Lower Bounds on $W(3, c)$

Exposition by William Gasarch

May 5, 2020
VDW’s Theorem

Theorem (VDW) For all k, c there exists $W = W(k, c)$ such that, for all c-colorings of $[W]$, there exists a, d such that

$$a, a + d, \ldots, a + (k - 1)d$$

are the same color.
VDW’s Theorem

Theorem (VDW) For all k, c there exists $W = W(k, c)$ such that, for all c-colorings of $[W]$, there exists a, d such that

$$a, a + d, \ldots, a + (k - 1)d$$

are the same color.

- Proof gave gross upper bounds on $W(k, c)$. Not Prim. Rec.
Theorem (VDW) For all k, c there exists $W = W(k, c)$ such that, for all c-colorings of $[W]$, there exists a, d such that

$$a, a + d, \ldots, a + (k - 1)d$$

are the same color.

- Proof gave gross upper bounds on $W(k, c)$. Not Prim. Rec.
- Shelah has an alternative proof that gives Prim Rec bounds that some would still call gross. Proof is elementary.
Theorem (VDW) For all k, c there exists $W = W(k, c)$ such that, for all c-colorings of $[W]$, there exists a, d such that

$$a, a + d, \ldots, a + (k - 1)d$$

are the same color.

- Proof gave gross upper bounds on $W(k, c)$. Not Prim. Rec.
- Shelah has an alternative proof that gives Prim Rec bounds that some would still call gross. Proof is elementary.
- Gowers proved

$$W(k, c) \leq 2^{2^22^k+9}$$

Proof uses very hard math.
The Only Known VDW Numbers

<table>
<thead>
<tr>
<th>k</th>
<th>2 colors</th>
<th>3 colors</th>
<th>4 colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>27</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>293</td>
<td>> 1048</td>
</tr>
<tr>
<td>5</td>
<td>178</td>
<td>> 2173</td>
<td>> 17705</td>
</tr>
<tr>
<td>6</td>
<td>1132</td>
<td>> 11191</td>
<td>> 91331</td>
</tr>
</tbody>
</table>

- $W(3, 2) = 9$ can be done by hand.
- Rest were by clever computer searches but might be easier now.
- $W(6, 2) = 1132$: was Michal Kouril's PhD thesis. Very clever.
- I've asked Kouril when we will get $W(7, 2)$. He said never.

Idea: Use ML to find VDW numbers.
The Only Known VDW Numbers

<table>
<thead>
<tr>
<th>k</th>
<th>2 colors</th>
<th>3 colors</th>
<th>4 colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>27</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>293</td>
<td>> 1048</td>
</tr>
<tr>
<td>5</td>
<td>178</td>
<td>> 2173</td>
<td>> 17705</td>
</tr>
<tr>
<td>6</td>
<td>1132</td>
<td>> 11191</td>
<td>> 91331</td>
</tr>
</tbody>
</table>

► $W(3, 2) = 9$ can be done by hand.
The Only Known VDW Numbers

<table>
<thead>
<tr>
<th>k</th>
<th>2 colors</th>
<th>3 colors</th>
<th>4 colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>27</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>293</td>
<td>> 1048</td>
</tr>
<tr>
<td>5</td>
<td>178</td>
<td>> 2173</td>
<td>> 17705</td>
</tr>
<tr>
<td>6</td>
<td>1132</td>
<td>> 11191</td>
<td>> 91331</td>
</tr>
</tbody>
</table>

- $W(3, 2) = 9$ can be done by hand.
- Rest were by clever computer searches but might be easier now.
The Only Known VDW Numbers

<table>
<thead>
<tr>
<th>k</th>
<th>2 colors</th>
<th>3 colors</th>
<th>4 colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>27</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>293</td>
<td>> 1048</td>
</tr>
<tr>
<td>5</td>
<td>178</td>
<td>> 2173</td>
<td>> 17705</td>
</tr>
<tr>
<td>6</td>
<td>1132</td>
<td>> 11191</td>
<td>> 91331</td>
</tr>
</tbody>
</table>

- $W(3, 2) = 9$ can be done by hand.
- Rest were by clever computer searches but might be easier now.
- $W(6, 2) = 1132$: was Michal Kouril’s PhD thesis. Very clever.
The Only Known VDW Numbers

<table>
<thead>
<tr>
<th>k</th>
<th>2 colors</th>
<th>3 colors</th>
<th>4 colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>27</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>293</td>
<td>> 1048</td>
</tr>
<tr>
<td>5</td>
<td>178</td>
<td>> 2173</td>
<td>> 17705</td>
</tr>
<tr>
<td>6</td>
<td>1132</td>
<td>> 11191</td>
<td>> 91331</td>
</tr>
</tbody>
</table>

