HW 07, Problem 4, Solution

May 10, 2020

The Language of ≤ 3 - ary Colored Hypergraphs

Our language has the following predicates

1. $R(x), B(x)$. Implicity that every vertex is R or B or NEITHER.
2. $R R(x, y), B B(x, y), G G(x, y)$. Implicity that every edges is RR or BB or GG or NEITHER.
3. $R R R(x, y, z), B B B(x, y, z)$. Implicity that every 3-edges is RRR or BBB or NEITHER.
We call this object a JAMIE.

Conventions

1. Symmetric. So $R R(x, y)$ really means $R R(x, y) \wedge R R(y, x)$. Similar for $B B, G G, R R R, B B B$.
2. No self loops, so $R(x, x)$ is always false. Simlar for...
3. $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)$ means they are DISTINCT.
4. $\left(\forall x_{1}\right) \cdots\left(\forall x_{n}\right)$ means they are DISTINCT.

Main Theorem

Theorem The following function is computable: Given ϕ, an $E^{*} A^{*}$ sentence in the theory of JAMIE, output $\operatorname{spec}(\phi)$. $(\operatorname{spec}(\phi)$ will be a finite or cofinite set; hence it will have an easy description.)

Main Theorem

Theorem The following function is computable: Given ϕ, an $E^{*} A^{*}$ sentence in the theory of JAMIE, output $\operatorname{spec}(\phi)$. $(\operatorname{spec}(\phi)$ will be a finite or cofinite set; hence it will have an easy description.)
We will take ϕ to be

$$
\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\forall y_{1}\right) \cdots\left(\forall y_{m}\right)\left[\psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)\right]
$$

Claim 1

Let $G \models \phi$ with witnesses v_{1}, \ldots, v_{n}. Let H be an induced subgraph of G that contains v_{1}, \ldots, v_{n}. Then $H \models \phi$.
Proof similar to the one from class.

Claim 2, The Main Claim

If $(\exists N \geq Q Q Q)[N \in \operatorname{spec}(\phi)]$ then

$$
\{n+m, \ldots, Q Q Q, \ldots\} \subseteq \operatorname{spec}(\phi)
$$

We will derive what QQQ has to be later.
Proof of Claim 2
Since $N \in \operatorname{spec}(\phi)$ there exists G, a JAMIE on N vertices such that $G \models \phi$. Let v_{1}, \ldots, v_{n} be such that:

$$
\left(\forall y_{1}\right) \cdots\left(\forall y_{m}\right)\left[\psi\left(v_{1}, \ldots, v_{n}, y_{1}, \ldots, y_{m}\right)\right] .
$$

(Proof continued on next slide)

Proof of Claim 2 Continued

$$
\left(\forall y_{1}\right) \cdots\left(\forall y_{m}\right)\left[\psi\left(v_{1}, \ldots, v_{n}, y_{1}, \ldots, y_{m}\right)\right]
$$

Let $X=\left\{v_{1}, \ldots, v_{n}\right\}$ and $U=V-X$. Note that $|U| \geq Q Q Q-n$. We color U by how it relates to all of the elements in X :

1. For all $1 \leq i \leq n R R\left(u, v_{i}\right) B B\left(u, v_{i}\right) G G\left(u, v_{i}\right)$ (≤ 8 options). There are n of them, so $8^{n}=2^{3 n}$ options.
2. For all $1 \leq i<j \leq n \operatorname{RRR}\left(u, v_{i}, v_{j}\right) B B B\left(u, v_{i}, v_{j}\right)$. (≤ 4 options)
There are $\binom{n}{2}$ of them, so $\leq 4^{n^{2} / 2}=2^{n^{2}}$.
The number of colors is $2^{3 n} \times 2^{n^{2}}=2^{n^{2}+3 n}$.

Proof of Claim 2 Continued

We want LOTS of elements to be the SAME color. So we want $\frac{Q Q Q-n}{2^{n^{2}+3 n}}$ to be LARGE (and to be a natural number). So we let $Q Q Q=(L+n) 2^{n^{2}+3 n}$ where L will be determined later.

