0.0.1 If ... then (b_1, \ldots, b_n) is distinct-regular

We will prove the following theorem due to Rado [?, ?].

Theorem 0.0.1 If $(b_1, b_2, ..., b_n)$ is regular and there exists $\lambda_1, ..., \lambda_n$ distinct such that $\sum_{i=1}^n \lambda_i b_i = 0$ then $(b_1, ..., b_n)$ is distinct-regular.

To prove this we need a Key Lemma:

Key lemma

The lemma is in three parts. The first one we use to characterize which vectors are distinct-regular. The second and third are used in a later section when we prove the Full Rado Theorem.

The following definitions are used in the third part of the lemma.

Def 0.0.2 Let $n \in \mathbb{N}$.

1. A set $G \subseteq \mathbb{N}^n$ is homogeneous if, for all $\alpha \in \mathbb{N}$,

$$(e_1,\ldots,e_n)\in G \implies (\alpha e_1,\ldots,\alpha e_n)\in G.$$

2. A set $G \subseteq \mathbb{N}^n$ is *regular* if, for all c, there exists R = R(G; c) such that the following holds: For all c-colorings $\chi:[R] \to [c]$ there exists $\vec{e} = (e_1, \ldots, e_n) \in G$ such that all of the e_i 's are colored the same.

Example 0.0.3

- 1. Let $G = \{(a, a + d, ..., a + (k 1)d) \mid a, d \in \mathbb{N}\}$ be the set of k-APs in \mathbb{N} . G is homogeneous. By VDW, G is also regular.
- 2. Let $b_1, \ldots, b_n \in \mathbb{Z}$. Let $G = \{(e_1, \ldots, e_n) \mid \sum_{i=1}^n b_i e_i = 0\}$. G is homogeneous. G is regular if and only if (b_1, \ldots, b_n) is.
- 3. Let A be an $m \times n$ matrix. Let $G = \{\vec{e} \mid A\vec{e} = \vec{0}\}$. G is homogeneous. G is regular if and only if M is.

Lemma 0.0.4

- 1. For all $(b_1, \ldots, b_n) \in \mathbb{Z}^n$ regular, for all $c, M \in \mathbb{N}$, there exists $L = L(b_1, \ldots, b_n; c, M)$ with the following property. For any c-coloring χ : $[L] \to [c]$ there exists $e_1, \ldots, e_n, d \in [L]$ such that the following hold.
 - (a) $b_1e_1 + \dots + b_ne_n = 0.$
 - (b) All of these numbers have the same color:

2. For all $(b_1, \ldots, b_n) \in \mathbb{Z}^n$ regular, for all $c, M, s \in \mathbb{N}$, there exists $L_2 = L_2(b_1, \ldots, b_n; c, M, s)$ with the following property. For any c-coloring $\chi: [L_2] \to [c]$ there exists $e_1, \ldots, e_n, d \in [L_2]$ such that the following hold.

(a)
$$b_1e_1 + \dots + b_ne_n = 0.$$

(b) All of these numbers have the same color:

- 3. For all $n \in \mathbb{N}$, for all $G \subseteq \mathbb{N}^n$, G regular and homogeneous, for all $c, M, s \in \mathbb{N}$ there exists $L_3 = L_3(G; c, M, s)$ with the following property. For any c-coloring $\chi: [L_3] \to [c]$ there exists $e_1, \ldots, e_n, d \in [L_3]$ such that the following hold.
 - (a) $(e_1, \ldots, e_n) \in G$.
 - (b) All of these numbers have the same color:

2

Proof: (Part 1)

Since b_1, \ldots, b_n is regular, by Definition ?? there exists $R = R(b_1, \ldots, b_n; c)$ such that for any *c*-coloring of [R] there exists e_1, \ldots, e_n such that (1) all of the e_i 's are the same color, and (2) $\sum_{i=1}^n b_i e_i = 0.$

We will choose the desired number L later. Throughout the proof we will add conditions to L. The first one is that R divides L.