- $W(3, 2) = 9$ can be done by hand.
- Rest were by clever computer searches but might be easier now.
- $W(6, 2) = 1132$: was Michal Kouril’s PhD thesis. Very clever.
- I’ve asked Kouril when we will get $W(7, 2)$.
The Only Known VDW Numbers

<table>
<thead>
<tr>
<th>k</th>
<th>2 colors</th>
<th>3 colors</th>
<th>4 colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>27</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>293</td>
<td>> 1048</td>
</tr>
<tr>
<td>5</td>
<td>178</td>
<td>> 2173</td>
<td>> 17705</td>
</tr>
<tr>
<td>6</td>
<td>1132</td>
<td>> 11191</td>
<td>> 91331</td>
</tr>
</tbody>
</table>

- $W(3, 2) = 9$ can be done by hand.
- Rest were by clever computer searches but might be easier now.
- $W(6, 2) = 1132$: was Michal Kouril’s PhD thesis. Very clever.
- I’ve asked Kouril when we will get $W(7, 2)$. He said never.
The Only Known VDW Numbers

<table>
<thead>
<tr>
<th>k</th>
<th>2 colors</th>
<th>3 colors</th>
<th>4 colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>27</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>293</td>
<td>>1048</td>
</tr>
<tr>
<td>5</td>
<td>178</td>
<td>>2173</td>
<td>>17705</td>
</tr>
<tr>
<td>6</td>
<td>1132</td>
<td>>11191</td>
<td>>91331</td>
</tr>
</tbody>
</table>

- $W(3, 2) = 9$ can be done by hand.
- Rest were by clever computer searches but might be easier now.
- $W(6, 2) = 1132$: was Michal Kouril’s PhD thesis. Very clever.
- I’ve asked Kouril when we will get $W(7, 2)$. He said never.
- **Idea** Use ML to find VDW numbers.
Recap

Upper bounds are Ginormous!

Actual numbers are small!

Want lower bounds to see how close they are to upper bounds.
Upper bounds are Ginormous!
Recap

Upper bounds are Ginormous!

Actual numbers are small!
Recap

Upper bounds are Ginormous!

Actual numbers are small!

Want lower bounds to see how close they are to upper bounds.
Lower Bounds on $W(3, c)$

The Usual Approach

Given c, find W such that there is a c-coloring of W with no mono 3-AP's. Try to make W as big as possible. We won't be doing that. We do it backwards.
Lower Bounds on $W(3, c)$

The Usual Approach Given c, find W such that there is a c-coloring of $[W]$ with no mono 3-AP’s. Try to make W as big as possible.
Lower Bounds on $W(3, c)$

The Usual Approach Given c, find W such that there is a c-coloring of $[W]$ with no mono 3-AP’s. Try to make W as big as possible.

We won’t be doing that.
Lower Bounds on $W(3, c)$

The Usual Approach Given c, find W such that there is a c-coloring of $[W]$ with no mono 3-AP’s. Try to make W as big as possible.
We won’t be doing that. We do it backwards.
Lower Bounds on $W(3, c)$

The Usual Approach Given c, find W such that there is a c-coloring of $[W]$ with no mono 3-AP's. Try to make W as big as possible.

We won’t be doing that. We do it backwards.

Our Approach
Lower Bounds on $W(3, c)$

The Usual Approach Given c, find W such that there is a c-coloring of $[W]$ with no mono 3-AP’s. Try to make W as big as possible.

We won’t be doing that. We do it backwards.

Our Approach Given V, find c such that there is a c-coloring of $[V]$ with no mono 3-AP’s. Try to make c as small as possible.
3-free Sets

Definition $A \subseteq [V]$ is **3-free** if there are no 3-AP’s in A. Note that if $[V]$ is colored and has no 3-AP’s then every color is 3-free.
3-free Sets

Definition $A \subseteq [V]$ is 3-free if there are no 3-AP’s in A. Note that if $[V]$ is colored and has no 3-AP’s then every color is 3-free.

Idea Find a large subset of $[V]$ with no 3-AP’s. Color it RED!
3-free Sets

Definition $A \subseteq [V]$ is **3-free** if there are no 3-AP’s in A. Note that if $[V]$ is colored and has no 3-AP’s then every color is 3-free.

Idea Find a large subset of $[V]$ with no 3-AP’s. Color it RED!

