An Application of Ramsey Theory to in Multiparty Communication Complexity
Exposition By William Gasarch

1 Introduction

Multiparty communication complexity was first defined by Chandra, Furst, and Lipton [6] and used to obtain lower bounds on branching programs. Since then it has been used to get additional lower bounds and tradeoffs for branching programs [1, 3], lower bounds on problems in data structures [3], time-space tradeoffs for restricted Turing machines [1], and unconditional pseudorandom generators for logspace [1].

All results in this paper are from [6] or can be easily derived from their techniques unless otherwise specified.

Def 1.1 Let \(f : \{(0,1)^n\}^k \rightarrow X \). Assume, for \(1 \leq i \leq k \), \(P_i \) has all of the inputs except \(x_i \).

Let \(d(f) \) be the total number of bits broadcast in the optimal deterministic protocol for \(f \). At the end of the protocol all parties must know the answer. This is called the multiparty communication complexity of \(f \). The scenario is called the forehead model.

Note 1.2 Note that there is always the \(n+1 \)-bit protocol of (1) \(P_1 \) broadcasts \(x_2 \), (2) \(P_2 \) computes and broadcasts \(f(x_1, \ldots, x_k) \). The cases of interest are when \(d(f) \ll n \).

We will need the following lemmas about multiparty protocols. The first one is the \(k = 3 \) case of the second one. We leave it for an exercise.

Lemma 1.3 Let \(P \) be a multiparty protocol for a function \(f : \{(0,1)^n\}^k \times \{(0,1)^n\} \times \{(0,1)^n\} \rightarrow X \).

1. Let \(TRAN \) be a possible transcript of the protocol \(P \). There exists \(A_1, A_2, A_3 \subseteq \{(0,1)^n\} \) such that, for all \(x_1, x_2, x_3 \in \{(0,1)^n\} \) the following holds: The protocol \(P \) on input \((x_1, x_2, x_3) \) produces transcript \(TRAN \) iff \((x_1, x_2, x_3) \in A_1 \times A_2 \times A_3 \).

2. Let \(x_1, x_2, x_3 \in \{(0,1)^n\}, \sigma_1, \sigma_2, \sigma_3 \in \{(0,1)^n\}^3 \), \(TRAN \) be a transcript. Assume that \(\sigma_1 \) has \(x_1 \) as its first element, \(\sigma_2 \) has \(x_2 \) as its second element, \(\sigma_3 \) has \(x_3 \) as its third element. (In symbols, if * means we don’t care about the element, then

\[
\begin{align*}
\sigma_1 &= (x_1, *, *) \\
\sigma_2 &= (*, x_2, *) \\
\sigma_3 &= (*, *, x_3).
\end{align*}
\]

Further assume that \(\sigma_1, \sigma_2, \sigma_3 \) all produces transcript \(TRAN \). Then \((x_1, x_2, x_3) \) produces transcript \(TRAN \).

Lemma 1.4 Let \(P \) be a multiparty protocol for a function \(f : \{(0,1)^n\}^k \rightarrow X \).
1. Let $TRAN$ be a possible transcript of the protocol P. There exists $A_1, \ldots, A_k \subseteq \{0, 1\}^n$ such that, for all $x_1, \ldots, x_k \in \{0, 1\}^n$ the following holds: The protocol P on input (x_1, \ldots, x_k) produces transcript $TRAN$ iff $(x_1, \ldots, x_k) \in A_1 \times \cdots \times A_k$.

2. Let $x_1, \ldots, x_k \in \{0, 1\}^n$, $\sigma_1, \ldots, \sigma_k \in \{(0, 1)^n\}^k$, $TRAN$ be a transcript. Assume that σ_i has x_i as its ith element. Further assume that each σ_i produces transcript $TRAN$. Then (x_1, \ldots, x_k) produces transcript $TRAN$.

We will study the following function.

