

- 1. (0 points) What is your name? Write it clearly.
- 2. (20 points) A coloring $COL : \binom{N}{2} \to N$ is *Dhruv* if, for all x < y,

$$x \le COL(x, y) \le y.$$

- (a) Either give an example of a Dhruv coloring $COL : \binom{N}{2} \rightarrow N$ that has an infinite homog set OR prove there cannot be one.
- (b) Either give an example of a Dhruv coloring COL: $\binom{N}{2} \rightarrow N$ that has an infinite min-homog set OR prove there cannot be one.
- (c) Either give an example of a Dhruv coloring $COL : \binom{N}{2} \rightarrow N$ that has an infinite max-homog set OR prove there cannot be one.
- (d) Either give an example of a Dhruv coloring $COL : \binom{N}{2} \rightarrow N$ that has an infinite rainbow set OR prove there cannot be one.

GO TO NEXT PAGE

3. (40 points) The following is a known theorem that we will refer to in two (very different) questions:

Theorem USETHIS For all k there exists G such that for all COL: $[G] \times [G] \rightarrow [2]$ there exists a, b, d such that all the elements of

 $\{a, a+d, \ldots, a+(k-1)d\} \times \{b, b+d, \ldots, b+(k-1)d\}$ is monochromatic $(k = 2 \text{ is the square theorem. } k = 3 \text{ would be a regular } 3 \times 3 \text{ grid being mono.})$

- (a) (20 point) Find a lower bound on G from **Theorem USETHIS** using the Prob Method.
- (b) (20 points) (You may and should use the **Theorem USETHIS**.) Show that there exists *M* such that, for all 2-colorings of

$$[M] \times [M] \times [M].$$

there exists four points that are the same color of the following form:

 $\begin{array}{l} (x,y,z) \\ (x+d,y,z) \\ (x,y+d,z) \\ (x,y,z+d) \\ (\text{Feel quite free to use pictures in your solution.}) \\ \text{where } x,y,z \in [M] \text{ and } d \geq 1. \end{array}$

GOTO NEXT PAGE

4. (20 points) Recall that

 $LR_2(k)$ is the least *n* such that any 2-coloring of $\binom{\{k,\dots,n\}}{2}$ has a large homog set *H* where large means that $|H| > \min(H)$ (note the strict inequality). In class we showed $LR_2(2) \leq 13$ and there are now slides on that on the course websites.

Prove that $LR_2(2) \leq 12$.

5. (20 points) For this problem you MAY NOT assume Rado's theorem. You will essentially be proving it in a particular case.

Fill in an $A \ge 1$ and a $B \ge 1$ such that the following 2-part theorem is true, and prove both parts.

(a) There exists a c and a c-coloring of N such that the equation

$$w + 2x + 5y - Az = 0$$

has NO mono solution. Try to make A as small as possible.

(b) For every c there exists n such that for all c-colorings of [n] there is a mono solution to the equation

$$w + 2x + 5y - Bz = 0$$

with w, x, y, z ALL DIFFERENT. Try to make B as large as possible. (YES I know that for this part I said w, x, y, z ALL DIFFERENT and for Part a I did not. This is NOT a mistake.)