Okay
Definition $A \subseteq [V]$ is **3-free** if there are no 3-AP’s in A. Note that if $[V]$ is colored and has no 3-AP’s then every color is 3-free.

Idea Find a large subset of $[V]$ with no 3-AP’s. Color it RED! Okay…
3-free Sets

Definition $A \subseteq [V]$ is **3-free** if there are no 3-AP’s in A. Note that if $[V]$ is colored and has no 3-AP’s then every color is 3-free.

Idea Find a large subset of $[V]$ with no 3-AP’s. Color it RED! Okay...Now what?
3-free Sets

Definition $A \subseteq [V]$ is **3-free** if there are no 3-AP’s in A. Note that if $[V]$ is colored and has no 3-AP’s then every color is 3-free.

Idea Find a large subset of $[V]$ with no 3-AP’s. Color it RED!

Okay... Now what?

Shifting A If $A \subseteq [V]$ and $t \in [V]$ then

$$A + t = \{x + t \pmod{W} : x \in A\}$$

$A + t$ is a **shift of A**.

t is called **the shift**.
The Ideal World is Almost True!

Ideal World 3-free $A \subseteq [V]$ can be shifted around so that none of the shifts overlap. This would be $\frac{V}{|A|}$ shifts and hence there is a $\frac{V}{|A|}$-coloring with no mono 3-AP’s.
The Ideal World is Almost True!

Ideal World 3-free $A \subseteq [V]$ can be shifted around so that none of the shifts overlap. This would be $\frac{V}{|A|}$ shifts and hence there is a $\frac{V}{|A|}$-coloring with no mono 3-AP’s.

Real World Let $A \subseteq [V]$ be a 3-free set. We want to take a (small) number of shifts to cover $[V]$ There will be some overlap.
Ideal World 3-free $A \subseteq [V]$ can be shifted around so that none of the shifts overlap. This would be $\frac{V}{|A|}$ shifts and hence there is a $\frac{V}{|A|}$-coloring with no mono 3-AP’s.

Real World Let $A \subseteq [V]$ be a 3-free set. We want to take a (small) number of shifts to cover $[V]$ There will be some overlap.

We may need to do pick the shifts very carefully! We may need to use Gowers-Style math (in which case I would just tell you the answer, not prove it).
The Ideal World is Almost True!

Ideal World 3-free $A \subseteq [V]$ can be shifted around so that none of the shifts overlap. This would be $\frac{V}{|A|}$ shifts and hence there is a $\frac{V}{|A|}$-coloring with no mono 3-AP’s.

Real World Let $A \subseteq [V]$ be a 3-free set. We want to take a (small) number of shifts to cover $[V]$ There will be some overlap.

We may need to do pick the shifts very carefully! We may need to use Gowers-Style math (in which case I would just tell you the answer, not prove it). Or
The Ideal World is Almost True!

Ideal World 3-free $A \subseteq [V]$ can be shifted around so that none of the shifts overlap. This would be $\frac{V}{|A|}$ shifts and hence there is a $\frac{V}{|A|}$-coloring with no mono 3-AP’s.

Real World Let $A \subseteq [V]$ be a 3-free set. We want to take a (small) number of shifts to cover $[V]$ There will be some overlap.

We may need to do pick the shifts very carefully! We may need to use Gowers-Style math (in which case I would just tell you the answer, not prove it). Or **We may not have to**.
We Use Randomness

We take c random shifts where we determine c later. What is Prob that some element of $[V]$ was NOT covered?
We Use Randomness

We take c random shifts where we determine c later.
What is Prob that some element of $[V]$ was NOT covered?
Let $x \in [V]$ and t be a random shift.
We take c random shifts where we determine c later.
What is Prob that some element of $[V]$ was NOT covered?
Let $x \in [V]$ and t be a random shift.
$\Pr(x \in A + t) = \frac{|A|}{V}$.
We take c random shifts where we determine c later. What is Prob that some element of $[V]$ was NOT covered? Let $x \in [V]$ and t be a random shift.

$$\Pr(x \in A + t) = \frac{|A|}{V}.$$

$$\Pr(x \notin A + t) = 1 - \frac{|A|}{V} \sim e^{-|A|/V}.$$

$$\Pr(x \notin A + t_1 \cup \cdots \cup A + t_c) \leq \sim e^{-|A|c/V}.$$

$$\Pr(\exists x \notin A + t_1 \cup \cdots \cup A + t_c) \leq \sim Ve^{-|A|c/V}.$$

We choose c so that this is < 1. $c = \frac{V \ln(V)}{|A|}$

Note $\frac{V \ln(V)}{|A|}$ is close to the ideal of $\frac{V}{|A|}$.
Recap

We have shown the following.

