Lower Bounds on W $(3, c)$

Exposition by William Gasarch

May 5, 2020

VDW's Theorem

Theorem (VDW) For all k, c there exists $W=W(k, c)$ such that, for all c-colorings of $[W$], there exists a, d such that

$$
a, a+d, \ldots, a+(k-1) d \text { are the same color. }
$$

VDW's Theorem

Theorem (VDW) For all k, c there exists $W=W(k, c)$ such that, for all c-colorings of $[W]$, there exists a, d such that

$$
a, a+d, \ldots, a+(k-1) d \text { are the same color. }
$$

- Proof gave gross upper bounds on $W(k, c)$. Not Prim. Rec.

VDW's Theorem

Theorem (VDW) For all k, c there exists $W=W(k, c)$ such that, for all c-colorings of $[W]$, there exists a, d such that

$$
a, a+d, \ldots, a+(k-1) d \text { are the same color. }
$$

- Proof gave gross upper bounds on $W(k, c)$. Not Prim. Rec.
- Shelah has an alternative proof that gives Prim Rec bounds that some would still call gross. Proof is elementary.

VDW's Theorem

Theorem (VDW) For all k, c there exists $W=W(k, c)$ such that, for all c-colorings of $[W]$, there exists a, d such that

$$
a, a+d, \ldots, a+(k-1) d \text { are the same color. }
$$

- Proof gave gross upper bounds on $W(k, c)$. Not Prim. Rec.
- Shelah has an alternative proof that gives Prim Rec bounds that some would still call gross. Proof is elementary.
- Gowers proved

$$
W(k, c) \leq 2^{2^{c^{2^{k+9}}}}
$$

Proof uses very hard math.

The Only Known VDW Numbers

k	2 colors	3 colors	4 colors
3	9	27	76
4	35	293	>1048
5	178	>2173	>17705
6	1132	>11191	>91331

The Only Known VDW Numbers

k	2 colors	3 colors	4 colors
3	9	27	76
4	35	293	>1048
5	178	>2173	>17705
6	1132	>11191	>91331

- $W(3,2)=9$ can be done by hand.

The Only Known VDW Numbers

k	2 colors	3 colors	4 colors
3	9	27	76
4	35	293	>1048
5	178	>2173	>17705
6	1132	>11191	>91331

- $W(3,2)=9$ can be done by hand.
- Rest were by clever computer searches but might be easier now.

The Only Known VDW Numbers

k	2 colors	3 colors	4 colors
3	9	27	76
4	35	293	>1048
5	178	>2173	>17705
6	1132	>11191	>91331

- $W(3,2)=9$ can be done by hand.
- Rest were by clever computer searches but might be easier now.
- $W(6,2)=1132$: was Michal Kouril's PhD thesis. Very clever.

The Only Known VDW Numbers

k	2 colors	3 colors	4 colors
3	9	27	76
4	35	293	>1048
5	178	>2173	>17705
6	1132	>11191	>91331

- $W(3,2)=9$ can be done by hand.
- Rest were by clever computer searches but might be easier now.
- $W(6,2)=1132$: was Michal Kouril's PhD thesis. Very clever.
- I've asked Kouril when we will get $W(7,2)$.

The Only Known VDW Numbers

k	2 colors	3 colors	4 colors
3	9	27	76
4	35	293	>1048
5	178	>2173	>17705
6	1132	>11191	>91331

- $W(3,2)=9$ can be done by hand.
- Rest were by clever computer searches but might be easier now.
- $W(6,2)=1132$: was Michal Kouril's PhD thesis. Very clever.
- I've asked Kouril when we will get $W(7,2)$. He said never.

The Only Known VDW Numbers

k	2 colors	3 colors	4 colors
3	9	27	76
4	35	293	>1048
5	178	>2173	>17705
6	1132	>11191	>91331

- $W(3,2)=9$ can be done by hand.
- Rest were by clever computer searches but might be easier now.
- $W(6,2)=1132$: was Michal Kouril's PhD thesis. Very clever.
- I've asked Kouril when we will get $W(7,2)$. He said never.
- Idea Use ML to find VDW numbers.

Recap

Recap

Upper bounds are Ginormous!

Recap

Upper bounds are Ginormous!
Actual numbers are small!