Def 1.5 Let $n \in \mathbb{N}$. We define $EQ_{2^n} : \{0, 1\}^n \times \{0, 1\}^n \times \{0, 1\}^n$ as follows (interpreting the three inputs as numbers in binary):

$$EQ_{2^n}(x, y, z) = \begin{cases} YES & \text{if } x + y + z = 2^n \\ NO & \text{if } x + y + z \neq 2^n \end{cases}$$ (1)

We will first establish a connection between $d(EQ_{2^n})$ and some concepts in Ramsey Theory. We will then use results from Ramsey Theory to obtain upper and lower bounds on $d(EQ_{2^n})$. The lower bounds will be applied to obtain lower bounds on branching programs. Here is what we will show.

1. $d(EQ_{2^n}) \leq \sqrt{\log(2^n)} = \sqrt{n}$ (First proven by Chandra, Furst, Lipton [6].) (This is somewhat surprising since it would seem the best you could do is have Alice yell to Bob what her bits are.)

2. $d(EQ_{2^n}) \geq \omega(1)$ (First proven by Chandra, Furst, Lipton [6].)

3. $d(EQ_{2^n}) \geq \log \log 2^n + \Omega(1) = \log \log n + \Omega(1)$ (First proven by Beigel, Gasarch, Glenn [5].)

2 Connections Between Multiparty Comm. Comp. and Ramsey Theory

In this section we review the connections between the multiparty communication complexity of f and Ramsey Theory that was first established in [6].

Def 2.1 Let $c, T \in \mathbb{N}$.

1. A proper c-coloring of $[T] \times [T]$ is a function $COL : [T] \times [T] \rightarrow [c]$ such that there do not exist $x, y \in [T]$ and $\lambda \in [T - 1]$ such that

$$COL(x, y) = COL(x + \lambda, y) = COL(x, y + \lambda)$$

Another way to look at this: In a proper coloring there cannot be three vertices that (a) are the same color, and (b) are the corners of a right isosceles triangle with legs parallel to the axes and hypotenuse parallel to the line $y = -x.$)
2. Let \(\chi(T) \) be the least \(c \) such that there is a proper \(c \)-coloring of \([T] \times [T]\).

Theorem 2.2 Let \(2^n : \mathbb{N} \rightarrow \mathbb{N} \).

1. \(d(\text{EQ}_n^n) \leq 2 \log(\chi(2^n)) + O(1) \).
2. \(d(\text{EQ}_n^n) \geq \log(\chi(2^n)) + \Omega(1) \).

Proof:

1) Let \(\text{COL} \) be a proper \(c \)-coloring of \([2^n] \times [2^n]\). We represent elements of \([c]\) by \(\log(\chi(2^n)) + O(1) \) bit strings. \(P_1, P_2, P_3 \) will all know \(\text{COL} \) ahead of time. We present a protocol for this problem for which the communication is \(2 \log(\chi(2^n)) + O(1) \). We will then show that it is correct.

1. \(P_1 \) has \(y, z \). \(P_2 \) has \(x, z \). \(P_3 \) has \(x, y \).
2. \(P_1 \) calculates \(x' \) such that \(x' + y + z = 2^n \). (If no such \(x' \) exists then output NO and thats the end of the protocol.) \(P_1 \) broadcasts \(\sigma_1 = \text{COL} (x', y) \).
3. \(P_2 \) calculates \(y' \) such that \(x + y' + z = 2^n \). (If no such \(y' \) exists then output NO and thats the end of the protocol.) \(P_2 \) broadcasts \(\sigma_2 = \text{COL} (x, y') \).
4. \(P_3 \) looks up \(\sigma_3 = \text{COL} (x, y) \). \(P_3 \) broadcasts YES if \(\sigma_1 = \sigma_2 = \sigma_3 \) and NO otherwise. (We will prove later that these answers are correct.)

Claim 1: If \(\text{EQ}_n^n(x, y, z) = \text{YES} \) then \(P_1, P_2, P_3 \) will all think \(\text{EQ}_n^n(x, y, z) = \text{YES} \).

Proof: If \(\text{EQ}_n^n(x, y, z) = \text{YES} \) then \(x'_1 = x_1, x'_2 = x_2, \) and \(x'_3 = x_3 \). Hence \(\sigma_1 = \sigma_2 = \sigma_3 \) Therefore \(P_1, P_2, P_3 \) all think \(\text{EQ}_n^n(x, y, z) = \text{YES} \).