Theorem Let $V \in \mathbb{N}$ and let $A \subseteq [V]$ be a 3-free set. Let $c = \frac{V \ln(V)}{|A|}$. Then there is a c-coloring of $[V]$ with no mono 3-APs. Hence $W(3, c) \geq V$.

So, we’re done!

Not so Fast

We need to find 3-free sets.
Recap

We have shown the following.

Theorem Let $V \in \mathbb{N}$ and let $A \subseteq [V]$ be a 3-free set. Let $c = \frac{V \ln(V)}{|A|}$. Then there is a c-coloring of $[V]$ with no mono 3-APs. Hence $W(3, c) \geq V$.

So, we’re done!
Recap

We have shown the following.

Theorem Let $V \in \mathbb{N}$ and let $A \subseteq [V]$ be a 3-free set. Let $c = \frac{V \ln(V)}{|A|}$. Then there is a c-coloring of $[V]$ with no mono 3-APs. Hence $W(3, c) \geq V$.

So, we’re done!

Not so Fast We need to find 3-free sets.
3-Free Set

Exposition by William Gasarch

May 5, 2020
3-Free Set Facts

- If A is not 3-free then there exists $a, a + d, a + 2d \in A$.
- If A is not 3-free then there exists $x, y, z \in A$ such that $x + z = 2y$.
- **Notation** The size of the largest 3-free set of $[V]$ is denoted $sz(V)$.
$\text{sz}(V) \geq V^{0.63}$

View $[V]$ as numbers in base 3.

$$A = \{ w \in [V] : \text{Base 3 rep of } w \text{ only has 0's and 1's} \}$$
\[\text{sz}(V) \geq V^{0.63} \]

View \([V]\) as numbers in base 3.

\[A = \{ w \in [V] : \text{Base 3 rep of } w \text{ only has 0's and 1's} \} \]

3-Free Assume \(x, y, z \in A\) and \(x + z = 2y\).

Key Since base 3 rep of \(x, y, z\) has only 0's and 1's, adding them is carry free.

\[x = x_L \cdots x_0 \]
\[z = z_L \cdots z_0 \]
\[y = y_L \cdots y_0 \]
$sz(V) \geq V^{0.63}$

View $[V]$ as numbers in base 3.

$$A = \{w \in [V] : \text{Base 3 rep of } w \text{ only has 0's and 1's}\}$$

3-Free Assume $x, y, z \in A$ and $x + z = 2y$.

Key Since base 3 rep of x, y, z has only 0's and 1's, adding them is carry free.

$x = x_L \ldots x_0$

$z = z_L \ldots z_0$

$y = y_L \ldots y_0$

If $x + z = 2y$ then, for all i, $x_i + z_i = 2y_i$.
$$\text{sz}(V) \geq V^{0.63}$$

View $[V]$ as numbers in base 3.

$$A = \{ w \in [V] : \text{Base 3 rep of } w \text{ only has 0's and 1's} \}$$

3-Free Assume $x, y, z \in A$ and $x + z = 2y$.

Key Since base 3 rep of x, y, z has only 0's and 1's, adding them is carry free.

$x = x_L \cdots x_0$

$z = z_L \cdots z_0$

$y = y_L \cdots y_0$

If $x + z = 2y$ then, for all i, $x_i + z_i = 2y_i$.

If $y_i = 0$ then $x_i = z_i = 0$
\(\text{sz}(V) \geq V^{0.63} \)

View \([V]\) as numbers in base 3.

\[A = \{ w \in [V] : \text{Base 3 rep of } w \text{ only has 0's and 1's} \} \]

3-Free Assume \(x, y, z \in A\) and \(x + z = 2y\).

Key Since base 3 rep of \(x, y, z\) has only 0's and 1's, adding them is carry free.

\[x = x_L \cdots x_0 \]
\[z = z_L \cdots z_0 \]
\[y = y_L \cdots y_0 \]

If \(x + z = 2y\) then, for all \(i\), \(x_i + z_i = 2y_i\).

If \(y_i = 0\) then \(x_i = z_i = 0\)

If \(y_i = 1\) then \(x_i = z_i = 1\).
\[\text{sz}(V) \geq V^{0.63} \]

View \([V]\) as numbers in base 3.

\[A = \{ w \in [V] : \text{Base 3 rep of } w \text{ only has 0's and 1's} \} \]

3-Free Assume \(x, y, z \in A\) and \(x + z = 2y\).

