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Who is Who

1. Work by

1.1 Floyd,
1.2 Byron Cook, Andreas Podelski, Andrey Rybalchenko,
1.3 Lee, Jones, Ben-Amram
1.4 Others

2. Pre-Apology: Not my area-some things may be wrong.

3. Pre-Brag: Not my area-some things may be understandable.



Overview I

Problem: Given a program we want to prove it terminates no
matter what user does (called TERM problem).

1. Impossible in general- Harder than Halting.

2. But can do this on some simple progs. (We will.)



Overview II

In this talk I will:

1. Do example of traditional method to prove progs terminate.

2. Do harder example of traditional method.

3. DIGRESSION: A very short lecture on Ramsey Theory.

4. Do that same harder example using Ramsey Theory.

5. Compelling example with Ramsey Theory.

6. Do same example with Ramsey Theory and Matrices.



Notation

1. Will use psuedo-code progs.

2. KEY: If A is a set then the command

x = input(A)

means that x gets some value from A that the user decides.

3. Note: we will want to show that no matter what the user does
the program will halt.

4. The code

(x,y) = (f(x,y),g(x,y))

means that simultaneously x gets f(x,y) and y gets g(x,y).



Easy Example of Traditional Method

(x,y,z) = (input(INT), input(INT), input(INT))

While x>0 and y>0 and z>0

control = input(1,2,3)

if control == 1 then

(x,y,z)=(x+1,y-1,z-1)

else

if control == 2 then

(x,y,z)=(x-1,y+1,z-1)

else

(x,y,z)=(x-1,y-1,z+1)

Sketch of Proof of termination:

Whatever the user does x+y+z is decreasing.
Eventually x+y+z=0 so prog terminates there or earlier.
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What is Traditional Method?

General method due to Floyd: Find a function f(x,y,z) from the
values of the variables to N such that

1. in every iteration f(x,y,z) decreases

2. if f(x,y,z) is ever 0 then the program must have halted.

Note: Method is more general- can map to a well founded order
such that in every iteration f(x,y,z) decreases in that order, and if
f(x,y,z) is ever a min element then program must have halted.



Hard Example of Traditional Method

(x,y,z) = (input(INT),input(INT),input(INT))

While x>0 and y>0 and z>0

control = input(1,2)

if control == 1 then

(x,y,z) =(x-1,input(y+1,y+2,...),z)

else

(x,y,z)=(x,y-1,input(z+1,z+2,...))

Sketch of Proof of termination:

Use Lex Order: (0, 0, 0) < (0, 0, 1) < · · · < (0, 1, 0) · · · .
Note: (4, 10100, 1010!) < (5, 0, 0).
In every iteration (x, y, z) decreases in this ordering.
If hits bottom then all vars are 0 so must halt then or earlier.
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Notes about Proof

1. Bad News: We had to use a funky ordering. This might be
hard for a proof checker to find. (Funky is not a formal term.)

2. Good News: We only had to reason about what happens in
one iteration.

Keep these in mind- our later proof will use a nice ordering but will
need to reason about a block of instructions.



Digression Into Ramsey Theory (Parties!)

The following are known:

1. If you have 6 people at a party then either 3 of them mutually
know each other or 3 of them mutually don’t know each other.

2. If you have 18 people at a party then either 4 of them
mutually know each other or 4 of them mutually do not know
each other.

3. If you have 22k−1 people at a party then either k of them
mutually know each other of k of them mutually do not know
each other.

4. If you have an infinite number of people at a party then either
there exists an infinite subset that all know each other or an
infinite subset that all do not know each other.
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Digression Into Ramsey Theory (Math!)

Definition
Let c , k , n ∈ N. Kn is the complete graph on n vertices (all pairs
are edges). Kω is the infinite complete graph. A c-coloring of Kn is
a c-coloring of the edges of Kn. A homogeneous set is a subset H
of the vertices such that every pair has the same color (e.g., 10
people all of whom know each other).

The following are known.

1. For all 2-colorings of K6 there is a homog 3-set.

2. For all c-colorings of Kcck−c there is a homog k-set.

3. For all c-colorings of the Kω there exists a homog ω-set.
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Alt Proof Using Ramsey

(x,y,z) = (input(INT),input(INT),input(INT))

While x>0 and y>0 and z>0

control = input(1,2)

if control == 1 then

(x,y,z) =(x-1,input(y+1,y+2,...),z)

else

(x,y,z)=(x,y-1,input(z+1,z+2,...))