Let $\chi:[L] \to [c]$ be a coloring.

We want to show that the conclusion of the theorem holds for χ . We define a new coloring $\chi^*:[L/R] \to [c]^R$ as follows:

$$\chi^*(n) = (\chi(n), \chi(2n), \chi(3n), \dots, \chi(Rn)).$$

In order to find an arithmetic progression, we will pick L so that $L/R \ge W(2X+1, c^R)$. We will determine X later.

Apply (a slight variant of) VDW to the c^{R} -coloring χ to obtain the following: There exists a, D (but not our desired d) such that

$$\chi^*(a - XD) = \chi^*(a - (X - 1)D) = \dots = \chi^*(a) = \dots = \chi^*(a + XD).$$

Since we know

$$\chi^*(n) = (\chi(n), \chi(2n), \dots, \chi(Rn)),$$

this gives us

$$\begin{array}{rcl} \chi(a - XD) &=& \chi(a - (X - 1)D) &=& \cdots &=& \chi(a) &=& \cdots &=& \chi(a + XD) \\ \chi(2(a - XD)) &=& \chi(2(a - (X - 1)D)) &=& \cdots &=& \chi(2a) &=& \cdots &=& \chi(2(a + XD)) \\ \chi(3(a - XD)) &=& \chi(3(a - (X - 1)D)) &=& \cdots &=& \chi(3a) &=& \cdots &=& \chi(3(a + XD)) \\ \vdots &=& \vdots &=& \cdots &=& \vdots &=& \cdots &=& \vdots \\ \chi(R(a - XD)) &=& \chi(R(a - (X - 1)D)) &=& \cdots &=& \chi(Ra) &=& \cdots &=& \chi(R(a + XD)). \end{array}$$

We need a subset of these that are all the same color. Consider the coloring $\chi^{**}:[R]\to [c]$ defined by

$$\chi^{**}(n) = \chi(na).$$

By the definition of R there exists f_1, \ldots, f_n such that

1. $\sum_{i=1}^{n} b_i f_i = 0$. Hence $\sum_{i=1}^{n} b_i (af_i) = a \sum_{i=1}^{n} b_i f_i = 0$.

2.
$$\chi^{**}(f_1) = \chi^{**}(f_2) = \cdots = \chi^{**}(f_n).$$

By the definition of χ^{**} we have

$$\chi(af_1) = \chi(af_2) = \cdots = \chi(af_n).$$

Note that we have that the following are *all* the same color:

For all $i, 1 \leq i \leq n$ let $e_i = af_i$. We rewrite the above:

We are almost there — we have our e_1, \ldots, e_n that are the same color, and lots of additive terms from them are also that color. We just need a value of d such that

$$\{d, 2d, 3d, \dots, Md\} \subseteq \{f_1D, 2f_1D, 3f_1D, \dots, Xf_1D\}, \\ \{d, 2d, 3d, \dots, Md\} \subseteq \{f_2D, 2f_2D, 3f_2D, \dots, Xf_2D\},$$

4

 $\{d, 2d, 3d, \dots, Md\} \subseteq \{f_n D, 2f_n D, 3f_n D, \dots, Xf_n D\}.$

We have no control over D, but we haven't chosen X or d yet. We know that, for all $i, f_i \leq R$. Clearly $d = f_1 f_2 \cdots f_n D \leq R^n D$ is a sensible choice, so we use that.

We need, for every $1 \le i \le n$,

$$\left\{ \left(\prod_{j=1}^n f_i\right) D, 2\left(\prod_{j=1}^n f_i\right) D, \dots, M\left(\prod_{j=1}^n f_i\right) D \right\} \subseteq \{f_i D, 2f_i D, \dots, Xf_i D\}.$$

Equivalently, we need

$$\left\{ \left(\prod_{j=1}^n f_i\right), 2\left(\prod_{j=1}^n f_i\right), \dots, M\left(\prod_{j=1}^n f_i\right) \right\} \subseteq \{f_i, 2f_i, \dots, Xf_i\}.$$

Taking $X = MR^{n-1}$ will suffice.