Recap

Upper bounds are Ginormous!
Actual numbers are small!
Want lower bounds to see how close they are to upper bounds.

Lower Bounds on $W(3, c)$

The Usual Approach

Lower Bounds on $W(3, c)$

The Usual Approach Given c, find W such that there is a c-coloring of $[W]$ with no mono 3-AP's. Try to make W as big as possible.

Lower Bounds on $W(3, c)$

The Usual Approach Given c, find W such that there is a c-coloring of $[W]$ with no mono 3-AP's. Try to make W as big as possible.
We won't be doing that.

Lower Bounds on $W(3, c)$

The Usual Approach Given c, find W such that there is a c-coloring of $[W]$ with no mono 3-AP's. Try to make W as big as possible.
We won't be doing that. We do it backwards.

Lower Bounds on $W(3, c)$

The Usual Approach Given c, find W such that there is a c-coloring of $[W]$ with no mono 3-AP's. Try to make W as big as possible.
We won't be doing that. We do it backwards.
Our Approach

Lower Bounds on $W(3, c)$

The Usual Approach Given c, find W such that there is a c-coloring of $[W]$ with no mono 3-AP's. Try to make W as big as possible.
We won't be doing that. We do it backwards.
Our Approach Given V, find c such that there is a c-coloring of [V] with no mono 3-AP's. Try to make c as small as possible.

3-free Sets

Definition $A \subseteq[V]$ is 3-free if there are no 3-AP's in A. Note that if $[V]$ is colored and has no 3-AP's then every color is 3-free.

3-free Sets

Definition $A \subseteq[V]$ is 3-free if there are no 3-AP's in A. Note that if $[V]$ is colored and has no 3-AP's then every color is 3-free. Idea Find a large subset of $[V]$ with no 3-AP's. Color it RED!

3-free Sets

Definition $A \subseteq[V]$ is 3-free if there are no 3-AP's in A. Note that if [V] is colored and has no 3-AP's then every color is 3-free.
Idea Find a large subset of $[V]$ with no 3-AP's. Color it RED! Okay

3-free Sets

Definition $A \subseteq[V]$ is 3-free if there are no 3-AP's in A. Note that if [V] is colored and has no 3-AP's then every color is 3-free. Idea Find a large subset of $[V]$ with no 3-AP's. Color it RED! Okay...

3-free Sets

Definition $A \subseteq[V]$ is 3-free if there are no 3-AP's in A. Note that if [V] is colored and has no 3-AP's then every color is 3-free.
Idea Find a large subset of $[V]$ with no 3-AP's. Color it RED! Okay. . .Now what?

3-free Sets

Definition $A \subseteq[V]$ is 3-free if there are no 3-AP's in A. Note that if $[V]$ is colored and has no 3-AP's then every color is 3-free. Idea Find a large subset of $[V]$ with no 3-AP's. Color it RED! Okay. . .Now what?
Shifting A If $A \subseteq[V]$ and $t \in[V]$ then

$$
A+t=\{x+t \quad(\bmod W): x \in A\}
$$

$A+t$ is a shift of A.
t is called the shift.

The Ideal World is Almost True!

Ideal World 3-free $A \subseteq[V]$ can be shifted around so that none of the shifts overlap. This would be $\frac{V}{|A|}$ shifts and hence there is a $\frac{V}{|A|}$-coloring with no mono 3-AP's.

The Ideal World is Almost True!

Ideal World 3-free $A \subseteq[V]$ can be shifted around so that none of the shifts overlap. This would be $\frac{V}{|A|}$ shifts and hence there is a $\frac{V}{|A|}$-coloring with no mono 3-AP's.

Real World Let $A \subseteq[V]$ be a 3 -free set. We want to take a (small) number of shifts to cover [V] There will be some overlap.

The Ideal World is Almost True!

Ideal World 3-free $A \subseteq[V]$ can be shifted around so that none of the shifts overlap. This would be $\frac{V}{|A|}$ shifts and hence there is a $\frac{V}{|A|}$-coloring with no mono 3-AP's.

Real World Let $A \subseteq[V]$ be a 3 -free set. We want to take a (small) number of shifts to cover [V] There will be some overlap.

We may need to do pick the shifts very carefully! We may need to use Gowers-Style math (in which case I would just tell you the answer, not prove it).

