COURSE WEBSITE: http://www.cs.umd.edu/~gasarch/COURSES/858/

S20

1 Conjecture

In this project, we will consider the following conjecture:
For any $c \in \mathbb{N}$, there exists a number $E=E(c)$ such that for all c colorings of $\{1,2,3, \ldots, E\}$, there exists x, y, z such that:

- x, y, z are the same color (I bet you saw that coming!), and
- $x^{2}+y^{2}=z^{2}$

The conjecture is known to be true for $c=1$ (this is trivial) and for $c=2$ (this is not so trivial).

We will gather evidence for how big E might be.

2 Greedy Algorithm

To find lower bounds on $E(c)$, we find a number n and a c-coloring of $[c]=$ $\{1,2,3, \ldots, n\}$ such that there is no monochromatic triple x, y, z such that $x^{2}+y^{2}=z^{2}$. We will call such a c-coloring of $\{1,2, \ldots, n\}$ a valid coloring. If a valid c-coloring exists for $\{1,2, \ldots, n\}$ we will say that $[n]$ can be c-colored.

We will consider the following greedy algorithm for finding valid colorings:
For each number k starting from 1 , color k with the least color possible. That is, assign k the least color χ from the set

$$
\left\{\chi:(\forall x, y<k \text { s.t. } \operatorname{COL}(x)=\operatorname{COL}(y)=\chi)\left[x^{2}+y^{2} \neq k^{2}\right]\right\}
$$

Keep coloring points as long as possible, until you reach a number y that can't be colored without creating a monochromatic x, y, z with $x^{2}+y^{2}=z^{2}$.

For example, this approach would end up coloring $\operatorname{COL}(1)=\operatorname{COL}(2)=$ $\operatorname{COL}(3)=\operatorname{COL}(4)=1$; then coloring $\operatorname{COL}(5)=2$ to avoid $3,4,5$ all being the same color.

GO TO THE NEXT PAGE

3 Randomized (Greedy) Algorithm

Consider the following modification to the Greedy algorithm from the last section: When coloring a number k, consider all the valid colors available for color k, and pick one of these at random.

That is, randomly pick one color from the set

$$
\left\{\chi:(\forall x, y<k \text { s.t. } \operatorname{COL}(x)=\operatorname{COL}(y)=\chi)\left[x^{2}+y^{2} \neq k^{2}\right]\right\}
$$

and assign k this color.
As with the original greedy, we continue until some number can't be colored (i.e. the set of valid colors above is empty).

4 The Project

1. (a) Write a program that implements the regular greedy algorithm and outputs a number n, and a coloring of $\{1,2, \ldots, n\}$.
(b) Write a program that implements the randomized greedy algorithm. It will also output a number n and a coloring of $\{1,2, \ldots, n\}$. Submit your code.
2. Run the greedy algorithm for $c=2$ to find a number n and a 2 -coloring of $\{1,2, \ldots, n\}$ with no x, y, z such that $x^{2}+y^{2}=z^{2}$ and x, y, z are all the same color.

What number n does the greedy algorithm find and output?
Run the randomized greedy algorithm for $c=2$ to find a number n such that $[n]$ can be 2 -colored. Run it 50 times. What is the largest n that the randomized greedy algorithm output?
3. Run the greedy algorithm for $c=3$. What number n does the greedy algorithm find and output?
Run the randomized greedy algorithm 50 times, for $c=3$. What is the largest n that the randomized greedy algorithm output?

GO TO THE NEXT PAGE

4. Run the greedy algorithm for $c=4$. What number n does the greedy algorithm find and output?

Run the randomized greedy algorithm 50 times, for $c=4$. What is the largest n that the randomized greedy algorithm output?
5. Run the greedy algorithm for $c=5$. What number n does the greedy algorithm find and output?
Run the randomized greedy algorithm 50 times, for $c=5$. What is the largest n that the randomized greedy algorithm output?
(Warning: Nathan's code took 3 minutes to run 50 times, so yours might take a little while as well)

