{1/4}}$

To simplify we will assume $i|V_i|^{1/4} \leq \frac{|V_i|^{1/2}}{2}$. (we later make sure that all $|V_i| \geq 16i^4$ so this true). Hence

$$|V_i| \ge \sqrt{|V_{i-1}|^{1/2} - i|V_{i-1}|^{1/4}} \ge \sqrt{\frac{|V_{i-1}|^{1/2}}{2}}$$

So we have

$$|V_i| \ge \frac{|V_{i-1}|^{1/4}}{\sqrt{2}}$$

We get really lazy here and make this even easier to deal with by assuming $|V_i| \geq \frac{|V_{i-1}|^{1/4}}{\sqrt{2}} \geq |V_{i-1}|^{1/5}$ (we later make sure that all $|V_i| \geq 4^5$ to make this true).

$$|V_i| \ge |V_{i-1}|^{1/5}$$
$$|V_n| \ge |V_0|^{(1/5)^n}$$
$$5 \text{ so } |V_0| \ge 4^{5^{n+1}}$$

So we need $|V_0|^{(1/5)^n} \ge 4^5$, so $|V_0| \ge 4^{5^{n+1}}$. We also need $|V_0|^{(1/5)^n} \ge 16n^4$, so $|V_0| \ge (16n^4)^{5^n}$ so we can take $BILL(n) = 4^{5^{n+1}} + (16n^4)^{5^n}$ END OF SOLUTION TO MILLFOUR GOTO THE NEXT PAGE **PROBLEM MILLFIVE** Put all of this together to (easily) find a function CR(n) (for Can Ramsey) such that the following theorem is true:

Theorem Let COL be an ω -coloring of $\binom{[CR(n)]}{2}$. Then one of the following holds:

- (a) There is a homog set of size n.
- (b) There is a min-homog set of size n.
- (c) There is a max-homog set of size n.
- (d) There is a rainbow set of size n.

SOLUTION TO MILLFIVE

Let $CR(n) = BILL(2n^8) = 4^{5^{2n^8}+1} + (256n^{32})^{5^{2n^8}}.$

We leave it to the reader to see that this works. END OF SOLUTION TO MILLFIVE 6. (25 points) (This is a NEW problem – nothing to do with Finite Can Ramsey.) Let (L, \preceq) be a well quasi order. Let $2^{\text{fin}L}$ be the set of FINITE subsets of L. We DEFINE an order \preceq' on $2^{\text{fin}L}$:

 $A \preceq' B$ if there is an injection f from A to B such that $x \preceq f(x)$.

 $(\emptyset \preceq' B$ is always true: use the empty function and the condition holds vacuously.)

Show that $(2^{\operatorname{fin} L}, \preceq')$ is a well quasi order.

(NOTE- this proof will use that wqo are closed under cross product, but the proof I have does not use Ramsey Theory directly.)

SOLUTION TO PROBLEM SIX

Throughout 'smallest' means smallest CARDINALITY of a set.

Assume, BWOC, that $(2^{\text{fin}L}, \preceq')$ is a NOT a wqo.

Let A_1 be the smallest set that begins a bad sequence.

Let A_2 be the smallest set that is the second element of a bad sequence that begins with A_1

For all $i \geq 3$

Let A_i be the smallest set that is the *i*th element of a bad sequence that begins with $A_1, A_2, \ldots, A_{i-1}$.

Note that

$$A_1, A_2, A_3, \ldots$$

is a minimal bad sequence.

None of the A_i 's can be empty since its a bad sequence.

Let B_i be A_i minus an element.

The elements are picked arb, however lets call the set of such elements MINUS.

Let $\mathcal{B} = \{B_1, B_2, \ldots\}.$

Claim: \mathcal{B} with the order \preceq' is a wqo

Proof of Claim: Assume, BWOC, that there is a bad sequence:

$$B_{i_1}, B_{i_2}, \ldots$$

We can assume that i_1 is the smallest index that appears (take the smallest one that appears and start there). Aside from that we DO NOT know anything about the order of the i_i 's.

Look at the sequence

$$A_1, A_2, \ldots, A_{i_1-1}, B_{i_1}, B_{i_2}, \ldots$$

(NOTE we DO NOT KNOW, NOR DO WE THINK that $i_1 < i_2 < \cdots$) We show this is a BAD sequence.

- (a) Since A_1, A_2, \ldots is a bad sequence there will be no uptick in the first $i_1 1$ elements of the sequence.
- (b) Since B_{i_1}, B_{i_2}, \ldots is a bad sequence there will be on uptick in the elements after A_{i_1-1} .
- (c) Assume, BWOC, that we have $i < i_j$ and $A_i \preceq' B_{i_j}$. Take the injection from A_i to B_{i_j} and view it as an injection from A_i to A_{i_j} . Hence $i < i_j$ and $A_i \preceq A_{i_j}$. Hence we have an uptick in the BAD SEQUENCE A_1, A_2, \ldots This is a contradiction.

SO

$$A_1, A_2, \ldots, A_{i_1-1}, B_{i_1}, B_{i_2}, \ldots$$

is a bad sequence. Look at its i_1 element. Recall how A_{i_1} was defined: Let A_{i_1} be the smallest set that is the i_1 th element of a bad sequence that begins with $A_1, A_2, \ldots, A_{i_1-1}$.

BUT we are now looking at a bad sequence that begins with

$$A_1, A_2, \ldots, A_{i_1-1}$$

with i_1 th element B_{i_1} , and $|B_{i_1}|$ is A_{i_1} with one element missing so it is SMALLER. This is a contradiction.

So \mathcal{B} with \preceq' is a wqo.

End of Proof of Claim

SO \mathcal{B} under \preceq' is a wqo

MINUS under \leq is a subset of a wqo so its a wqo.

So $\mathcal{B} \times MINUS$ is a wqo.

Look at the original bad sequence (Sounds like a rap singer's nickname *the original badass sequence!* - Maybe he or she could do a rap song about *badass sequences* – it could not be worse than the BW "rap").

SEQONE: $A_1, A_2, \ldots,$

View this as

SEQTWO: $(B_1, b_1), (B_2, b_2), \dots$

Where $A_i = B_i \cap \{b_i\}$.

Since SEQTWO has an uptick, SEQONE has an uptick.