The Ideal World is Almost True!

Ideal World 3-free $A \subseteq[V]$ can be shifted around so that none of the shifts overlap. This would be $\frac{V}{|A|}$ shifts and hence there is a $\frac{V}{|A|}$-coloring with no mono 3-AP's.

Real World Let $A \subseteq[V]$ be a 3 -free set. We want to take a (small) number of shifts to cover [V] There will be some overlap.

We may need to do pick the shifts very carefully! We may need to use Gowers-Style math (in which case I would just tell you the answer, not prove it). Or

The Ideal World is Almost True!

Ideal World 3-free $A \subseteq[V]$ can be shifted around so that none of the shifts overlap. This would be $\frac{V}{|A|}$ shifts and hence there is a $\frac{V}{|A|}$-coloring with no mono 3-AP's.

Real World Let $A \subseteq[V]$ be a 3 -free set. We want to take a (small) number of shifts to cover [V] There will be some overlap.

We may need to do pick the shifts very carefully! We may need to use Gowers-Style math (in which case I would just tell you the answer, not prove it). Or We may not have to.

We Use Randomness

We take c random shifts where we determine c later.
What is Prob that some element of [V] was NOT covered?

We Use Randomness

We take c random shifts where we determine c later.
What is Prob that some element of [V] was NOT covered?
Let $x \in[V]$ and t be a random shift.

We Use Randomness

We take c random shifts where we determine c later.
What is Prob that some element of [V] was NOT covered?
Let $x \in[V]$ and t be a random shift.
$\operatorname{Pr}(x \in A+t)=\frac{|A|}{V}$.

We Use Randomness

We take c random shifts where we determine c later.
What is Prob that some element of [V] was NOT covered?
Let $x \in[V]$ and t be a random shift.
$\operatorname{Pr}(x \in A+t)=\frac{|A|}{V}$.
$\operatorname{Pr}(x \notin A+t)=1-\frac{|A|}{V} \sim e^{-|A| / V}$
$\operatorname{Pr}\left(x \notin A+t_{1} \cup \cdots \cup A+t_{c}\right) \leq \sim e^{-|A| c / V}$.
$\operatorname{Pr}\left(\exists x \notin A+t_{1} \cup \cdots \cup A+t_{c}\right) \leq \sim V e^{-|A| c / V}$.
We choose c so that this is $<1 . c=\frac{V \ln (V)}{|A|}$
Note $\frac{V \ln (V)}{|A|}$ is close to the ideal of $\frac{V}{|A|}$.

Recap

We have shown the following.
Theorem Let $V \in \mathbb{N}$ and let $A \subseteq[V]$ be a 3-free set. Let $c=\frac{V \ln (V)}{|A|}$. Then there is a c-coloring of $[V]$ with no mono 3-APs. Hence $W(3, c) \geq V$.

Recap

We have shown the following.
Theorem Let $V \in \mathbb{N}$ and let $A \subseteq[V]$ be a 3-free set. Let $c=\frac{V \ln (V)}{|A|}$. Then there is a c-coloring of $[V]$ with no mono 3-APs. Hence $W(3, c) \geq V$.

So, we're done!

Recap

We have shown the following.
Theorem Let $V \in \mathbb{N}$ and let $A \subseteq[V]$ be a 3-free set. Let $c=\frac{V \ln (V)}{|A|}$. Then there is a c-coloring of $[V]$ with no mono 3-APs. Hence $W(3, c) \geq V$.

So, we're done!
Not so Fast We need to find 3-free sets.

3-Free Set

Exposition by William Gasarch

May 5, 2020

3-Free Set Facts

- If A is not 3 -free then there exists $a, a+d, a+2 d \in A$.
- If A is not 3 -free then there exists $x, y, z \in A$ such that $x+z=2 y$.
- Notation The size of the largest 3-free set of [V] is denoted $\mathrm{sz}(V)$.
$\mathrm{sz}(V) \geq V^{0.63}$
View [V] as numbers in base 3.

$$
A=\{w \in[V]: \text { Base } 3 \text { rep of } w \text { only has 0's and 1's }\}
$$

$\mathrm{sz}(V) \geq V^{0.63}$
View [V] as numbers in base 3 .