Every $u \in U$ is mapped to a description of how it relates to every element in X. Since $|U| \geq 2^{n^{2}+3 n} L$ there exists L vertices that map to the same color. Denote the L elements of U that map to the same color U^{\prime}.

We denote the color they all map to as THECOLOR.

Proof of Claim 2 Continued

We thin out U^{\prime} on this and the next two slides.
Some of the $u \in U$ have $R(u)$ true, some have $B(u)$ true, and some have neither.

At least $L / 3$ of the U^{\prime} have the same. We'll say its R.
Let $U^{\prime \prime}$ be al the $u \in U$ such that $R(u)$ holds.
We assume $U^{\prime \prime}=L / 3$, or $L=3 U^{\prime \prime}$.

Proof of Claim 2 Continued

(Erika says to apply Ramsey Theory here).
$\binom{U^{\prime \prime}}{2}$ is 4-colored by RR, BB, GG, NEITHER.
Let $U^{\prime \prime \prime}$ be the homog set. Assume its NEITHER
We assume $U^{\prime \prime}$ big enough to yield a homog set of size $U^{\prime \prime \prime}$ where we will figure out $U^{\prime \prime \prime}$ later.

So $U^{\prime \prime}=R_{2}\left(U^{\prime \prime \prime}, 4\right)$, so $L=3 R_{2}\left(U^{\prime \prime \prime}, 4\right)$.

Proof of Claim 2 Continued

$\binom{U^{\prime \prime \prime}}{3}$ is 3-colored by RRR, BBB. NEITHER.
Let $U^{\prime \prime \prime \prime}$ be the homog set. Assume its GGG.
We assume $U^{\prime \prime \prime}$ big enough to yield a homog set of size $U^{\prime \prime \prime \prime}$ where we will figure out $U^{\prime \prime \prime \prime}$ later.

So $U^{\prime \prime \prime}=R_{3}\left(U^{\prime \prime \prime \prime}, 3\right)$, so $L=3 R_{2}\left(R_{3}\left(U^{\prime \prime \prime \prime}, 3\right), 4\right)$.
We will need $U^{\prime \prime \prime \prime}=m$ so

$$
L=3 R_{2}\left(R_{3}(m, 3), 4\right)
$$

$$
Q Q Q=(L+n) 2^{n^{2}+3 n}=\left(3 R_{2}\left(R_{3}(m, 3), 4\right)+n\right) 2^{n_{3}^{2} n}
$$

Let $U^{\prime \prime \prime \prime}=\left\{u_{1}, \ldots, u_{m}\right\}$.

Proof of Claim 2 Continued

Let H_{0} be G restricted to $X \cup\left\{u_{1}, \ldots, u_{m}\right\}$. By Claim $1 H_{0} \models \phi$. For every $p \geq 1$ we form a JAMIE H_{p} on $n+m+p$ vertices such that $H_{p} \models \phi$:
Informally add $m+p$ vertices that are just like the u_{i} 's.
Formally Next Slide.

Proof of Claim 2 Continued, Formal $H_{p}=\left(V_{p}, E_{p}\right)$

$V_{p}=X \cup\left\{u_{1}, \ldots, u_{m}, u_{m+1}, \ldots, u_{m+p}\right\}$ where u_{m+1}, \ldots, u_{m+p} are new vertices.
We have to define how the new u_{i} 's relate to X, to the other u_{i} s (both old and new).

- The new u_{i} 's relate to the elements of X the same way the $\left\{u_{1}, \ldots, u_{m}\right\}$ did, which follows THECOLOR.
- For all $m+1 \leq i \leq m+p, R\left(u_{i}\right)=T, B\left(u_{i}\right)=F$.
- For all $1 \leq i<j \leq m+p$, NONE of $R R\left(u_{i}, u_{j}\right)$ are true.
- For all $1 \leq i<j<k \leq m+p, G G G\left(u_{i}, u_{j}, u_{k}\right)=T$.
X sees all of the u_{1}, \ldots, u_{m+p} as the same. Hence any subset of the $\left\{u_{1}, \ldots, u_{m+p}\right\}$ of size m looks the same to X and to the other u_{i} 's. Hence $H_{p} \models \phi$, so $n+m+p \in \operatorname{spec}(\phi)$.
End of Proof of Claim 2

THE REST OF THE PROOF

The rest of the proof is identical to what I did in class except that I replace $n+R(m)$ with QQQ .

