$$
L R_{2}(2) \leq 13
$$

## Exposition by William Gasarch

May 20, 2020

Review of $L R_{2}(k)$

Definition $A \subseteq \mathbb{N}$ is large if $|A|>\min (A)$.

## Review of $L R_{2}(k)$

Definition $A \subseteq \mathbb{N}$ is large if $|A|>\min (A)$.
Definition $L R_{2}(k)$ is the least $n$ such that for all 2-colorings of $\binom{\{k, \ldots, n\}}{2}$ there exists a large homog set.

## Review of $L R_{2}(k)$

Definition $A \subseteq \mathbb{N}$ is large if $|A|>\min (A)$.
Definition $L R_{2}(k)$ is the least $n$ such that for all 2-colorings of $\binom{\{k, \ldots, n\}}{2}$ there exists a large homog set.
Definition $L R_{2}(2)$ is the least $n$ such that for all 2-colorings of $\binom{\{2, \ldots, n\}}{2}$ there exists a large homog set.

## $L R_{2}(2) \leq 13$

Let COL: $(\underset{2, \ldots, 13\}}{2}) \rightarrow[2]$. We show there is a large homog set.

## $L R_{2}(2) \leq 13$

Let COL: $(\underset{2}{\{2, \ldots, 13\}}) \rightarrow[2]$. We show there is a large homog set. Note The graph has 12 vertices so every point has degree 11.

## $\operatorname{deg}_{R}(2) \geq 8$

Case $1 \operatorname{deg}_{R}(2) \geq 8$. Let the 8 smallest $R$-neighbors of 2 be $x_{1}<\cdots<x_{8}$.

- There exists $1 \leq i<j \leq 8$ such that $\operatorname{COL}\left(x_{i}, x_{j}\right)=R$. Large homog set: $\left\{2, x_{i}, x_{j}\right\}$.
- For all $1 \leq i<j \leq 8, \operatorname{COL}\left(x_{i}, x_{j}\right)=B$ AND $x_{1} \leq 7$. Large homog set: $\left\{x_{1}, \ldots, x_{8}\right\}$.
- For all $1 \leq i<j \leq 8, \operatorname{COL}\left(x_{i}, x_{j}\right)=B$ AND $x_{1} \geq 8$. Then $x_{8} \geq 15$ which is a contradiction.


## $\operatorname{deg}_{R}(2)=7$

Case $2 \operatorname{deg}_{R}(2)=7$. Let the 7 smallest $R$-neighbors of 2 be $x_{1}<\cdots<x_{7}$.

- There exists $1 \leq i<j \leq 7$ such that $\operatorname{COL}\left(x_{i}, x_{j}\right)=R$. Large homog set: $\left\{2, x_{i}, x_{j}\right\}$.
- For all $1 \leq i<j \leq 7, \operatorname{COL}\left(x_{i}, x_{j}\right)=B$ AND $x_{1} \leq 6$. Large homog set: $\left\{x_{1}, \ldots, x_{7}\right\}$.
- For all $1 \leq i<j \leq 7, \operatorname{COL}\left(x_{i}, x_{j}\right)=B$ AND $x_{1} \geq 7$. Note that $\left\{x_{1}, \ldots, x_{7}\right\}=\{7,8,9,10,11,12,13\}$. Hence the blue neighbors of 2 are $\{3,4,5,6\}$ (1) there exists $3 \leq i<j \leq 6$ such that $(i, j)$ is B . Large Homog Set: $\{2, i, j\}$. (2) For all $3 \leq i<j \leq 6,(i, j)$ is R . This is a RED $K_{4}$ that has 3 as a vertex, so its a large homog set.


## $\operatorname{deg}_{R}(2)=6$

Case $3 \operatorname{deg}_{R}(2)=6$. Let the 6 smallest $R$-neighbors of 2 be $x_{1}<\cdots<x_{6}$.

- There exists $1 \leq i<j \leq 6$ such that $\operatorname{COL}\left(x_{i}, x_{j}\right)=R$. Large homog set: $\left\{2, x_{i}, x_{j}\right\}$.
- For all $1 \leq i<j \leq 6, \operatorname{COL}\left(x_{i}, x_{j}\right)=B$ AND $x_{1} \leq 5$. Large homog set: $\left\{x_{1}, \ldots, x_{6}\right\}$.
- For all $1 \leq i<j \leq 6, \operatorname{COL}\left(x_{i}, x_{j}\right)=B$ AND $x_{1} \geq 6$. Note that $\left\{x_{1}, \ldots, x_{6}\right\} \subseteq\{6,7,8,9,10,11,12,13\}$. Hence the blue neighbors of 2 contain $\{3,4,5\}$. We call the blue neighbors $y_{1}=3<y_{2}=4<y_{3}=5<y_{4}<y_{5}<y_{6}$. (1) there exists $1 \leq i<j \leq 6$ such that $\left(y_{i}, y_{j}\right)$ is B. Large Homog Set: $\left\{2, x_{i}, x_{j}\right\}$. (2) For all $1 \leq i<j \leq 6,\left(x_{i}, x_{j}\right)$ is R . This is a RED $K_{6}$ that has 3 as a vertex, so its a large homog set.


## $\operatorname{deg}_{R}(2) \leq 5$

Case $4 \operatorname{deg}_{R}(2) \leq 5$. Then $\operatorname{deg}_{B}(2) \geq 6$.
If $\operatorname{deg}_{B}(2)=6$ use the argument used for $\operatorname{deg}_{R}(2)=6$.
If $\operatorname{deg}_{B}(2)=7$ use the argument used for $\operatorname{deg}_{R}(2)=7$.
If $\operatorname{deg}_{B}(2) \geq 8$ use the argument used for $\operatorname{deg}_{R}(2) \geq 8$.