Begin Proof of termination:

If program does not halt then there is infinite sequence
(x1, y1, z1), (x2, y2, z2), . . . , representing state of vars.
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Reasoning about Blocks

control = input(1,2)

if control == 1 then

(x,y,z) =(x-1,input(y+1,y+2,...),z)

else

(x,y,z)=(x,y-1,input(z+1,z+2,...))

Look at (xi , yi , zi ), . . . , (xj , yj , zj).

1. If control is ever 1 then xi > xj .

2. If control is never 1 then yi > yj .

Upshot: For all i < j either xi > xj or yi > yj .
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Use Ramsey

If program does not halt then there is infinite sequence
(x1, y1, z1), (x2, y2, z2), . . . , representing state of vars.
For all i < j either xi > xj or yi > yj .
Define a 2-coloring of the edges of Kω:

COL(i , j) =

{
X if xi > xj

Y if yi > yj
(1)

By Ramsey there exists homog set i1 < i2 < i3 < · · · .
If color is X then xi1 > xi2 > xi3 > · · ·
If color is Y then yi1 > yi2 > yi3 > · · ·
In either case will have eventually have a var ≤ 0 and hence
program must terminate. Contradiction.



Compare and Contrast

1. Trad. proof used lex order on N3–complicated!

2. Ramsey Proof used only used the ordering N.

3. Traditional proof only had to reason about single steps.

4. Ramsey Proof had to reason about blocks of steps.



What do YOU think?

VOTE:

1. Traditional Proof!

2. Ramsey Proof!

3. Metz/Sekora in 2020! (The Two-TAs ticket!)



A More Compelling Example

(x,y) = (input(INT),input(INT))

While x>0 and y>0

control = input(1,2)

if control == 1 then

(x,y)=(x-1,x)

else

if control == 2 then

(x,y)=(y-2,x+1)



Reasoning about Blocks

If program does not halt then there is infinite sequence
(x1, y1), (x2, y2), . . . , representing state of vars. Need to show that
for all i < j either xi > xj or yi > yj . Can show that one of the
following must occur:

1. xj < xi and yj ≤ xi (x decs),

2. xj < yi − 1 and yj ≤ xi + 1 (x+y decs so one of x or y decs),

3. xj < yi − 1 and yj < yi (y decs),

4. xj < xi and yj < yi (x and y both decs).

Now use Ramsey argument.



Comments

1. The condition in the last proof is called a Termination
Invariant. They are used to strengthen the induction
hypothesis.

2. The proof was found by the system of B. Cook et al.

3. Looking for a Termination Invariant is the hard part to
automate but they have automated it.

4. Can we use these techniques to solve a fragment of
Termination Problem?



Model control=1 via a Matrix

if control == 1 then (x,y)=(x-1,x)

Model as a matrix A indexed by x,y,x+y. −1 0 ∞
∞ ∞ ∞
∞ ∞ ∞


For a,b ∈ {x,y,x+y}
Entry (a,b) is difference between NEW b and OLD a.
Entry (a,a) is most interesting- if neg then a decreased.



Model control=2 via a Matrix

if control == 2 then (x,y)=(y-2,x+1)

Model as a matrix B indexed by x,y,x+y. ∞ 1 ∞
−2 ∞ ∞
∞ ∞ −1





Redefine Matrix Mult

A and B matrices, C=AB defined by

cij = min
k
{aik + bkj}.

Lemma
If matrix A models a statement s1 and matrix B models a
statement s2 then matrix AB models what happens if you run
s1; s2.



Matrix Proof that Program Terminates

I A is matrix for control=1. B is matrix for control=2.

I Show: any prod of A’s and B’s some diag is negative.

I Hence in any finite seg one of the vars decreases.

I Hence, by Ramsey proof, the program always terminates



General Program

X = (input(INT),...,input(INT))

While x[1]>0 and x[2]>0 and ... x[n]>0

control = input(1,2,3,...,m)

if control==1

X = F1(X,input(INT),...,input(INT)))

else

if control==2

X = F2(X,input(INT),...,input(INT))

else...

else

if control==m

X = Fm(X,input(INT),...,input(INT))



Fragment of TERM decidable?