$$
A=\{w \in[V]: \text { Base } 3 \text { rep of } w \text { only has 0's and 1's }\}
$$

3-Free Assume $x, y, z \in A$ and $x+z=2 y$.
Key Since base 3 rep of x, y, z has only 0 's and 1's, adding them is carry free.

$$
\begin{aligned}
& x=x_{L} \cdots x_{0} \\
& z=z_{L} \cdots z_{0} \\
& y=y_{L} \cdots y_{0}
\end{aligned}
$$

$\mathrm{sz}(V) \geq V^{0.63}$
View [V] as numbers in base 3.

$$
A=\{w \in[V]: \text { Base } 3 \text { rep of } w \text { only has 0's and 1's }\}
$$

3-Free Assume $x, y, z \in A$ and $x+z=2 y$.
Key Since base 3 rep of x, y, z has only 0 's and 1 's, adding them is carry free.
$x=x_{L} \cdots x_{0}$
$z=z_{L} \cdots z_{0}$
$y=y_{L} \cdots y_{0}$
If $x+z=2 y$ then, for all $i, x_{i}+z_{i}=2 y_{i}$.
$\mathrm{sz}(V) \geq V^{0.63}$
View [V] as numbers in base 3.

$$
A=\{w \in[V]: \text { Base } 3 \text { rep of } w \text { only has 0's and 1's }\}
$$

3-Free Assume $x, y, z \in A$ and $x+z=2 y$.
Key Since base 3 rep of x, y, z has only 0 's and 1 's, adding them is carry free.
$x=x_{L} \cdots x_{0}$
$z=z_{L} \cdots z_{0}$
$y=y_{L} \cdots y_{0}$
If $x+z=2 y$ then, for all $i, x_{i}+z_{i}=2 y_{i}$.
If $y_{i}=0$ the then $x_{i}=z_{i}=0$
$\mathrm{sz}(V) \geq V^{0.63}$
View [V] as numbers in base 3 .

$$
A=\{w \in[V]: \text { Base } 3 \text { rep of } w \text { only has 0's and 1's }\}
$$

3-Free Assume $x, y, z \in A$ and $x+z=2 y$.
Key Since base 3 rep of x, y, z has only 0 's and 1 's, adding them is carry free.
$x=x_{L} \cdots x_{0}$
$z=z_{L} \cdots z_{0}$
$y=y_{L} \cdots y_{0}$
If $x+z=2 y$ then, for all $i, x_{i}+z_{i}=2 y_{i}$.
If $y_{i}=0$ the then $x_{i}=z_{i}=0$
If $y_{i}=1$ the then $x_{i}=z_{i}=1$.

$\mathrm{sz}(V) \geq V^{0.63}$

View [V] as numbers in base 3 .

$$
A=\{w \in[V]: \text { Base } 3 \text { rep of } w \text { only has 0's and 1's }\}
$$

3-Free Assume $x, y, z \in A$ and $x+z=2 y$.
Key Since base 3 rep of x, y, z has only 0 's and 1 's, adding them is carry free.
$x=x_{L} \cdots x_{0}$
$z=z_{L} \cdots z_{0}$
$y=y_{L} \cdots y_{0}$
If $x+z=2 y$ then, for all $i, x_{i}+z_{i}=2 y_{i}$.
If $y_{i}=0$ the then $x_{i}=z_{i}=0$
If $y_{i}=1$ the then $x_{i}=z_{i}=1$.
So $x=z$.

$\mathrm{sz}(V) \geq V^{0.63}$

View [V] as numbers in base 3 .

$$
A=\{w \in[V]: \text { Base } 3 \text { rep of } w \text { only has 0's and 1's }\}
$$

