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The Language of ≤ 3− ary Colored Hypergraphs

Our language has the following predicates

1. R(x), B(x). Implicity that every vertex is R or B or NEITHER.

2. RR(x , y), BB(x , y), GG (x , y). Implicity that every edges is
RR or BB or GG or NEITHER.

3. RRR(x , y , z), BBB(x , y , z). Implicity that every 3-edges is
RRR or BBB or NEITHER.

We call this object a JAMIE.



Conventions

1. Symmetric. So RR(x , y) really means RR(x , y) ∧ RR(y , x).
Similar for BB, GG , RRR, BBB.

2. No self loops, so R(x , x) is always false. Simlar for...

3. (∃x1) · · · (∃xn) means they are DISTINCT.

4. (∀x1) · · · (∀xn) means they are DISTINCT.



Main Theorem

Theorem The following function is computable: Given φ, an E ∗A∗

sentence in the theory of JAMIE, output spec(φ). (spec(φ) will be
a finite or cofinite set; hence it will have an easy description.)

We will take φ to be

(∃x1) · · · (∃xn)(∀y1) · · · (∀ym)[ψ(x1, . . . , xn, y1, . . . , ym)]
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Claim 1

Let G |= φ with witnesses v1, . . . , vn. Let H be an induced
subgraph of G that contains v1, . . . , vn. Then H |= φ.
Proof similar to the one from class.



Claim 2, The Main Claim

If (∃N ≥ QQQ)[N ∈ spec(φ)] then

{n + m, . . . ,QQQ, . . .} ⊆ spec(φ).

We will derive what QQQ has to be later.
Proof of Claim 2
Since N ∈ spec(φ) there exists G , a JAMIE on N vertices such
that G |= φ. Let v1, . . . , vn be such that:

(∀y1) · · · (∀ym)[ψ(v1, . . . , vn, y1, . . . , ym)].

(Proof continued on next slide)



Proof of Claim 2 Continued

(∀y1) · · · (∀ym)[ψ(v1, . . . , vn, y1, . . . , ym)].

Let X = {v1, . . . , vn} and U = V − X . Note that |U| ≥ QQQ − n.
We color U by how it relates to all of the elements in X :

1. For all 1 ≤ i ≤ n RR(u, vi )BB(u, vi )GG (u, vi ) (≤ 8 options).
There are n of them, so 8n = 23n options.

2. For all 1 ≤ i < j ≤ n RRR(u, vi , vj)BBB(u, vi , vj). (≤ 4
options)
There are

(n
2

)
of them, so ≤ 4n

2/2 = 2n
2
.

The number of colors is 23n × 2n
2

= 2n
2+3n.



Proof of Claim 2 Continued

We want LOTS of elements to be the SAME color. So we want
QQQ−n
2n2+3n

to be LARGE (and to be a natural number). So we let

QQQ = (L + n)2n
2+3n where L will be determined later.

Every u ∈ U is mapped to a description of how it relates to every
element in X . Since |U| ≥ 2n

2+3nL there exists L vertices that map
to the same color. Denote the L elements of U that map to the
same color U ′.

We denote the color they all map to as THECOLOR.



Proof of Claim 2 Continued

We thin out U ′ on this and the next two slides.

Some of the u ∈ U have R(u) true, some have B(u) true, and
some have neither.

At least L/3 of the U ′ have the same. We’ll say its R.

Let U ′′ be al the u ∈ U such that R(u) holds.

We assume U ′′ = L/3, or L = 3U ′′.



Proof of Claim 2 Continued

(Erika says to apply Ramsey Theory here).(U′′

2

)
is 4-colored by RR, BB, GG, NEITHER.

Let U ′′′ be the homog set. Assume its NEITHER

We assume U ′′ big enough to yield a homog set of size U ′′′ where
we will figure out U ′′′ later.

So U ′′ = R2(U ′′′, 4), so L = 3R2(U ′′′, 4).