Key Since base 3 rep of \(x, y, z\) has only 0's and 1's, adding them is carry free.

\(x = x_L \cdots x_0\)
\(z = z_L \cdots z_0\)
\(y = y_L \cdots y_0\)

If \(x + z = 2y\) then, for all \(i\), \(x_i + z_i = 2y_i\).

If \(y_i = 0\) then \(x_i = z_i = 0\)

If \(y_i = 1\) then \(x_i = z_i = 1\).

So \(x = z\).
$\text{sz}(V) \geq V^{0.63}$

View $[V]$ as numbers in base 3.

$$A = \{w \in [V]: \text{Base 3 rep of } w \text{ only has 0's and 1's}\}$$

3-Free Assume $x, y, z \in A$ and $x + z = 2y$.

Key Since base 3 rep of x, y, z has only 0’s and 1’s, adding them is carry free.

$x = x_L \cdots x_0$

$z = z_L \cdots z_0$

$y = y_L \cdots y_0$

If $x + z = 2y$ then, for all i, $x_i + z_i = 2y_i$.

If $y_i = 0$ the then $x_i = z_i = 0$

If $y_i = 1$ the then $x_i = z_i = 1$.

So $x = z$.

Size of A $[V]$ in base 3 takes $\log_3(V)$ digits. So

$$|A| \sim 2^{\log_3(V)} \sim V^{\log_3(2)} = V^{0.63}$$
\(\text{sz}(V) \geq V^{0.68} \)

View \([V]\) as numbers in base 5.
(Attempt- it won’t work)

\[
A = \{ w \in [V] : \text{Base 5 rep of } w \text{ only has 0’s, 1’s, 2’s} \}
\]

\[|A| \sim V^{\log_5(3)} \sim |V|^{0.68}. \]
\[\text{sz}(V) \geq V^{0.68} \]

View \([V]\) as numbers in base 5.

(Attempt- it won’t work)

\[A = \{ w \in [V] : \text{Base 5 rep of } w \text{ only has 0’s, 1’s, 2’s} \} \]

\[|A| \sim V^{\log_5(3)} \sim |V|^{0.68}. \]

3-Free Assume \(x, y, z \in A\) and \(x + z = 2y\).

Key Since base 5 rep of \(x, y, z\) has only 0’s, 1’s, 2’s adding them is carry free.

\(x = x_L \cdots x_0\)
\(z = z_L \cdots z_0\)
\(y = y_L \cdots y_0\)
\[\text{sz}([V]) \geq V^{0.68} \]

View \([V]\) as numbers in base 5.
(Attempt- it won’t work)

\[A = \{ w \in [V] : \text{Base 5 rep of } w \text{ only has 0’s, 1’s, 2’s} \} \]

\[|A| \sim V^{\log_5(3)} \sim |V|^{0.68}. \]

3-Free Assume \(x, y, z \in A\) and \(x + z = 2y\).

Key Since base 5 rep of \(x, y, z\) has only 0’s, 1’s, 2’s adding them is carry free.

\[x = x_L \cdots x_0 \]
\[z = z_L \cdots z_0 \]
\[y = y_L \cdots y_0 \]

If \(x + z = 2y\) then, for all \(i\), \(x_i + z_i = 2y_i.\)
\[\text{sz}(V) \geq V^{0.68} \]

View \([V]\) as numbers in base 5.
(Attempt- it won’t work)

\[A = \{ w \in [V] : \text{Base 5 rep of } w \text{ only has 0’s, 1’s, 2’s} \} \]

\[|A| \sim V^{\log_5(3)} \sim |V|^{0.68}. \]

3-Free Assume \(x, y, z \in A\) and \(x + z = 2y\).

Key Since base 5 rep of \(x, y, z\) has only 0’s, 1’s, 2’s adding them is carry free.

\[
\begin{align*}
x &= x_L \cdots x_0 \\
z &= z_L \cdots z_0 \\
y &= y_L \cdots y_0 \\
\end{align*}
\]

If \(x + z = 2y\) then, for all \(i\), \(x_i + z_i = 2y_i\).
If \(y_i = 0\) the then \(x_i = z_i = 0\).
\[\text{sz}(V) \geq V^{0.68} \]

View \([V] \) as numbers in base 5.
(Attempt- it won’t work)

\[A = \{ w \in [V] : \text{Base 5 rep of } w \text{ only has 0’s, 1’s, 2’s} \} \]

\[|A| \sim V^{\log_5(3)} \sim |V|^{0.68}. \]

3-Free Assume \(x, y, z \in A \) and \(x + z = 2y \).