3-Free Assume $x, y, z \in A$ and $x+z=2 y$.
Key Since base 3 rep of x, y, z has only 0 's and 1 's, adding them is carry free.
$x=x_{L} \cdots x_{0}$
$z=z_{L} \cdots z_{0}$
$y=y_{L} \cdots y_{0}$
If $x+z=2 y$ then, for all $i, x_{i}+z_{i}=2 y_{i}$.
If $y_{i}=0$ the then $x_{i}=z_{i}=0$
If $y_{i}=1$ the then $x_{i}=z_{i}=1$.
So $x=z$.
Size of $A[V]$ in base 3 takes $\log _{3}(V)$ digits. So

$$
|A| \sim 2^{\log _{3}(V)} \sim V^{\log _{3}(2)}=V^{0.63}
$$

$\mathrm{sz}(V) \geq V^{0.68}$

View [V] as numbers in base 5.
(Attempt- it won't work)

$$
\begin{aligned}
& \quad A=\{w \in[V]: \text { Base } 5 \text { rep of } w \text { only has 0's, 1's, 2's }\} \\
& |A| \sim V^{\log _{5}(3)} \sim|V|^{0.68} .
\end{aligned}
$$

$\mathrm{sz}(V) \geq V^{0.68}$

View [V] as numbers in base 5 .
(Attempt- it won't work)
$A=\{w \in[V]:$ Base 5 rep of w only has 0's, 1's, 2's $\}$
$|A| \sim V^{\log _{5}(3)} \sim|V|^{0.68}$.
3-Free Assume $x, y, z \in A$ and $x+z=2 y$.
Key Since base 5 rep of x, y, z has only 0 's, 1's, 2's adding them is carry free.

$$
\begin{aligned}
& x=x_{L} \cdots x_{0} \\
& z=z_{L} \cdots z_{0} \\
& y=y_{L} \cdots y_{0}
\end{aligned}
$$

$\mathrm{sz}(V) \geq V^{0.68}$

View [V] as numbers in base 5 .
(Attempt- it won't work)
$A=\{w \in[V]:$ Base 5 rep of w only has 0's, 1's, 2's $\}$
$|A| \sim V^{\log _{5}(3)} \sim|V|^{0.68}$.
3-Free Assume $x, y, z \in A$ and $x+z=2 y$.
Key Since base 5 rep of x, y, z has only 0 's, 1's, 2's adding them is carry free.

```
\(x=x_{L} \cdots x_{0}\)
\(z=z_{L} \cdots z_{0}\)
\(y=y_{L} \cdots y_{0}\)
If \(x+z=2 y\) then, for all \(i, x_{i}+z_{i}=2 y_{i}\).
```


$\mathrm{sz}(V) \geq V^{0.68}$

View [V] as numbers in base 5 .
(Attempt- it won't work)
$A=\{w \in[V]:$ Base 5 rep of w only has 0's, 1's, 2's $\}$
$|A| \sim V^{\log _{5}(3)} \sim|V|^{0.68}$.
3-Free Assume $x, y, z \in A$ and $x+z=2 y$.
Key Since base 5 rep of x, y, z has only 0 's, 1's, 2's adding them is carry free.
$x=x_{L} \cdots x_{0}$
$z=z_{L} \cdots z_{0}$
$y=y_{L} \cdots y_{0}$
If $x+z=2 y$ then, for all $i, x_{i}+z_{i}=2 y_{i}$.
If $y_{i}=0$ the then $x_{i}=z_{i}=0$.

$\mathrm{sz}(V) \geq V^{0.68}$

View [V] as numbers in base 5 .
(Attempt- it won't work)
$A=\{w \in[V]:$ Base 5 rep of w only has 0's, 1's, 2's $\}$
$|A| \sim V^{\log _{5}(3)} \sim|V|^{0.68}$.
3-Free Assume $x, y, z \in A$ and $x+z=2 y$.
Key Since base 5 rep of x, y, z has only 0 's, 1's, 2's adding them is carry free.
$x=x_{L} \cdots x_{0}$
$z=z_{L} \cdots z_{0}$
$y=y_{L} \cdots y_{0}$
If $x+z=2 y$ then, for all $i, x_{i}+z_{i}=2 y_{i}$.
If $y_{i}=0$ the then $x_{i}=z_{i}=0$.
If $y_{i}=1$ the then $x_{i}=z_{i}=1$.