Even so, its in the next slides.

Claim 3

$\phi=\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\forall y_{1}\right) \cdots\left(\forall y_{m}\right)\left[\psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)\right]$.
$N_{0}=Q Q Q$.
$N_{0} \notin \operatorname{spec}(\phi) \Longrightarrow \operatorname{spec}(\phi) \subseteq\left\{0, \ldots, N_{0}-1\right\}$.
Proof of Claim 3
By Claim 2
$\left\{N_{0}, \ldots\right\} \cap \operatorname{spec}(\phi) \neq \emptyset \Longrightarrow\left\{n+m, \ldots, N_{0}, \ldots\right\} \subseteq \operatorname{spec}(\phi)$.
We take the contrapositive with a weaker premise.

$$
\begin{gathered}
N_{0} \notin \operatorname{spec}(\phi) \Longrightarrow\left\{N_{0}, \ldots\right\} \cap \operatorname{spec}(\phi)=\emptyset \\
\Longrightarrow \operatorname{spec}(\phi) \subseteq\left\{0, \ldots, N_{0}-1\right\}
\end{gathered}
$$

End of Proof of Claim 3

Recap Both Claims

We put a subcase of Claim 2, and Claim 3, next to each other to recap what we know.
Let $N_{0}=Q Q Q$.

Recap Both Claims

We put a subcase of Claim 2, and Claim 3, next to each other to recap what we know.
Let $N_{0}=Q Q Q$.
Claim 2
If $N_{0} \in \operatorname{spec}(\phi)$ then $\{n+m, \ldots,\} \subseteq \operatorname{spec}(\phi)$.

Recap Both Claims

We put a subcase of Claim 2, and Claim 3, next to each other to recap what we know.
Let $N_{0}=Q Q Q$.
Claim 2
If $N_{0} \in \operatorname{spec}(\phi)$ then $\{n+m, \ldots,\} \subseteq \operatorname{spec}(\phi)$.
Claim 3
If $N_{0} \notin \operatorname{spec}(\phi)$ then $\operatorname{spec}(\phi) \subseteq\left\{0, \ldots, N_{0}-1\right\}$.

Algorithm for Finding spec (ϕ)

1. Input

$$
\phi=\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\forall y_{1}\right) \cdots\left(\forall y_{m}\right)\left[\psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)\right] .
$$

2. Let $N_{0}=Q Q Q$. Determine if $N_{0} \in \operatorname{spec}(\phi)$.

Algorithm for Finding spec (ϕ)

1. Input

$$
\phi=\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\forall y_{1}\right) \cdots\left(\forall y_{m}\right)\left[\psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)\right] .
$$

2. Let $N_{0}=Q Q Q$. Determine if $N_{0} \in \operatorname{spec}(\phi)$.
2.1 If YES then by Claim $2\{n+m, \ldots\} \subseteq \operatorname{spec}(\phi)$. For $0 \leq i \leq n+m-1$ test if $i \in \operatorname{spec}(\phi)$. You now know $\operatorname{spec}(\phi)$ which is co-finite. Output it.

Algorithm for Finding spec (ϕ)

1. Input

$$
\phi=\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\forall y_{1}\right) \cdots\left(\forall y_{m}\right)\left[\psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)\right] .
$$

2. Let $N_{0}=Q Q Q$. Determine if $N_{0} \in \operatorname{spec}(\phi)$.
2.1 If YES then by Claim $2\{n+m, \ldots\} \subseteq \operatorname{spec}(\phi)$. For $0 \leq i \leq n+m-1$ test if $i \in \operatorname{spec}(\phi)$. You now know $\operatorname{spec}(\phi)$ which is co-finite. Output it.
2.2 If NO then, by Claim $3 \operatorname{spec}(\phi) \subseteq\left\{0, \ldots, N_{0}-1\right\}$. For $0 \leq i \leq N_{0}-1$ test if $i \in \operatorname{spec}(\phi)$. You now know $\operatorname{spec}(\phi)$ which is finite set. Output it.
End of Proof of Main Theorem