Key Since base 5 rep of \(x, y, z \) has only 0’s, 1’s, 2’s adding them is carry free.

\(x = x_L \cdots x_0 \)
\(z = z_L \cdots z_0 \)
\(y = y_L \cdots y_0 \)

If \(x + z = 2y \) then, for all \(i \), \(x_i + z_i = 2y_i \).
If \(y_i = 0 \) the then \(x_i = z_i = 0 \).
If \(y_i = 1 \) the then \(x_i = z_i = 1 \).
$\text{sz}(V) \geq V^{0.68}$

View $[V]$ as numbers in base 5.
(Attempt- it won’t work)

$$A = \{w \in [V] : \text{Base 5 rep of } w \text{ only has 0's, 1's, 2's}\}$$

$$|A| \sim V^{\log_5(3)} \sim |V|^{0.68}.$$

3-Free Assume $x, y, z \in A$ and $x + z = 2y$.

Key Since base 5 rep of x, y, z has only 0’s, 1’s, 2’s adding them is carry free.

$x = x_L \cdots x_0$

$z = z_L \cdots z_0$

$y = y_L \cdots y_0$

If $x + z = 2y$ then, for all i, $x_i + z_i = 2y_i$.

If $y_i = 0$ the then $x_i = z_i = 0$.

If $y_i = 1$ the then $x_i = z_i = 1$. . NO- could have $x_i = 0$ and $z_i = 2$.
$sz(V) \geq V^{0.68}$

View $[V]$ as numbers in base 5.
(Attempt- it won’t work)

$$A = \{ w \in [V] : \text{Base 5 rep of } w \text{ only has 0's, 1's, 2's}\}$$

$$|A| \sim V^{\log_5(3)} \sim |V|^{0.68}.$$

3-Free Assume $x, y, z \in A$ and $x + z = 2y$.

Key Since base 5 rep of x, y, z has only 0’s, 1’s, 2’s adding them is carry free.

$x = x_L \cdots x_0$
$z = z_L \cdots z_0$
$y = y_L \cdots y_0$

If $x + z = 2y$ then, for all i, $x_i + z_i = 2y_i$.

If $y_i = 0$ then $x_i = z_i = 0$.

If $y_i = 1$ the then $x_i = z_i = 1$. . . NO- could have $x_i = 0$ and $z_i = 2$.

Shucky Darns!
\[\text{sz}(V) \geq V^{0.68} \]

View \([V]\) as numbers in base 5.
(Attempt- it won’t work)

\[A = \{ w \in [V] : \text{Base 5 rep of } w \text{ only has 0’s, 1’s, 2’s} \} \]

\[|A| \sim V^\log_5(3) \sim |V|^{0.68}. \]

3-Free Assume \(x, y, z \in A\) and \(x + z = 2y\).

Key Since base 5 rep of \(x, y, z\) has only 0’s, 1’s, 2’s adding them is carry free.

\[x = x_L \cdots x_0 \]
\[z = z_L \cdots z_0 \]
\[y = y_L \cdots y_0 \]

If \(x + z = 2y\) then, for all \(i\), \(x_i + z_i = 2y_i\).

If \(y_i = 0\) the then \(x_i = z_i = 0\).

If \(y_i = 1\) the then \(x_i = z_i = 1\). . NO- could have \(x_i = 0\) and \(z_i = 2\).

Shucky Darns! Need to add one more condition.
The Real Set A

A is the set of all $w \in \mathbb{V}$ such that

- Base 5 rep of w only has 0’s, 1’s, 2’s.
- Base 5 rep of w exactly 1/3 of the digits are 0.

3-free

$x = x_L \cdots x_0$
$z = z_L \cdots z_0$
$y = y_L \cdots y_0$
The Real Set A

A is the set of all $w \in [V]$ such that

- Base 5 rep of w only has 0's, 1's, 2's.
- Base 5 rep of w exactly 1/3 of the digits are 0.

3-free

$x = x_L \cdots x_0$
$z = z_L \cdots z_0$
$y = y_L \cdots y_0$

If $x + z = 2y$ then, for all i, $x_i + z_i = 2y_i$.
The Real Set A

A is the set of all $w \in [V]$ such that

- Base 5 rep of w only has 0’s, 1’s, 2’s.
- Base 5 rep of w exactly 1/3 of the digits are 0.

