## Take Home Midterm Morally Due April 7, DUE DUE-April 9 THIS EXAM IS TWO PAGES!!!!!!!!!!!!!!!

1. (0 points) What is your name? Write it clearly.
2. (30 points) Definition: Let $X$ be any set of naturals (it can be finite or infinite) A coloring COL: $\binom{X}{2} \rightarrow \omega$ is Erika if $\operatorname{COL}(x, y) \leq \min \{x, y\}$. (Note that $\omega$ is $\{1,2,3, \ldots$,$\} , so \operatorname{COL}(1, y)=1$ always.)
Consider the following (true) statement which we call STATEMENT.
If $C O L$ is an Erika coloring of $\binom{\mathrm{N}}{2}$ then either (1) there exists an infinite homog set, or (2) there exists an infinite min-homog set.
(a) (10 points) Prove STATEMENT from the Can Ramsey Theory.
(b) (10 points) Prove STATEMENT directly, NOT using the Can Ramsey Theory.
(c) (10 points) Formulate a finite version of STATEMENT. Give a proof of your statement. It DOES NOT have to give bounds on $n$.
3. (25 points) Prove the following:

For all $k$ there exist $n$ such that for all Erika colorings $C O L:\binom{\{k, \ldots, n\}}{2} \rightarrow \omega$ there exist either (1) a LARGE homog set, or (2) a LARGE min-Homog set. (You need not get a bound on n.)
4. (25 points)
(a) (15 points) Prove the following. There exists a function $f$ such that the following holds:
If $T_{1}, T_{2}, \ldots, T_{f(k)}$ is a FINITE sequence of trees, where $T_{i}$ has at most $2^{k} i$ nodes, there is an uptick.
For this problem the trees are ordered as $T_{1} \leq T_{2}$ if $T_{1}$ is a minor of $T_{2}$.
(b) (10 points) Is there some function $g(i, k)$ such that if you replace the $2^{k} i$ in the first question with $g(i, k)$. the theorem is now false?

GOTO NEXT PATE
5. (20 points) Let $c_{1}, c_{2}, c_{3} \in \mathrm{~N}$.

Let $\mathrm{COL}_{1}$ be a $c_{1}$-coloring of $\binom{\mathrm{N}}{1}$.
Let $\mathrm{COL}_{2}$ be a $c_{2}$-coloring of $\binom{\mathrm{N}}{2}$.
Let $\mathrm{COL}_{3}$ be a $c_{3}$-coloring of $\binom{\mathrm{N}}{3}$.
A set $H \subseteq \mathrm{~N}$ is Nathan homogeneous if
$\mathrm{COL}_{1}$ restricted to $\binom{H}{1}$ is monochromatic, and
$\mathrm{COL}_{2}$ restricted to $\binom{H}{2}$ is monochromatic, and
$\mathrm{COL}_{3}$ restricted to $\binom{H}{3}$ is monochromatic.
(a) (10 points) Show that for all $c_{1}, c_{2}, c_{3}$, for all $c_{1}$-colorings of $\binom{\mathrm{N}}{1}$, $c_{2}$-colorings of $\binom{\mathrm{N}}{2}$, and all $c_{3}$-colorings of $\binom{\mathrm{N}}{3}$, there is an infinite Nathan Homogenous set.
(b) (10 points) State and prove a finite version of part a, with bounds. (You may use the known bounds on Ramsey Numbers.)