$\mathrm{sz}(V) \geq V^{0.68}$

View [V] as numbers in base 5 .
(Attempt- it won't work)
$A=\{w \in[V]:$ Base 5 rep of w only has 0's, 1's, 2's $\}$
$|A| \sim V^{\log _{5}(3)} \sim|V|^{0.68}$.
3-Free Assume $x, y, z \in A$ and $x+z=2 y$.
Key Since base 5 rep of x, y, z has only 0 's, 1's, 2's adding them is carry free.
$x=x_{L} \cdots x_{0}$
$z=z_{L} \cdots z_{0}$
$y=y_{L} \cdots y_{0}$
If $x+z=2 y$ then, for all $i, x_{i}+z_{i}=2 y_{i}$.
If $y_{i}=0$ the then $x_{i}=z_{i}=0$.
If $y_{i}=1$ the then $x_{i}=z_{i}=1$. NO- could have $x_{i}=0$ and $z_{i}=2$.

$\mathrm{sz}(V) \geq V^{0.68}$

View [V] as numbers in base 5 .
(Attempt- it won't work)
$A=\{w \in[V]:$ Base 5 rep of w only has 0's, 1's, 2's $\}$
$|A| \sim V^{\log _{5}(3)} \sim|V|^{0.68}$.
3-Free Assume $x, y, z \in A$ and $x+z=2 y$.
Key Since base 5 rep of x, y, z has only 0 's, 1's, 2's adding them is carry free.
$x=x_{L} \cdots x_{0}$
$z=z_{L} \cdots z_{0}$
$y=y_{L} \cdots y_{0}$
If $x+z=2 y$ then, for all $i, x_{i}+z_{i}=2 y_{i}$.
If $y_{i}=0$ the then $x_{i}=z_{i}=0$.
If $y_{i}=1$ the then $x_{i}=z_{i}=1$. NO- could have $x_{i}=0$ and $z_{i}=2$.
Shucky Darns!

$\mathrm{sz}(V) \geq V^{0.68}$

View [V] as numbers in base 5 .
(Attempt- it won't work)
$A=\{w \in[V]:$ Base 5 rep of w only has 0's, 1's, 2's $\}$
$|A| \sim V^{\log _{5}(3)} \sim|V|^{0.68}$.
3-Free Assume $x, y, z \in A$ and $x+z=2 y$.
Key Since base 5 rep of x, y, z has only 0 's, 1's, 2's adding them is carry free.
$x=x_{L} \cdots x_{0}$
$z=z_{L} \cdots z_{0}$
$y=y_{L} \cdots y_{0}$
If $x+z=2 y$ then, for all $i, x_{i}+z_{i}=2 y_{i}$.
If $y_{i}=0$ the then $x_{i}=z_{i}=0$.
If $y_{i}=1$ the then $x_{i}=z_{i}=1$. NO- could have $x_{i}=0$ and $z_{i}=2$.
Shucky Darns! Need to add one more condition.

The Real Set A

A is the set of all $w \in[V]$ such that

- Base 5 rep of w only has 0's, 1's, 2's.
- Base 5 rep of w exactly $1 / 3$ of the digits are 0 . 3-free

$$
\begin{aligned}
& x=x_{L} \cdots x_{0} \\
& z=z_{L} \cdots z_{0} \\
& y=y_{L} \cdots y_{0}
\end{aligned}
$$

The Real Set A

A is the set of all $w \in[V]$ such that

- Base 5 rep of w only has 0's, 1's, 2's.
- Base 5 rep of w exactly $1 / 3$ of the digits are 0 . 3-free
$x=x_{L} \cdots x_{0}$
$z=z_{L} \cdots z_{0}$
$y=y_{L} \cdots y_{0}$
If $x+z=2 y$ then, for all $i, x_{i}+z_{i}=2 y_{i}$.

The Real Set A

A is the set of all $w \in[V]$ such that

- Base 5 rep of w only has 0's, 1's, 2's.
- Base 5 rep of w exactly $1 / 3$ of the digits are 0 .

3-free
$x=x_{L} \cdots x_{0}$
$z=z_{L} \cdots z_{0}$
$y=y_{L} \cdots y_{0}$
If $x+z=2 y$ then, for all $i, x_{i}+z_{i}=2 y_{i}$.
FIRST look at the $L / 3$ places where $y_{i}=0$. Then $x_{i}=z_{i}=0$.
Key For all other places $x_{i} \neq 0, z_{i} \neq 0$.

The Real Set A

A is the set of all $w \in[V]$ such that

- Base 5 rep of w only has 0's, 1's, 2's.
- Base 5 rep of w exactly $1 / 3$ of the digits are 0 .