End of proof of Claim 1.

Claim 2: If \(P_1, P_2, P_3 \) all think that \(\text{EQ}_n^n(x, y, z) = \text{YES} \) then \(\text{EQ}_n^n(x, y, z) = \text{YES} \).

Proof: Assume that \(P_1, P_2, P_3 \) all think \(\text{EQ}_n^n(x, y, z) = \text{YES} \).

Hence

\[\text{COL} (x_1, x_2) = \text{COL} (x'_1, x_2) = \text{COL} (x_1, x'_2). \]

We call this the **The Coloring Equation**.

Assume

\[x_1 + x_2 + x_3 = \lambda. \]

We show that \(\lambda = 2^n \).

By the definition of \(x'_1 \)
\[x'_1 + x_2 + x_3 = 2^n. \]

Hence

\[x'_1 + (x_1 + x_2 + x_3) - x_1 = 2^n. \]

\[x'_1 + \lambda - x_1 = 2^n. \]

\[x'_1 - x_1 = 2^n - \lambda \]

\[x'_1 = x_1 + 2^n - \lambda \]

By the same reasoning

\[x'_2 = x_2 + 2^n - \lambda. \]

Hence we can rewrite The Coloring Equation as

\[\text{COL} (x_1, x_2) = \text{COL} (x_1 + 2^n - \lambda, x_2) = \text{COL} (x_1, x_2 + 2^n - \lambda). \]

Since \(\text{COL} \) is a proper coloring, \(2^n - \lambda = 0 \), so \(\lambda = 2^n \).

End of proof of Claim 2.

2) Let \(P \) be a protocol for \(\text{EQ}_{2^n}^2 \). Let \(d \) be the maximum number of bits communicated. Note that the number of transcripts is bounded by \(2^d \). We use this protocol to create a proper \(2^d \)-coloring of \([2^n] \times [2^n] \).

We define \(\text{COL} (x, y) \) as follows. First find \(z \) such that \(x + y + z = 2^n \). Then run the protocol on \((x, y, z) \). The color is the transcript produced.

Claim 3: \(\text{COL} \) is a proper coloring of \([2^n] \times [2^n] \).

Proof: Let \(\lambda \in [2^n] \) be such that

\[\text{COL} (x, y) = \text{COL} (x + \lambda, y) = \text{COL} (x, y + \lambda). \]

We denote this value \(\text{TRAN} \) (for Transcript). We show that \(\lambda = 0 \).

Let \(z \) be such that

\[x + y + z = 2^n. \]

Since

\[\text{COL} (x, y) = \text{COL} (x + \lambda, y) = \text{COL} (x, y + \lambda). \]

We know that the following tuples produce the same transcript \(\text{TRAN} \):
• \((x, y, z)\).

• \((x + \lambda, y, z - \lambda)\).

• \((x, y + \lambda, z - \lambda)\).

All of these input produce the same transcript \(TRAN\) and this transcript ends with a YES. By Lemma 1.3.2 the tuple \((x, y, z - \lambda)\) also goes to \(TRAN\). Hence \(x + y + z - \lambda = 2^n\). Since \(x + y + z = 2^n\) we have \(\lambda = 0\).

End of Proof of Claim 3

We now have a really odd situation. We have \(d(EQ\, 2^n) = \Theta(lg(\chi(2^n)))\)

YEAH: We have upper and lower bounds that match up to a multiplicative constant!

BOO: We don’t know that the function IS.

In the next two sections we get upper bounds and lower bounds on \(lg(\chi(2^n))\).

3 Upper Bounds

We need to properly color \([2^n] \times [2^n]\) and keep the number of colors down.

4 Lower Bounds

4.1 An \(\omega(1)\) Lower Bound for \(d(EQ_n^{2^n})\)

We will need the following theorem from Ramsey Theory.

Theorem 4.1 For all \(c\) there exists \(T\) such that, there are no proper \(c\)-colorings of \([T] \times [T]\).