3-free

$x = x_L \cdots x_0$
$z = z_L \cdots z_0$
$y = y_L \cdots y_0$

If $x + z = 2y$ then, for all i, $x_i + z_i = 2y_i$.

FIRST look at the $L/3$ places where $y_i = 0$. Then $x_i = z_i = 0$.

Key For all other places $x_i \neq 0$, $z_i \neq 0$.
The Real Set A

A is the set of all $w \in [V]$ such that

- Base 5 rep of w only has 0’s, 1’s, 2’s.
- Base 5 rep of w exactly $1/3$ of the digits are 0.

3-free

$x = x_L \cdots x_0$
$z = z_L \cdots z_0$
$y = y_L \cdots y_0$

If $x + z = 2y$ then, for all i, $x_i + z_i = 2y_i$.

FIRST look at the $L/3$ places where $y_i = 0$. Then $x_i = z_i = 0$.

Key For all other places $x_i \neq 0$, $z_i \neq 0$.

SECOND look at the places where $y_i = 1$. $x_i + z_i = 2$ and $x_i \neq 0$, $y_i \neq 0$ Hence $x_i = z_i = 1$.
The Real Set \(A \)

\(A \) is the set of all \(w \in [V] \) such that

- Base 5 rep of \(w \) only has 0’s, 1’s, 2’s.
- Base 5 rep of \(w \) exactly 1/3 of the digits are 0.

3-free

\[
x = x_L \cdots x_0
\]
\[
z = z_L \cdots z_0
\]
\[
y = y_L \cdots y_0
\]

If \(x + z = 2y \) then, for all \(i \), \(x_i + z_i = 2y_i \).

FIRST look at the \(L/3 \) places where \(y_i = 0 \). Then \(x_i = z_i = 0 \).

Key For all other places \(x_i \neq 0 \), \(z_i \neq 0 \).

SECOND look at the places where \(y_i = 1 \). \(x_i + z_i = 2 \) and \(x_i \neq 0 \), \(y_i \neq 0 \) Hence \(x_i = z_i = 1 \).

THIRD look at the places where \(y_i = 2 \). \(x_i + z_i = 4 \), so \(x_i = z_i = 2 \).
The Real Set A

A is the set of all $w \in [V]$ such that

- Base 5 rep of w only has 0’s, 1’s, 2’s.
- Base 5 rep of w exactly 1/3 of the digits are 0.

3-free

$x = x_L \cdots x_0$
$z = z_L \cdots z_0$
$y = y_L \cdots y_0$

If $x + z = 2y$ then, for all i, $x_i + z_i = 2y_i$.

FIRST look at the $L/3$ places where $y_i = 0$. Then $x_i = z_i = 0$.

Key For all other places $x_i \neq 0$, $z_i \neq 0$.

SECOND look at the places where $y_i = 1$. $x_i + z_i = 2$ and $x_i \neq 0$, $y_i \neq 0$ Hence $x_i = z_i = 1$.

THIRD look at the places where $y_i = 2$. $x_i + z_i = 4$, so $x_i = z_i = 2$.

So $x = y = z$.
What is $|A|$?

Choose $L/3$ of the digits to be 0. \[\binom{L}{L/3} \sim L^{L/3} \]
What is $|A|$?

Choose $L/3$ of the digits to be 0. \[\binom{L}{L/3} \sim L^{L/3} \]

For the remainder use 1’s or 2’s, so $2^{2L/3}$
What is $|A|$?

Choose $L/3$ of the digits to be 0. $\binom{L}{L/3} \sim L^{L/3}$

For the remainder use 1’s or 2’s, so $2^{2L/3}$

Leave it to the reader to work it out.
\[\text{sz}(V) \geq V^{1 - \frac{1}{\sqrt{\lg V}}} \]

Let \(r \) be such that \(2^{r(r+1)/2} - 1 \leq V \leq 2^{(r+1)(r+2)/2} - 1 \).

Note that \(r \sim \sqrt{2 \lg(V)} \).
\[\text{sz}(V) \geq V^{1 - \frac{1}{\sqrt{\lg V}}} \]

Let \(r \) be such that \(2^{r(r+1)/2 - 1} \leq V \leq 2^{(r+1)(r+2)/2 - 1} \).
Note that \(r \sim \sqrt{2 \lg(V)} \).
Write the numbers in \([V]\) in base 2.
\[\text{sz}(V) \geq V^{1 - \frac{1}{\sqrt{\lg V}}} \]

Let \(r \) be such that \(2^{r(r+1)/2} - 1 \leq V \leq 2(r+1)(r+2)/2 - 1 \).