Since we have $X = R^{n-1}M$, we now know our bound for L:

$$L = R \cdot W(2R^{n-1}M + 1, c^R)$$
, where $R = R(b_1, \dots, b_n; c)$.

(Part 2)

We prove this by induction on c.

Base Case: For c = 1 this is easy; however, we find the actual bound anyway. The only issue here is to make sure that the objects we want to color are actually in $[L(b_1, \ldots, b_n; 1, M, s)]$. Let $(e_1, \ldots, e_n) \in \mathbb{N}^n$ be a solution to $\sum_{i=1}^n b_i e_i = 0$ such that $e_{\min} = \min\{e_1, \ldots, e_n\} > M$. Let $e_{\max} = \max\{e_1, \ldots, e_n\} > M$. Let $L_2 = L_2(b_1, \ldots, b_n; 1, M, s) = \max\{e_{\max} + M, s\}$. Let $\chi:[L_2] \to [1]$. We claim that $e_1, \ldots, e_n, 1$ work. Note that, for all $i \in [n]$ and $j \in \{-M, \ldots, M\}$, we have $e_i + j \times 1 \in [L_2]$. Also note that $s \times 1 \in [L_2]$. Thus, taking d = 1, we have our solution.

Induction Hypothesis: We assume the theorem is true for c-1 colors. In particular, for any M', $L_2(b_1, \ldots, b_n; c-1, M', s)$ exists. This proof will be similar to the proof of Lemma ??.

Induction Step: We want to show that $L_2(b_1, \ldots, b_n; c, M, s)$ exists. We show that there is M' so that, if you c-color [L] (where $L = L(b_1, \ldots, b_n; c, M')$ from part 1), then there exists the required e_1, \ldots, e_n, d . The M' will depend

on L_2 for c-1 colors. Let χ be a *c*-coloring of [L]. By part 1 there exists E_1, \ldots, E_n, D such that $\sum_{i=1}^n b_i E_i = 0$ and the following are all the same color, which we will call RED.

$$E_{1} - M'D, \dots, E_{1} - D, E_{1}, E_{1} + D, \dots, E_{1} + M'D$$

$$E_{2} - M'D, \dots, E_{2} - D, E_{2}, E_{2} + D, \dots, E_{2} + M'D$$

$$\vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots$$

$$E_{n} - M'D, \dots, E_{n} - D, E_{n}, E_{n} + D, \dots, E_{n} + M'D.$$

There are now several cases.

Case 1: If sD is RED then we are done so long as $M' \ge M$. Use d = D. **Case 2:** If 2sD is RED then we are done so long as $M' \ge 2M$. Use d = 2D.

Case X: If XsD is RED then so long as $M' \ge MX$ we are done. Use d = XD.

Case X+1: None of the above cases hold. Hence

$$sD, 2sD, \ldots, XsD$$

are all *not* RED. Hence the coloring restricted to this set is a c-1 coloring. Let $X = L_2(b_1, \ldots, b_n; c-1, M, s)$, and M' = MX. Consider the (c-1)-coloring χ^* of [M'] defined by

$$\chi^*(x) = \chi(xsD).$$

By the induction hypothesis and the definition of M' there exists e_1, \ldots, e_n, d such that $\sum_{i=1}^n b_i e_i = 0$ and all of the following are the same color under χ^* :

$$e_{1} - Md, \quad e_{1} - (M - 1)d, \quad \dots, \quad e_{1}, \quad \dots, \quad e_{1} + Md$$

$$e_{2} - Md, \quad e_{2} - (M - 1)d, \quad \dots, \quad e_{2}, \quad \dots, \quad e_{2} + Md$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$e_{n} - Md, \quad e_{n} - (M - 1)d, \quad \dots, \quad e_{n}, \quad \dots, \quad e_{n} + Md$$

$$sd.$$

By the definition of χ^* , the following have the same color via χ :

By taking the vector $(e_1 s D, \ldots, e_n s D)$ and common difference s dD, we obtain the result.