Theorem 4.1 can be proven several ways. We enumerate them:

1. This can be proven from van der Waerden’s theorem.

2. This can be proven by the same techniques as van der Waerden’s theorem.

3. This follows from the Galai-Witt Theorem. This generalizes to coloring \([T]^k\).

4. We will give a concrete lower bound (rather than \(\omega(1)\)) and is in Section 4.2. Other ways generalize to \(k\) variables.

Theorem 4.2 If \(\lim_{n \to \infty} 2^n = \infty\) then \(d(EQ_n^{2^n}) = \omega(1)\).
Proof: By Theorem 2.2
\[d(\text{EQ}_{2^n}) \geq \lg(\chi(2^n)) + \Omega(1). \]
Hence we need to show that \(\chi(T) \) is not bounded by a constant (as \(T \) goes to infinity).
Assume, by way of contradiction, that there exists \(c \) such that, for all \(T \), there is a proper \(c \)-coloring of \([T] \times [T] \). This contradicts Theorem 4.1.

We will need to look at \(k \)-party protocols for the following function.
\[
\text{MOD}_{n,k}^{2^n} : (\{0, 1\}^n)^k \rightarrow \{0, 1\}
\]
\[\text{MOD}_{n,k}^{2^n}(x_1, \ldots, x_k) = \begin{cases}
1 & \text{if } \sum_{i=1}^{k} x_i = 2^n \\
0 & \text{otherwise.} \end{cases} \tag{2} \]

The following can be proven in a manner similar to the \(k = 3 \) case.

Theorem 4.3 Fix \(k \). If \(\lim_{n \to \infty} 2^n = \infty \) then \(d(\text{MOD}_{n,k}^{2^n}) = \omega(1) \).

4.2 An \(\Omega(\log \log \log 2^n) \) Lower Bound for \(d(\text{EQ}_{n}^{2^n}) \)

The following combinatorial lemma will allow us to prove a lower bound on \(d(\text{EQ}_{n}^{2^n}) \). This lemma is a reworking of a theorem of Graham and Solymosi [9].

Lemma 4.4

1. \(\chi(2^n) \geq \Omega(\log \log 2^n) \).
2. \(d(\text{EQ}_{n}^{2^n}) \geq \log \log \log 2^n + \Omega(1). \) (This follows from part 1 and Theorem 2.2.)

Proof: Assume that COL is a proper \(c \)-coloring of \([2^n] \times [2^n] \). We find sets \(X_1, Y_1 \subseteq [2^n] \times [2^n] \) such that COL restricted to \(X_1 \times Y_1 \) uses \(c - 1 \) colors. We will iterate this process to obtain \(X_c, Y_c \) such that COL restricted to \(X_c \times Y_c \) uses 0 colors. Hence \(|X_c| = 0 \) which will yield \(c = \Omega(\log \log 2^n) = \Omega(\log \log n) \).

For \(0 \leq s \leq c \) we define \(X_s, Y_s, h_s, \text{USED-COL}_s \).

1. \(X_0 = Y_0 = [2^n] \). \(h_0 = |X_0| = |Y_0| = 2^n \). \(\text{USED-COL}_0 = [c] \).

2. Assume \(X_s, Y_s, h_s \) are defined and inductively \(\text{USED-COL}_s = [c - s] \) (we will be renumbering to achieve this). Also assume that Partition \(X_s \times Y_s \) (which is of size \(h_s^2 \)) into sets \(P_a \) indexed by \(a \in [2^n] \) defined by

\[
P_a = \{(x, y) \in X_s \times Y_s \mid x + y = a\}. \]

(\(P_a \) is the \(a \)th anti-diagonal.) There exists an \(a \) such that \(|P_a| \geq [h_s^2/2^n] \). There exists a color, which we will take to be \(c - s \) by renumbering, such that at least \([[h_s^2/2^n]]/c \) of the elements of \(P_a \) are colored \(c - s \). (We could use \(c - s \) in the denominator but we do not need to.) Let \(m = [[h_s^2/2^n]]/c \). Let \(\{(x_1, y_1), \ldots, (x_m, y_m)\} \) be \(m \) elements of \(P_a \) such that, for \(1 \leq i \leq m \), COL \((x_i, y_i) = c - s \). We will later show that, for all \(i \neq j \), COL \((x_i, y_j) \neq c - s \).
3. Let

\[h_{s+1} = m' = \lceil m/3 \rceil \]
\[X_{s+1} = \{x_1, x_2, \ldots, x_{m'}\} \]
\[Y_{s+1} = \{y_{m+1-m'}, \ldots, y_m\} \]
\[\text{USED-COL}_{s+1} = \lfloor c - (s + 1) \rfloor \]

