Take Home Final
 Due May 20 at $7: 00 \mathrm{PM}$. No Extensions THIS EXAM IS THREE PAGES!!!!!!!!!!!!!!!

1. (0 points) What is your name? Write it clearly.
2. (20 points) A coloring $C O L:\binom{\mathrm{N}}{2} \rightarrow \mathrm{~N}$ is Dhruv if, for all $x<y$,

$$
x \leq C O L(x, y) \leq y
$$

(a) Either give an example of a Dhruv coloring $C O L:\binom{\mathrm{N}}{2} \rightarrow \mathrm{~N}$ that has an infinite homog set OR prove there cannot be one.
(b) Either give an example of a Dhruv coloring COL: $\binom{\mathrm{N}}{2} \rightarrow \mathrm{~N}$ that has an infinite min-homog set OR prove there cannot be one.
(c) Either give an example of a Dhruv coloring $C O L:\binom{\mathrm{N}}{2} \rightarrow \mathrm{~N}$ that has an infinite max-homog set OR prove there cannot be one.
(d) Either give an example of a Dhruv coloring $C O L:\binom{\mathrm{N}}{2} \rightarrow \mathrm{~N}$ that has an infinite rainbow set OR prove there cannot be one.

GO TO NEXT PAGE

3. (40 points) The following is a known theorem that we will refer to in two (very different) questions:
Theorem USETHIS For all k there exists G such that for all $C O L$: $[G] \times[G] \rightarrow[2]$ there exists a, b, d such that all the elements of $\{a, a+d, \ldots, a+(k-1) d\} \times\{b, b+d, \ldots, b+(k-1) d\}$ is monochromatic ($k=2$ is the square theorem. $k=3$ would be a regular 3×3 grid being mono.)
(a) (20 point) Find a lower bound on G from Theorem USETHIS using the Prob Method.
(b) (20 points) (You may and should use the Theorem USETHIS.) Show that there exists M such that, for all 2-colorings of

$$
[M] \times[M] \times[M] .
$$

there exists four points that are the same color of the following form:
(x, y, z)
$(x+d, y, z)$
$(x, y+d, z)$
$(x, y, z+d)$
(Feel quite free to use pictures in your solution.)
where $x, y, z \in[M]$ and $d \geq 1$.
GOTO NEXT PAGE
4. (20 points) Recall that
$L R_{2}(k)$ is the least n such that any 2-coloring of $(\underset{2}{\{k, \ldots, n\}})$ has a large homog set H where large means that $|H|>\min (H)$ (note the strict inequality). In class we showed $L R_{2}(2) \leq 13$ and there are now slides on that on the course websites.
Prove that $L R_{2}(2) \leq 12$.
5. (20 points) For this problem you MAY NOT assume Rado's theorem. You will essentially be proving it in a particular case.

Fill in an $A \geq 1$ and a $B \geq 1$ such that the following 2-part theorem is true, and prove both parts.
(a) There exists a c and a c-coloring of N such that the equation

$$
w+2 x+5 y-A z=0
$$

has NO mono solution. Try to make A as small as possible.
(b) For every c there exists n such that for all c-colorings of $[n]$ there is a mono solution to the equation

$$
w+2 x+5 y-B z=0
$$

with w, x, y, z ALL DIFFERENT. Try to make B as large as possible. (YES I know that for this part I said w, x, y, z ALL DIFFERENT and for Part a I did not. This is NOT a mistake.)