3-free
$x=x_{L} \cdots x_{0}$
$z=z_{L} \cdots z_{0}$
$y=y_{L} \cdots y_{0}$
If $x+z=2 y$ then, for all $i, x_{i}+z_{i}=2 y_{i}$.
FIRST look at the $L / 3$ places where $y_{i}=0$. Then $x_{i}=z_{i}=0$.
Key For all other places $x_{i} \neq 0, z_{i} \neq 0$.
SECOND look at the places where $y_{i}=1 . x_{i}+z_{i}=2$ and $x_{i} \neq 0$, $y_{i} \neq 0$ Hence $x_{i}=z_{i}=1$.

The Real Set A

A is the set of all $w \in[V]$ such that

- Base 5 rep of w only has 0's, 1's, 2's.
- Base 5 rep of w exactly $1 / 3$ of the digits are 0 .

3-free
$x=x_{L} \cdots x_{0}$
$z=z_{L} \cdots z_{0}$
$y=y_{L} \cdots y_{0}$
If $x+z=2 y$ then, for all $i, x_{i}+z_{i}=2 y_{i}$.
FIRST look at the $L / 3$ places where $y_{i}=0$. Then $x_{i}=z_{i}=0$.
Key For all other places $x_{i} \neq 0, z_{i} \neq 0$.
SECOND look at the places where $y_{i}=1 . x_{i}+z_{i}=2$ and $x_{i} \neq 0$,
$y_{i} \neq 0$ Hence $x_{i}=z_{i}=1$.
THIRD look at the places where $y_{i}=2 . x_{i}+z_{i}=4$, so
$x_{i}=z_{i}=2$.

The Real Set A

A is the set of all $w \in[V]$ such that

- Base 5 rep of w only has 0's, 1's, 2's.
- Base 5 rep of w exactly $1 / 3$ of the digits are 0 .

3-free
$x=x_{L} \cdots x_{0}$
$z=z_{L} \cdots z_{0}$
$y=y_{L} \cdots y_{0}$
If $x+z=2 y$ then, for all $i, x_{i}+z_{i}=2 y_{i}$.
FIRST look at the $L / 3$ places where $y_{i}=0$. Then $x_{i}=z_{i}=0$.
Key For all other places $x_{i} \neq 0, z_{i} \neq 0$.
SECOND look at the places where $y_{i}=1 . x_{i}+z_{i}=2$ and $x_{i} \neq 0$,
$y_{i} \neq 0$ Hence $x_{i}=z_{i}=1$.
THIRD look at the places where $y_{i}=2 . x_{i}+z_{i}=4$, so
$x_{i}=z_{i}=2$.
So $x=y=z$.

What is $|A|$?

Choose $L / 3$ of the digits to be 0 . $\binom{L / 3}{L} \sim L^{L / 3}$

What is $|A|$?

Choose $L / 3$ of the digits to be 0 . $\binom{L / 3}{L} \sim L^{L / 3}$
For the remainder use 1 's or 2 's, so $2^{2 L / 3}$

What is $|A|$?

Choose $L / 3$ of the digits to be 0 . $\binom{L / 3}{L} \sim L^{L / 3}$
For the remainder use 1 's or 2 's, so $2^{2 L / 3}$
Leave it to the reader to work it out.
$\mathrm{sz}(V) \geq V^{1-\frac{1}{\sqrt{\mathrm{~g} V}}}$

Let r be such that $2^{r(r+1) / 2}-1 \leq V \leq 2^{(r+1)(r+2) / 2}-1$. Note that $r \sim \sqrt{2 \lg (V)}$.

Let r be such that $2^{r(r+1) / 2}-1 \leq V \leq 2^{(r+1)(r+2) / 2}-1$.
Note that $r \sim \sqrt{2 \lg (V)}$.
Write the numbers in [V] in base 2.

Let r be such that $2^{r(r+1) / 2}-1 \leq V \leq 2^{(r+1)(r+2) / 2}-1$.
Note that $r \sim \sqrt{2 \lg (V)}$.
Write the numbers in [V] in base 2.
Break the numbers into r blocks of bits.