Note that for all \((x_i, y_j) \in X_{s+1} \times y_j \in Y_{s+1}, i < j\) hence \(i \neq j\). Since we will show that for all \(i \neq j, \ \text{COL} (x_i, y_j) \neq c - s\), we will have that, for all \((x, y) \in X_{s+1} \times y_j \in Y_{s+1}, \ \text{COL} (x, y) \neq c - s\).

Claim 1: For all \(i \neq j, x_i \neq x_j\) and \(y_i \neq y_j\).

Proof: If \(x_i = x_j\) then

\[x_j + y_j = a = x_i + y_i = x_j + y_i. \]

Hence \(y_j = y_i\). Therefore \((x_i, y_i) = (x_j, y_j)\). This contradicts \(P_a\) having \(m\) distinct points.

The proof that \(y_i \neq y_j\) is similar.

End of Proof of Claim 1

Claim 2: For all \(i \neq j, \ \text{COL} (x_i, y_j) \neq c - s\).

Proof: Assume, by way of contradiction, that \(\text{COL} (x_i, y_j) = c - s\). Note that

\[\text{COL} (x_i, y_j) = \text{COL} (x_i, y_i) = \text{COL} (x_j, y_j) = c - s. \]

We want a \(\lambda \neq 0\) such that \(y_i = y_j + \lambda\) and \(x_j = x_i + \lambda\). Using that \(x_i + y_i = x_j + y_j = a\) we can take \(\lambda = (x_j + y_i - a)\). The element \(\lambda \neq 0\): if \(\lambda = 0\) then one can show \(y_i = y_j\), which contradicts Claim 1.

We now have

\[\text{COL} (x_i, y_j) = \text{COL} (x_i + \lambda, y_j) = \text{COL} (x_i, y_j + \lambda). \]

This violates \(\text{COL}\) being a proper coloring.

End of Proof of Claim 2

Note that, by Claim 2 above

\[\{ \text{COL} (x, y) \mid x \in X_{s+1}, y \in Y_{s+1} \} \subseteq \text{USED-COL}_{s+1}. \]

Look at what happens at stage \(c\). \(|X_c| = |Y_c| = h_c\) and \(\text{COL}\) restricted to \(X_c \times Y_c\) uses 0 colors. The only way this is possible is if \(h_c = 0\). We will see that this implies \(c = \Omega(\log \log 2^n)\).

We have \(h_0 = 2^n\) and

\[h_{s+1} = \left\lceil \left\lceil \frac{h_s^2}{2^n} \right\rceil / c \right\rceil / 3 \geq \frac{h_s^2}{3c2^n}. \]
We show that for $s \in \mathbb{N}$, $h_s \geq \frac{2^n}{(3c)^{2s-1}}$.

Claim 3: $(\forall s)[h_s \geq \frac{2^n}{(3c)^{2s-1}}]$.

Base Case: $h_0 = 2^n \geq \frac{2^n}{(3c)^0} = 2^n$.

Induction Step: Assume $h_s \geq \frac{2^n}{(3c)^{2s-1}}$. Since $h_{s+1} \geq (h_s)^2/3c2^n$ we have, by the induction hypothesis

$$h_{s+1} \geq \frac{(h_s)^2}{3c2^n} \geq \frac{(2^n)^2}{(3c)^{2s+1}-1}.$$

End of proof of Claim 3

Taking $s = c$ we obtain $h_c \geq \frac{2^n}{(3c)^{2c-1}}$. Hence there is a set of h_c^2 points that are 0-colored. Therefore $h_c < 1$. This yields $c = \Omega(\log \log 2^n)$.

References