Note that \(r \sim \sqrt{2 \lg(V)} \).

Write the numbers in \([V]\) in base 2.

Break the numbers into \(r \) blocks of bits.
Let r be such that \(2^{r(r+1)/2} - 1 \leq V \leq 2^{(r+1)(r+2)/2} - 1 \). Note that $r \sim \sqrt{2 \lg(V)}$.

Write the numbers in \([V]\) in base 2.

Break the numbers into r blocks of bits.

The first (rightmost) block is one 1 long.
$sz(V) \geq V^{1-\frac{1}{\sqrt{\lg V}}}$

Let r be such that $2^{r(r+1)/2} - 1 \leq V \leq 2^{(r+1)(r+2)/2} - 1$. Note that $r \sim \sqrt{2 \lg(V)}$.

Write the numbers in $[V]$ in base 2.

Break the numbers into r blocks of bits.

The first (rightmost) block is one 1 long.

The second block is 2 bits long.
Let r be such that $2^{r(r+1)/2} - 1 \leq V \leq 2^{(r+1)(r+2)/2} - 1$. Note that $r \sim \sqrt{2 \log(V)}$.

Write the numbers in $[V]$ in base 2.

Break the numbers into r blocks of bits.

The first (rightmost) block is one 1 long.

The second block is 2 bits long.

The rth block is r bits long.
Let r be such that $2^{r(r+1)/2} - 1 \leq V \leq 2^{(r+1)(r+2)/2} - 1$. Note that $r \sim \sqrt{2 \lg(V)}$.

Write the numbers in $[V]$ in base 2.

Break the numbers into r blocks of bits.

The first (rightmost) block is one 1 long.

The second block is 2 bits long.

The rth block is r bits long.

We denote the ith block as B_i, a number.
An Example!

991746118991 in binary is

1110011011101000101011001101010101001111

B_1 = 1
B_2 = 3
B_3 = 1
B_4 = 5
An Example!

991746118991 in binary is

1110011011101000101011001101010101001111

We write it as:

000001110; 01101110; 1000101; 011001; 10101; 0101; 001; 11; 1
An Example!

991746118991 in binary is

1110011011101000101011001101010101001111

We write it as:

000001110; 01101110; 1000101; 011001; 10101; 0101; 001; 11; 1

\[B_1 = 1 \]
\[B_2 = 3 \]
\[B_3 = 1 \]
\[B_4 = 5 \]
The Set A

A is the set of all $B_rB_{r-1}\cdots B_1$ such that:

1. For $1 \leq i \leq r - 2$ the leftmost bit of B_i is 0. This leads to carry-free addition.

2. $\sum_{i=1}^{r-2} B_i^2 = B_rB_{r-1}$ (The B_rB_{r-1} is concatenation.)

We leave it to the reader to prove that $|A|$ is as big as we said (this is easy) and that the set is 3-free (This requires some thought.)
Recall that we prove:

Thm Let $V \in \mathbb{N}$ and let $A \subseteq [V]$ be a 3-free set. Then there is a $\frac{V \ln(V)}{|A|}$-coloring of $[V]$ with no mono 3-APs. Hence $W(3, \frac{V \ln(V)}{|A|}) \geq V$.

Back to $W(3, c)$
Recall that we prove:

Thm Let $V \in \mathbb{N}$ and let $A \subseteq [V]$ be a 3-free set. Then there is a $\frac{V \ln(V)}{|A|}$-coloring of $[V]$ with no mono 3-APs. Hence

$W(3, \frac{V \ln(V)}{|A|}) \geq V.$

Recall that we sketched:

Thm There exists a 3-free subset of $[V]$ of size $\geq V^{1 - \frac{1}{\sqrt{\lg V}}}$
Recall that we prove:

Thm Let $V \in \mathbb{N}$ and let $A \subseteq [V]$ be a 3-free set. Then there is a $\frac{V \ln(V)}{|A|}$-coloring of $[V]$ with no mono 3-APs. Hence

$W(3, \frac{V \ln(V)}{|A|}) \geq V$.

Recall that we sketched:

Thm There exists a 3-free subset of $[V]$ of size $\geq V^{1 - \frac{1}{\sqrt{\lg V}}}$

Combine these two to get:

Thm Let $V \in \mathbb{N}$. Then there is a $V^{\frac{1}{\sqrt{\lg V}} \ln(V)}$-coloring of $[V]$ with no mono 3-APs. Hence

$$W(3, V^{\frac{1}{\sqrt{\lg V}} \ln(V)}) \geq V.$$