

- 1. (0 points) What is your name? Write it clearly.
- 2. (30 points) **Definition:** Let X be any set of naturals (it can be finite or infinite) A coloring COL: $\binom{X}{2} \rightarrow \omega$ is *Erika* if $COL(x, y) \leq \min\{x, y\}$. (Note that ω is $\{1, 2, 3, \ldots, \}$, so COL(1, y) = 1 always.)

Consider the following (true) statement which we call STATEMENT.

If COL is an Erika coloring of $\binom{N}{2}$ then either (1) there exists an infinite homog set, or (2) there exists an infinite min-homog set.

- (a) (10 points) Prove STATEMENT from the Can Ramsey Theory.
- (b) (10 points) Prove STATEMENT directly, NOT using the Can Ramsey Theory.
- (c) (10 points) Formulate a finite version of STATEMENT. Give a proof of your statement. It DOES NOT have to give bounds on n.
- 3. (25 points) Prove the following:

For all k there exist n such that for all Erika colorings $COL : \binom{\{k,\dots,n\}}{2} \rightarrow \omega$ there exist either (1) a LARGE homog set, or (2) a LARGE min-Homog set. (You need not get a bound on n.)

- 4. (25 points)
 - (a) (15 points) Prove the following. There exists a function f such that the following holds:

If $T_1, T_2, \ldots, T_{f(k)}$ is a FINITE sequence of trees, where T_i has at most 2^{k_i} nodes, there is an uptick.

For this problem the trees are ordered as $T_1 \leq T_2$ if T_1 is a minor of T_2 .

(b) (10 points) Is there some function g(i, k) such that if you replace the $2^k i$ in the first question with g(i, k). the theorem is now false?

GOTO NEXT PATE

5. (20 points) Let $c_1, c_2, c_3 \in \mathbb{N}$. Let COL₁ be a c_1 -coloring of $\binom{\mathbb{N}}{1}$. Let COL₂ be a c_2 -coloring of $\binom{\mathbb{N}}{2}$. Let COL₃ be a c_3 -coloring of $\binom{\mathbb{N}}{3}$. A set $H \subseteq \mathbb{N}$ is Nathan homogeneous if COL₁ restricted to $\binom{H}{1}$ is monochromatic, and COL₂ restricted to $\binom{H}{2}$ is monochromatic, and COL₃ restricted to $\binom{H}{3}$ is monochromatic.

- (a) (10 points) Show that for all c_1, c_2, c_3 , for all c_1 -colorings of $\binom{\mathsf{N}}{1}$, c_2 -colorings of $\binom{\mathsf{N}}{2}$, and all c_3 -colorings of $\binom{\mathsf{N}}{3}$, there is an infinite Nathan Homogenous set.
- (b) (10 points) State and prove a finite version of part a, with bounds. (You may use the known bounds on Ramsey Numbers.)