Definition
The TERMINATION PROBLEM: Given F1, . . . ,Fm can we
determine if the following holds:

For all ω-seq of inputs the program halts



Much Easier Problem Undecidable

History Lesson: In 1900 David Hilbert proposed 23 problems for
mathematicians to work on over the next 100 years.
Hilberts Tenth Problem (in modern terminology):
Give an algorithm that will, given a polynomial p(x1, . . . , xn) over
Z, determines if there exists a1, . . . , an ∈ Z such that
p(a1, . . . , an) = 0.

I Hilbert thought there was such an algorithm and that this was
a problem in Number Theory.

I Over time (next slide) it was proven that there is NO such
algorithm and that this is a problem in Logic.



Computable and C.E. Sets

Def: A set A is computable if there is a Java program (Turing
Machine, other models) J (on one var) that halts on all inputs
such that
If x ∈ A then J(x)=YES
If x /∈ A then J(x)=NO
Def: A set A is computably enumerable (c.e.) (also called Σ1) if
there is a Java program J (on two vars) that halts on all inputs
such that
If x ∈ A then (∃y)[J(x , y) = YES].
If x /∈ A then (∀y)[J(x , y) = NO].
Known: There are sets that are c.e. but not computable. Here is
one: Let Jx be the xth Java program in some reasonable ordering.

{(x , y) : Jx(y) halts } = {(x , y) : (∃t)[Jx(y) halts in ≤ t steps] }



Back to Hilbert’s Tenth

1. In 1959 Davis-Putnam-Robinson showed that for every c.e.
set A there exists an exp-poly (so can include vars as
exponents) p(x , x1, . . . , xn) such that

A = {a : (∃a1, . . . , an)[p(a, a1, . . . , an)]}

Needed just ONE step to get down to polynomials.

2. In 1970 Yuri Matiyasevich supplies that one missing step. So
ALL c.e. sets (including undecidable ones) can be written in
terms of solutions to polynomials.

3. From all of this you can conclude Hilbert’s Tenth Problem is
Unsolvable.

4. From this you can conclude that TERM is undecidable.



Termination Problem More Than Undecidable

The TERMINATION PROBLEM: Given F1, . . . ,Fm can we
determine if the following holds:

For all ω-seq of inputs the program halts

1. This is HARDER than HALT. This is Σ1
1-complete. Infinitely

harder than HALT!

2. EASY to show is HARD: use polynomials and Hilbert’s Tenth
Problem. This shows a much easier version of the problem
undecidable.

3. OPEN: Determine which subsets of Fi make this decidable?
Σ1

1-complete? Other?



(New Topic) Didn’t Need Full Strength of Ramsey

The colorings we applied Ramsey to were of a certain type:

Definition
A coloring of the edges of Kn or KN is transitive if, for every
i < j < k , if COL(i , j) = COL(j , k) then both equal COL(i , k).

1. Our colorings were transitive.

2. Transitive Ramsey Thm is weaker than Ramsey’s Thm.



Transitive Ramsey Weaker than Ramsey

TR is Transitive Ramsey, R is Ramsey.

1. Combinatorially: R(k , c) = cΘ(ck), TR(k , c) = (k − 1)c + 1.
This may look familiar

TR(k, 2) = (k − 1)2 + 1 is
Erdös-Szekeres Theorem. More usual statement: For any
sequence of (k − 1)2 + 1 distinct reals there is either an
increasing or decreasing subsequence of length k.

2. Computability: There exists a computable 2-coloring of Kω

with no computable homogeneous set (can even have no Σ2

homogeneous set). For every transitive computable c-coloring
of Kω there exists a computable homogeneous set (folklore).

3. Proof Theory: Over the axiom system RCA0, R implies TR,
but TR does not imply R.
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Summary

1. Ramsey Theory can be used to prove some simple programs
terminate that seem harder to do by traditional methods.
Interest to PL.

2. Some subcases of TERMINATION PROBLEM are decidable.
Of interest to PL and Logic.

3. Full strength of Ramsey not needed. Interest to Logicians and
Combinatorists.