Let r be such that $2^{r(r+1) / 2}-1 \leq V \leq 2^{(r+1)(r+2) / 2}-1$.
Note that $r \sim \sqrt{2 \lg (V)}$.
Write the numbers in [V] in base 2.
Break the numbers into r blocks of bits.
The first (rightmost) block is one 1 long.

Let r be such that $2^{r(r+1) / 2}-1 \leq V \leq 2^{(r+1)(r+2) / 2}-1$.
Note that $r \sim \sqrt{2 \lg (V)}$.
Write the numbers in [V] in base 2.
Break the numbers into r blocks of bits.
The first (rightmost) block is one 1 long.
The second block is 2 bits long.

Let r be such that $2^{r(r+1) / 2}-1 \leq V \leq 2^{(r+1)(r+2) / 2}-1$.
Note that $r \sim \sqrt{2 \lg (V)}$.
Write the numbers in [V] in base 2.
Break the numbers into r blocks of bits.
The first (rightmost) block is one 1 long.
The second block is 2 bits long.
The r th block is r bits long.

Let r be such that $2^{r(r+1) / 2}-1 \leq V \leq 2^{(r+1)(r+2) / 2}-1$.
Note that $r \sim \sqrt{2 \lg (V)}$.
Write the numbers in [V] in base 2.
Break the numbers into r blocks of bits.
The first (rightmost) block is one 1 long.
The second block is 2 bits long.
The r th block is r bits long.
We denote the i th block as B_{i}, a number.

An Example!

991746118991 in binary is

1110011011101000101011001101010101001111

An Example!

991746118991 in binary is

1110011011101000101011001101010101001111
We write it as:

000001110; 01101110; 1000101; 011001; 10101; 0101; 001; 11; 1

An Example!

991746118991 in binary is

1110011011101000101011001101010101001111
We write it as:

000001110; 01101110; 1000101; 011001; 10101; 0101; 001; 11; 1

$$
\begin{aligned}
& B_{1}=1 \\
& B_{2}=3 \\
& B_{3}=1 \\
& B_{4}=5
\end{aligned}
$$

The Set A

A is the set of all $B_{r} B_{r-1} \cdots B_{1}$ such that:

1. For $1 \leq i \leq r-2$ the leftmost bit of B_{i} is 0 . This leads to carry-free addition.
2. $\sum_{i=1}^{r-2} B_{i}^{2}=B_{r} B_{r-1}$ (The $B_{r} B_{r-1}$ is concatenation.)

We leave it to the reader to prove that $|A|$ is as big as we said (this is easy) and that the set is 3 -free (This requires some thought.)

Back to $W(3, c)$

Recall that we prove:
Thm Let $V \in \mathbb{N}$ and let $A \subseteq[V]$ be a 3 -free set. Then there is a $\frac{V \ln (V)}{|A|}$-coloring of $[V]$ with no mono 3-APs. Hence $W\left(3, \frac{V \ln (V)}{|A|}\right) \geq V$.

Back to $W(3, c)$

Recall that we prove:
Thm Let $V \in \mathbb{N}$ and let $A \subseteq[V]$ be a 3 -free set. Then there is a $\frac{V \ln (V)}{|A|}$-coloring of $[V]$ with no mono 3 -APs. Hence
$W\left(3, \frac{V \ln (V)}{|A|}\right) \geq V$.
Recall that we sketched:
Thm There exists a 3 -free subset of $[V]$ of size $\geq V^{1-\frac{1}{\sqrt{g V}}}$

Back to $W(3, c)$

Recall that we prove:
Thm Let $V \in \mathbb{N}$ and let $A \subseteq[V]$ be a 3 -free set. Then there is a $\frac{V \ln (V)}{|A|}$-coloring of $[V]$ with no mono 3 -APs. Hence
$W\left(3, \frac{V \ln (V)}{|A|}\right) \geq V$.
Recall that we sketched:
Thm There exists a 3 -free subset of $[V]$ of size $\geq V^{1-\frac{1}{\sqrt{g V}}}$
Combine these two to get:
Thm Let $V \in \mathbb{N}$. Then there is a $V^{\frac{1}{\sqrt{g V}}} \ln (V)$-coloring of $[V]$ with no mono 3-APs. Hence

$$
W\left(3, V^{\frac{1}{\sqrt{g V}}} \ln (V)\right) \geq V
$$

