Homework 8, Morally Due Tue April 28, 2020, 3:30PM
COURSE WEBSITE: http://www.cs.umd.edu/~gasarch/858/S18.html THIS HW IS TWO PAGES LONG!!!!!!!!!!!!

Note: In this homework, $R(a, b)$ refers to the 2-ary asymmetric Ramsey numbers: $R(a, b)$ is the least n such that every 2-coloring of K_{n} has a mono RED K_{a} or a mono BLUE K_{b}. Similarly, $R(a, b, c)$ is the 2-ary asymmetric Ramsey with three colors: $R(a, b, c)$ is the least n such that every 3-coloring of K_{n} has a monoc RED K_{a} or a mono BLUE K_{b} or a mono GREEN K_{c}.

1. (0 points) What is your name? Write it clearly.
2. (30 points) We never defined $R(1, b)$ or $R(a, 1)$. Define it so that the inequality

$$
R(a, b) \leq R(a-1, b)+R(a, b-1)
$$

holds. Does the definition also make intuitive sense?
3. (30 points) Let $R(a, b, c)$ be the least n such that, for all 3 -colorings of the edges of K_{n}, there exists either a RED K_{a}, a BLUE K_{b}, or a GREEN K_{c}.
(a) Give an upper bound on $R(2, b, c)$ in terms of R on two variables.
(b) Recall In class we proved

$$
\begin{gathered}
R(2, b)=b \text { and } R(a, 2)=a \\
R(a, b) \leq R(a-1, b)+R(a, b-1)
\end{gathered}
$$

We used these two relations to get upper bounds on $R(a, b)$. We did this by viewing the size of the input (a, b) as $a+b$. With that viewpoint we are able to get upper bounds on $R(a, b)$ by using upper bounds on smaller pairs.
In this problem you will use this approach for $R(a, b, c)$.
The size of (a, b, c) is $a+b+c$. State and prove an inequality that upper bounds $R(a, b, c)$ in terms of R on smaller triples. (for example, it could be $R(a, b, c) \leq R(\lfloor\sqrt{a}\rfloor, b-1, c)+R(\lfloor a / 2\rfloor, 2,2)$ - but its not).
(c) Use parts (a) and (b) to determine reasonable upper bounds on $R(2,2,2), R(2,2,3), R(2,3,3)$, and $R(3,3,3)$.
4. (40 points) The following is a corollary of VDW's theorem that we will cover later in the class
VDW Theorem For all k there exists $W=W(k)$ such that for all 2-coloring of $[W]$ there exists a, d such that

$$
a, a+d, \ldots, a+(k-1) d
$$

are all the same color.
(This is called a monochromatic arithmetic progression of length k which we abbreviate mono $k-A P$.

Use the Prob Method to get a LOWER BOUND on $W(k)$.

