NEW ZEALAND JOURNAL OF MATHEMATICS Volume 51 (2021), 1–2

LOWER BOUNDS FOR CORNER-FREE SETS

Ben Green

(Received 24 February, 2021)

Abstract. A corner is a set of three points in \mathbb{Z}^2 of the form (x, y), (x + d, y), (x, y + d) with $d \neq 0$. We show that for infinitely many N there is a set $A \subset [N]^2$ of size $2^{-(c+o(1))}\sqrt{\log_2 N}N^2$ not containing any corner, where $c = 2\sqrt{2\log_2 \frac{4}{3}} \approx 1.822\ldots$

Let q, d be large positive integers. For each $x \in [q^d - 1]$, we may write $\pi(x) = (x_0, \ldots, x_{d-1}) \in \mathbf{Z}^d$ for the vector of digits of its base q expansion, thus $x = \sum_{i=0}^{d-1} x_i q^i$, with $0 \leq x_i < q$ for all i.

For each positive integer r, consider the set A_r of all pairs $(x, y) \in [q^d - 1]^2$ for which $\|\pi(x) - \pi(y)\|_2^2 = r$ and $\frac{q}{2} \leq x_i + y_i < \frac{3q}{2}$ for all i.

We claim that A_r is free of corners. Suppose that $(x, y), (x+d, y), (x, y+d) \in A_r$. Then

$$\|\pi(x) - \pi(y)\|_2^2 = \|\pi(x+d) - \pi(y)\|_2^2 = \|\pi(x) - \pi(y+d)\|_2^2 = r.$$
 (1)

We claim that

$$\pi(x+d) + \pi(y) = \pi(x) + \pi(y+d).$$
(2)

To this end, we show that $(x+d)_i + y_i = x_i + (y+d)_i$ for i = 0, 1, ... by induction on *i*. A single argument works for both the base case i = 0 and the inductive step. Suppose that, for some $j \ge 0$, we have the statement for i < j. Write $x_{\ge j} := \sum_{i\ge j} x_i q^i$, and define $(x+d)_{\ge j}, y_{\ge j}, (y+d)_{\ge j}$ similarly. By the inductive hypothesis and the fact that x+(y+d) = (x+d)+y, we see that $x_{\ge j}+(y+d)_{\ge j} = (x+d)_{\ge j}+y_{\ge j}$. Therefore $x_j + (y+d)_j = (x+d)_j + y_j \pmod{q}$. However by assumption we have $\frac{q}{2} \le x_j + (y+d)_j, (x+d)_j + y_j < \frac{3q}{2}$, and so $x_j + (y+d)_j = (x+d)_j + y_j$. The induction goes through.

With (2) established, let us return to (1). We now see that this statement implies that $||a||_2^2 = ||a+b||_2^2 = ||a-b||_2^2 = r$, where $a := \pi(x) - \pi(y)$ and $b := \pi(x+d) - \pi(x) = \pi(y+d) - \pi(y)$. By the parallelogram law $2||a||_2^2 + 2||b||_2^2 = ||a-b||_2^2 + ||a+b||_2^2$, this immediately implies that b = 0. Since π is injective, it follows that d = 0 and so indeed A_r is corner-free.

The set of all pairs (x, y) with $\frac{q}{2} \leq x_i + y_i < \frac{3q}{2}$ for all *i* has size $(\frac{3}{4}q^2 + O(q))^d$. Therefore by the pigeonhole principle there is some *r* such that $\#A_r \geq (dq^2)^{-1}(\frac{3}{4}q^2 + O(q))^d$.

²⁰¹⁰ Mathematics Subject Classification Primary 11B25, Secondary 05D10. The author is supported by a Simons Investigator Grant.

B. GREEN

Now for a given d set $q := \lfloor (2/\sqrt{3})^d \rfloor$ and $N := q^d$. Then $A_r \subset [N] \times [N]$, A_r is free of corners, and

$$#A_r \ge N^2 (dq^2)^{-1} (\frac{3}{4} + O(\frac{1}{q}))^d$$

Writing o(1) for a quantity tending to 0 as $N \to \infty$, we note that $q = (\frac{2}{\sqrt{3}} + o(1))^d$ and that $d = (1 + o(1))\sqrt{\frac{\log_2 N}{\log_2(2/\sqrt{3})}}$. A short calculation then confirms that

$$#A_r \ge N^2 2^{-(c+o(1))} \sqrt{\log_2 N}$$

where $c = 2\sqrt{2\log_2 \frac{4}{3}} \approx 1.822....$

Remark. The construction came about by a careful study of the recent preprint of Linial and Shraibman [1], where they used ideas from communication complexity to obtain a bound with $c = 2\sqrt{\log_2 e} \approx 2.402...$, improving on the previously best known bound with $c = 2\sqrt{2} \approx 2.828...$ which comes from Behrend's construction. By bypassing the language of communication complexity one may simplify the construction, in particular avoiding the use of entropy methods. This yields a superior bound.

References

[1] N. Linial and A. Shraibman, Larger corner-free sets from better NOF exactly-N protocols, preprint, arxiv:2102.00421.

Ben Green Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, England ben.green@maths.ox.ac.uk