Homework 1, Morally Due Tue Feb 11, 2020

COURSE WEBSITE:
http://www.cs.umd.edu/~gasarch/COURSES/858/S20/index.html
(The symbol before gasarch is a tilde.)

1. (0 points but if you do miss the midterm and don't tell Prof Gasarch about it ahead of time, it is -100 points) What is your name? Write it clearly. Staple your HW. When is the midterm tentatively scheduled (give Date and Time)? If you cannot make it in that day/time see me ASAP.
2. (20 points)
(a) (10 points) Prove that for every c, for every c coloring of $\binom{\mathrm{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class.
(b) (10 points) Prove that for every c, for every c coloring of $\binom{N}{2}$, there is an infinite homogenous set USING induction on c.
(c) (0 points) Which proof do you like better? Which one do you think gives better bound when you finitize it?
3. (30 points) Prove the following theorem rigorously (this is the infinite c-color a-ary Ramsey Theorem):

Theorem 1. For all $a \geq 1$, for all $c \geq 1$, and for all c-colorings of $\binom{\mathbb{N}}{a}$, there exists an infinite set $A \subseteq \mathbb{N}$ such that $\binom{A}{a}$ is monochromatic (A is an infinite homogeneous set).

The proof should be by induction on a with the base case being $a=1$.
4. (25 points) State and prove a theorem with the XXX filled in.

For every coloring (any number of colors) of $X X X(n)$ points there is EITHER: (a) a set of n that are all colored the same, or (b) a set of n points that are all colored differently. However!- there IS a coloring of $X X X(n)-1$ points such that there is NEITHER: (a) a set of n that are all colored the same, or (b) a set of n points that are all colored differently.

THERE IS A PROBLEM ON THE NEXT PAGE

5. (25 points)

Suppose $x_{1}, x_{2}, x_{3}, \ldots$ be an infinite increasing sequence of natural numbers. Let $p\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ be any function on natural numbers, and let $q(z)$ be an increasing and unbounded function on the naturals. Prove that there exists an infinite subsequence y_{1}, y_{2}, \ldots such that for all $y_{i_{1}}<y_{i_{2}}<\cdots<y_{i_{k}}<y_{i_{k+1}}, p\left(y_{i_{1}}, \ldots, y_{i_{k}}\right)<q\left(y_{i_{k+1}}\right)$.