Proof of Claim 2 Continued(U′′′

3

)
is 3-colored by RRR, BBB. NEITHER.

Let U ′′′′ be the homog set. Assume its GGG.

We assume U ′′′ big enough to yield a homog set of size U ′′′′ where
we will figure out U ′′′′ later.

So U ′′′ = R3(U ′′′′, 3), so L = 3R2(R3(U ′′′′, 3), 4).

We will need U ′′′′ = m so

L = 3R2(R3(m, 3), 4).

QQQ = (L + n)2n
2+3n = (3R2(R3(m, 3), 4) + n)2n

2
3n

Let U ′′′′ = {u1, . . . , um}.



Proof of Claim 2 Continued

Let H0 be G restricted to X ∪ {u1, . . . , um}. By Claim 1 H0 |= φ.
For every p ≥ 1 we form a JAMIE Hp on n + m + p vertices such
that Hp |= φ:
Informally add m + p vertices that are just like the ui ’s.
Formally Next Slide.



Proof of Claim 2 Continued, Formal Hp = (Vp,Ep)

Vp = X ∪ {u1, . . . , um, um+1, . . . , um+p} where um+1, . . . , um+p are
new vertices.
We have to define how the new ui ’s relate to X , to the other ui s
(both old and new).

I The new ui ’s relate to the elements of X the same way the
{u1, . . . , um} did, which follows THECOLOR.

I For all m + 1 ≤ i ≤ m + p, R(ui ) = T , B(ui ) = F .

I For all 1 ≤ i < j ≤ m + p, NONE of RR(ui , uj) are true.

I For all 1 ≤ i < j < k ≤ m + p, GGG (ui , uj , uk) = T .

X sees all of the u1, . . . , um+p as the same. Hence any subset of
the {u1, . . . , um+p} of size m looks the same to X and to the other
ui ’s. Hence Hp |= φ, so n + m + p ∈ spec(φ).
End of Proof of Claim 2



THE REST OF THE PROOF

The rest of the proof is identical to what I did in class except that
I replace n + R(m) with QQQ.

Even so, its in the next slides.



Claim 3

φ = (∃x1) · · · (∃xn)(∀y1) · · · (∀ym)[ψ(x1, . . . , xn, y1, . . . , ym)].
N0 = QQQ.
N0 /∈ spec(φ) =⇒ spec(φ) ⊆ {0, . . . ,N0 − 1}.
Proof of Claim 3
By Claim 2
{N0, . . .} ∩ spec(φ) 6= ∅ =⇒ {n + m, . . . ,N0, . . .} ⊆ spec(φ).
We take the contrapositive with a weaker premise.

N0 /∈ spec(φ) =⇒ {N0, . . .} ∩ spec(φ) = ∅

=⇒ spec(φ) ⊆ {0, . . . ,N0 − 1}.

End of Proof of Claim 3



Recap Both Claims

We put a subcase of Claim 2, and Claim 3, next to each other to
recap what we know.
Let N0 = QQQ.

Claim 2
If N0 ∈ spec(φ) then {n + m, . . . , } ⊆ spec(φ).

Claim 3
If N0 /∈ spec(φ) then spec(φ) ⊆ {0, . . . ,N0 − 1}.
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Algorithm for Finding spec(φ)

1. Input

φ = (∃x1) · · · (∃xn)(∀y1) · · · (∀ym)[ψ(x1, . . . , xn, y1, . . . , ym)].

2. Let N0 = QQQ. Determine if N0 ∈ spec(φ).

2.1 If YES then by Claim 2 {n + m, . . .} ⊆ spec(φ).
For 0 ≤ i ≤ n + m − 1 test if i ∈ spec(φ). You now know
spec(φ) which is co-finite. Output it.

2.2 If NO then, by Claim 3 spec(φ) ⊆ {0, . . . ,N0 − 1}.
For 0 ≤ i ≤ N0 − 1 test if i ∈ spec(φ). You now know spec(φ)
which is finite set. Output it.

End of Proof of Main Theorem
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