$LR_2(2) \leq 13$

Exposition by William Gasarch

May 20, 2020

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Review of $LR_2(k)$

Definition $A \subseteq \mathbb{N}$ is large if $|A| > \min(A)$.

Definition $A \subseteq \mathbb{N}$ is large if $|A| > \min(A)$.

Definition $LR_2(k)$ is the least *n* such that for all 2-colorings of $\binom{\{k,...,n\}}{2}$ there exists a large homog set.

Definition $A \subseteq \mathbb{N}$ is large if $|A| > \min(A)$.

Definition $LR_2(k)$ is the least *n* such that for all 2-colorings of $\binom{\{k,...,n\}}{2}$ there exists a large homog set.

Definition $LR_2(2)$ is the least *n* such that for all 2-colorings of $\binom{\{2,...,n\}}{2}$ there exists a large homog set.

$\textit{LR}_2(2) \leq 13$

Let COL: $\binom{\{2,...,13\}}{2} \rightarrow [2]$. We show there is a large homog set.

・ロト・日本・ビート・ビート しょうくろ

$\textit{LR}_2(2) \leq 13$

Let COL: $\binom{\{2,...,13\}}{2} \rightarrow [2]$. We show there is a large homog set. Note The graph has 12 vertices so every point has degree 11.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$\deg_R(\mathbf{2}) \geq \mathbf{8}$

Case 1 $\deg_R(2) \ge 8$. Let the 8 smallest *R*-neighbors of 2 be $x_1 < \cdots < x_8$.

- ► There exists 1 ≤ i < j ≤ 8 such that COL(x_i, x_j) = R. Large homog set: {2, x_i, x_j}.
- For all 1 ≤ i < j ≤ 8, COL(x_i, x_j) = B AND x₁ ≤ 7. Large homog set: {x₁,..., x₈}.
- For all $1 \le i < j \le 8$, $COL(x_i, x_j) = B$ AND $x_1 \ge 8$. Then $x_8 \ge 15$ which is a contradiction.

$\deg_R(\mathbf{2})=\mathbf{7}$

Case 2 deg_R(2) = 7. Let the 7 smallest *R*-neighbors of 2 be $x_1 < \cdots < x_7$.

- ► There exists 1 ≤ i < j ≤ 7 such that COL(x_i, x_j) = R. Large homog set: {2, x_i, x_j}.
- For all 1 ≤ i < j ≤ 7, COL(x_i, x_j) = B AND x₁ ≤ 6. Large homog set: {x₁,..., x₇}.

For all 1 ≤ i < j ≤ 7, COL(x_i, x_j) = B AND x₁ ≥ 7. Note that {x₁,..., x₇} = {7,8,9,10,11,12,13}. Hence the blue neighbors of 2 are {3,4,5,6} (1) there exists 3 ≤ i < j ≤ 6 such that (i,j) is B. Large Homog Set: {2, i, j}. (2) For all 3 ≤ i < j ≤ 6, (i,j) is R. This is a RED K₄ that has 3 as a vertex, so its a large homog set.

$\deg_R(\mathbf{2})=\mathbf{6}$

Case 3 $\deg_R(2) = 6$. Let the 6 smallest *R*-neighbors of 2 be $x_1 < \cdots < x_6$.

- ► There exists 1 ≤ i < j ≤ 6 such that COL(x_i, x_j) = R. Large homog set: {2, x_i, x_j}.
- For all 1 ≤ i < j ≤ 6, COL(x_i, x_j) = B AND x₁ ≤ 5. Large homog set: {x₁,..., x₆}.
- For all $1 \le i < j \le 6$, $COL(x_i, x_j) = B$ AND $x_1 \ge 6$. Note that $\{x_1, \ldots, x_6\} \subseteq \{6, 7, 8, 9, 10, 11, 12, 13\}$. Hence the blue neighbors of 2 contain $\{3, 4, 5\}$. We call the blue neighbors $y_1 = 3 < y_2 = 4 < y_3 = 5 < y_4 < y_5 < y_6$. (1) there exists $1 \le i < j \le 6$ such that (y_i, y_j) is B. Large Homog Set: $\{2, x_i, x_j\}$. (2) For all $1 \le i < j \le 6$, (x_i, x_j) is R. This is a RED K_6 that has 3 as a vertex, so its a large homog set.

$\deg_R(2) \leq 5$

Case 4 $\deg_R(2) \le 5$. Then $\deg_B(2) \ge 6$. If $\deg_B(2) = 6$ use the argument used for $\deg_R(2) = 6$. If $\deg_B(2) = 7$ use the argument used for $\deg_R(2) = 7$. If $\deg_B(2) \ge 8$ use the argument used for $\deg_R(2) \ge 8$.