(Part 3)

In both of the above parts, the only property of the set

$$\left\{ (x_1, \dots, x_n) \; \middle| \; \sum_{i=1}^n b_i x_i = 0 \right\}$$

that we used is that it was homogeneous and regular. Hence all of the proofs go through without any change and we obtain this part of the lemma.

Back to our Story

Theorem 0.0.5 If (b_1, \ldots, b_n) is regular and there exists $(\lambda_1, \ldots, \lambda_n)$ such that $\sum_{i=1}^n \lambda_i b_i = 0$ and all of the λ_i are distinct, then (b_1, \ldots, b_n) is distinct-regular.

Proof: Let M be a parameter to be picked later. Let $L = L(b_1, \ldots, b_n; c, M)$ from part 1 of Lemma 0.0.4. Let χ be a c-coloring of [L]. We know that there exists $e_1, \ldots, e_n, d \in [L]$ such that the following occur.

- 1. $b_1e_1 + \dots + b_ne_n = 0.$
- 2. The following are the same color:

Let $A \in \mathbb{Z}$ be a constant to be picked later. Note that

$$\sum_{i=1}^{n} b_i(e_i + Ad\lambda_i) = \left(\sum_{i=1}^{n} b_i e_i\right) + \left(Ad\sum_{i=1}^{n} b_i\lambda_i\right) = 0.$$

Thus $(e_1 + Ad\lambda_1, \ldots, e_n + Ad\lambda_n)$ is a solution. For it to be monochromatic, we need M to be such that there exists an A with

- 1. $e_1 + Ad\lambda_1, \ldots, e_n + Ad\lambda_n$ are all distinct, and
- 2. For all $i, |A\lambda_i| \leq M$.

Since $\lambda_i \neq \lambda_j$, there is at most 1 value of A which makes $e_i + Ad\lambda_i = e_j + Ad\lambda_j$ — viewing this condition as a linear equation in A. Therefore, there are at most $\binom{n}{2}$ values of A which make item 1 false.

In order to satisfy item 2 we need, for all i, $|A| \leq M/|\lambda_i|$. Let $\lambda = \max\{|\lambda_1|, \ldots, |\lambda_n|\}$. We let $M = \binom{n}{2}\lambda$. Any choice of A with $|A| \leq \binom{n}{2}$ will satisfy condition 2. There are more than $\binom{n}{2}$ values of A that satisfy this, hence we can find a value of A one that satisfies items 1 and 2.

Exercise 1 (Open-ended)

- a) Consider the equation $10x_1 + 13x_2 40x_3 = 0$. By Theorem ?? there is a 40-coloring of \mathbb{N} such that there is no monochromatic solution. Exercise ?? gives a 6-coloring with the same property, but we do not know whether it is best. Find the value of c such that
 - There is a *c*-coloring of \mathbb{N} such that $10x_1 + 13x_2 40x_3 = 0$ has no monochromatic solution.
 - For every c-1-coloring of \mathbb{N} there is a monochromatic solution to $10x_1 + 13x_2 40x_3 = 0$.
- b) We define (b_1, \ldots, b_n) be be *c*-regular if, for every *c*-coloring of \mathbb{N} , there is a monochromatic solution to $\sum_{i=1}^n b_i x_i = 0$. Find some condition X such that, for all (b_1, \ldots, b_n) and $c, (b_1, \ldots, b_n)$ is *c*-regular iff X.
- c) Define c-distinct-regular in the analogous way. Repeat the problem above with that notion of c-distinct regular.